Temporal–Spatial Variations in Microbial Diversity and Community Composition in Surface Waters and Bottom Sediments of the Bohai Sea, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Physicochemical Analysis
2.2. Library Preparation and Sequencing
2.3. Sequencing Data Processing and Statistical Analysis
3. Results and Discussion
3.1. Geochemical Characteristics of Surface Water and Bottom Sediment Between June and August
3.2. Microbial Diversity and Community in Surface Water and Bottom Sediment
3.3. Variation in Microbial Diversity and Community Between June and August
3.4. Temporal Change in Nitrogen/Sulfate Cycle-Related Bacteria
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sample Name | OUT Number | Shannon | Simpson | Chao1 | ACE | Goods_ Coverage | PD_Whole_Tree |
---|---|---|---|---|---|---|---|
W61 | 2505 | 7.904 | 0.987 | 2437.02 | 2543.913 | 0.989 | 142.16 |
W62 | 2441 | 6.724 | 0.951 | 2433.088 | 2675.738 | 0.987 | 137.261 |
W64 | 2459 | 7.523 | 0.981 | 2440.64 | 2572.292 | 0.989 | 142.991 |
W65 | 2601 | 6.83 | 0.967 | 2425.324 | 2646.712 | 0.987 | 143.777 |
W66 | 2570 | 7.307 | 0.977 | 2553.8 | 2666.737 | 0.988 | 144.284 |
S61 | 4448 | 8.787 | 0.991 | 4134.812 | 4540.36 | 0.979 | 219.542 |
S62 | 4205 | 8.305 | 0.985 | 4199.19 | 4391.863 | 0.979 | 205.413 |
S63 | 4322 | 7.691 | 0.971 | 4757.214 | 4931.703 | 0.974 | 205.154 |
S64 | 4507 | 8.434 | 0.988 | 4359.483 | 4651.167 | 0.978 | 218.714 |
S65 | 4360 | 8.754 | 0.99 | 4102.951 | 4304.009 | 0.982 | 218.033 |
S66 | 5723 | 9.164 | 0.993 | 6282.091 | 6420.728 | 0.966 | 273.959 |
W81 | 3781 | 9.602 | 0.995 | 5207.137 | 5361.166 | 0.977 | 286.45 |
W82 | 3719 | 7.979 | 0.984 | 3769.446 | 3968.268 | 0.981 | 206.382 |
W83 | 3419 | 8.332 | 0.983 | 4067.308 | 4230.991 | 0.98 | 224.74 |
W84 | 3271 | 8.318 | 0.985 | 3834.126 | 4033.948 | 0.98 | 206.487 |
W85 | 4037 | 8.553 | 0.99 | 3834.873 | 3971.655 | 0.982 | 219.648 |
W86 | 4078 | 8.844 | 0.993 | 3767.456 | 3926.313 | 0.983 | 236.14 |
S81 | 6238 | 9.928 | 0.996 | 5530.864 | 5730.346 | 0.975 | 270.608 |
S82 | 5850 | 9.783 | 0.996 | 7588.229 | 7702.544 | 0.96 | 297.919 |
S83 | 6251 | 9.487 | 0.99 | 5445.14 | 5676.138 | 0.975 | 287.929 |
S84 | 6063 | 9.197 | 0.992 | 4998.356 | 5231.917 | 0.976 | 267.312 |
S85 | 5878 | 9.449 | 0.994 | 5298.321 | 5589.625 | 0.974 | 272.243 |
S86 | 5776 | 9.97 | 0.996 | 5431.161 | 5637.909 | 0.977 | 294.433 |
References
- Tremblay, L.A.; Chariton, A.A.; Li, M.S.; Zhang, Y.; Horiguchi, T.; Ellis, J.I. Monitoring the Health of Coastal Environments in the Pacific Region—A Review. Toxics 2023, 11, 277. [Google Scholar] [CrossRef]
- Wang, S.; Yan, Z.; Wang, P.; Zheng, X.; Fan, J. Comparative metagenomics reveals the microbial diversity and metabolic potentials in the sediments and surrounding seawaters of Qinhuangdao mariculture area. PLoS ONE 2020, 15, e0234128. [Google Scholar] [CrossRef]
- Barlett, M.A.; Leff, L.G. The effects of N:P ratio and nitrogen form on four major freshwater bacterial taxa in biofilms. Can. J. Microbiol. 2010, 56, 32–43. [Google Scholar] [CrossRef]
- Vijayan, J.; Ezhuthanikkunnel, A.P.; Punnorkodu, S.A.K.; Poikayil, S.S.; Mohan, M.; Ammanamveetil, M.H.A. Sediment microbial diversity, functional potentials, and antibiotic resistance pattern: A case study of Cochin Estuary core sediment. Environ. Sci. Pollut. Res. Int. 2024, 31, 52132–52146. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Marzec, H.; Andersson, A.F.; Błaszczyk, A.; Dąbek, P.; Górecka, E.; Grabski, M.; Jankowska, K.; Jurczak-Kurek, A.; Kaczorowska, A.K.; Kaczorowski, T.; et al. Biodiversity of microorganisms in the Baltic Sea: The power of novel methods in the identification of marine microbes. FEMS Microbiol. Rev. 2024, 48, fuae024. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sen, B.; Zhou, S.; Xie, N.; Zhang, Y.; Zhang, J.; Wang, G. Distinct Seasonal Patterns of Bacterioplankton Abundance and Dominance of Phyla α-Proteobacteria and Cyanobacteria in Qinhuangdao Coastal Waters Off the Bohai Sea. Front. Microbiol. 2017, 8, 1579. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, H.; Ling, W.; Li, Y.; Zhang, K.; Zhang, P. Sources, Status, and Potential Risks of Microplastics in Marine Organisms of the Bohai Sea: A Systematic Review. Toxics 2025, 13, 400. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Zhang, T.; Zou, Z.; Yang, Z. Vertical distribution characteristics and influencing factors of bacterial communities in a sediment profile of Bohai Sea. Sci. Nat. 2025, 112, 37. [Google Scholar] [CrossRef]
- Sun, J.; Guo, F.; Geng, X.; Wei, J.; Li, X.; Li, J. Seasonal changes and diversity of bacteria in Bohai Bay by RFLP analysis of PCR-amplified 16S rDNA gene fragments. World J. Microbiol. Biotechnol. 2011, 27, 275–284. [Google Scholar]
- Zhao, W.; Wang, J.; Xu, S.; Lei, Y.; Yang, R.; Shi, L.; Wang, X.; Huang, Z. Bacterioplankton community variation in Bohai Bay (China) is explained by joint effects of environmental and spatial factors. Microbiologyopen 2020, 9, e997. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Liu, P.; Wu, L.; Sun, Y.; Hu, X. Diversity of bacterial community structure and its driving factors in three bays of Bohai Sea. Microbiol. China 2018, 45, 1956–1971. [Google Scholar]
- Wang, L.; Zheng, B.; Lei, K. Diversity and distribution of bacterial community in the coastal sediments of Bohai Bay, China. Acta Oceanol. Sin. 2015, 34, 122–131. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Huang, J.; Guo, X.; Zhang, Y.; Liu, D.; Wu, R.; He, H.; Wang, J. Diversity of the microbial community and cultivable protease-producing bacteria in the sediments of the Bohai Sea, Yellow Sea and South China Sea. PLoS ONE 2019, 14, e0215328. [Google Scholar] [CrossRef]
- Cantwell, K.; Demopoulos, A.; Hebner, M.; Medley, R.; Mueller, M.; Netburn, A. One byte at a time: Gathering best practices, guidelines, and resources for data standards to support ocean exploration and characterization. Front. Mar. Sci. 2023, 10, 1250245. [Google Scholar] [CrossRef]
- Brady, S.F. Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat. Protoc. 2007, 2, 1297–1305. [Google Scholar] [CrossRef]
- Devereux, R.; Mosher, J.J.; Vishnivetskaya, T.A.; Brown, S.D.; Beddick, D.L., Jr.; Yates, D.F.; Palumbo, A.V. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia. Geobiology 2015, 13, 478–493. [Google Scholar] [CrossRef]
- Morris, R.; Rappe, M.; Connon, S.; Vergin, K.; Siebold, W.; Carlson, C.; Giovannoni, S. SAR11 clade dominate ocean surface bacterioplankton communities. Nature 2002, 420, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, M.; Abad, D.; Albaina, A.; Cralle, L.; Goñi-Urriza, M.S.; Estonba, A.; Zarraonaindia, I. Unraveling the environmental and anthropogenic drivers of bacterial community changes in the Estuary of Bilbao and its tributaries. PLoS ONE 2017, 12, e0178755. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.W.; Li, X.R.; Wang, J.H.; Hu, Z.Y.; Meng, H.; Xiang, L.Y.; Quan, Z.X. Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol. Ecol. 2009, 70, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Doughari, H.J.; Ndakidemi, P.A.; Human, I.S.; Benade, S. The ecology, biology and pathogenesis of Acinetobacter spp.: An overview. Microbes Environ. 2011, 26, 101–112. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Z.; Lu, S.; Zheng, J.; Zhang, X. Nutrients removal and bacterial community structure for low C/N municipal wastewater using a modified anaerobic/anoxic/oxic (mA2/O) process in North China. Bioresour. Technol. 2017, 243, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Yagupsky, P. Kingella kingae: From medical rarity to an emerging paediatric pathogen. Lancet Infect. Dis. 2004, 4, 358–367. [Google Scholar] [CrossRef]
- Jessen, G.L.; Lichtschlag, A.; Ramette, A.; Pantoja, S.; Rossel, P.E.; Schubert, C.J.; Struck, U.; Boetius, A. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Sci. Adv. 2017, 3, e1601897. [Google Scholar] [CrossRef] [PubMed]
- Middelburg, J.J.; Levin, L.A. Coastal hypoxia and sediment biogeochemistry. Biogeosciences 2009, 6, 1273–1293. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Z.; Peng, Y.; Li, J.; Xiao, L.; Yang, L. Performance of a full-scale modified anaerobic/anoxic/oxic process: High-throughput sequence analysis of its microbial structures and their community functions. Bioresour. Technol. 2016, 220, 225–232. [Google Scholar] [CrossRef]
- Karkman, A.; Mattila, K.; Tamminen, M.; Virta, M. Cold temperature decreases bacterial species richness in nitrogen-removing bioreactors treating inorganic mine waters. Biotechnol. Bioeng. 2011, 108, 2876–2883. [Google Scholar] [CrossRef]
- Ye, Q.; Wu, Y.; Zhu, Z.; Wang, X.; Li, Z.; Zhang, J. Bacterial diversity in the surface sediments of the hypoxic zone near the Changjiang Estuary and in the East China Sea. Microbiologyopen 2016, 5, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Huang, J.; Zhuang, C.; Yang, X.; Sun, L.; Lu, H. Biogenic sulfur recovery from sulfate-laden antibiotic production wastewater using a single-chamber up-flow bioelectrochemical reactor. Water Res. 2024, 256, 121590. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yang, Y.; Sun, Y.; Zhao, L.; Liu, X. Temporal–Spatial Variations in Microbial Diversity and Community Composition in Surface Waters and Bottom Sediments of the Bohai Sea, China. Microorganisms 2025, 13, 2100. https://doi.org/10.3390/microorganisms13092100
Li Z, Yang Y, Sun Y, Zhao L, Liu X. Temporal–Spatial Variations in Microbial Diversity and Community Composition in Surface Waters and Bottom Sediments of the Bohai Sea, China. Microorganisms. 2025; 13(9):2100. https://doi.org/10.3390/microorganisms13092100
Chicago/Turabian StyleLi, Zhongyuan, Ying Yang, Yan Sun, Liang Zhao, and Xianbin Liu. 2025. "Temporal–Spatial Variations in Microbial Diversity and Community Composition in Surface Waters and Bottom Sediments of the Bohai Sea, China" Microorganisms 13, no. 9: 2100. https://doi.org/10.3390/microorganisms13092100
APA StyleLi, Z., Yang, Y., Sun, Y., Zhao, L., & Liu, X. (2025). Temporal–Spatial Variations in Microbial Diversity and Community Composition in Surface Waters and Bottom Sediments of the Bohai Sea, China. Microorganisms, 13(9), 2100. https://doi.org/10.3390/microorganisms13092100