Genomic and Phylogenomic Characterization of Three Novel Corynebacterium Species from Camels: Insights into Resistome, Mobilome Virulence, and Biochemical Traits
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Isolates Genome Sequence Analysis
2.3. Identification of Isolates
2.4. Phylogenomic Analysis
2.5. Estimating the Gain and Loss of Genes
2.6. Testing for Antibiotic Susceptibility
3. Results
3.1. Clinical Data Associated with Isolates
3.2. Phenotypic Classification Characteristics
3.3. Identification Based on 16S rRNA Gene Sequence
3.4. Classification via Genome Sequence
3.5. Genome Characteristics and Gene Dynamics
3.6. Analysis of Functional Characteristics
3.7. Virulence Genes
3.8. Antibiotic Susceptibility Profile
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parte, A.C.; Sardà Carbasse, J.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef]
- Yassin, A.F. Corynebacterium ulceribovis sp. nov.; isolated from the skin of the udder of a cow with a profound ulceration. Int. J. Syst. Evol. Microbiol. 2009, 59, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Amao, H.; Akimoto, T.; Komukai, Y.; Sawada, T.; Saito, M.; Takahashi, K.W. Detection of Corynebacterium kutscheri from the oral cavity of rats. Exp. Anim. 2002, 5, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Woudstra, S.; Lücken, A.; Wente, N.; Zhang, Y.; Leimbach, S.; Gussmann, M.K.; Kirkeby, C.; Krömker, V. Reservoirs of Corynebacterium spp. in the Environment of Dairy Cows. Pathogens 2023, 12, 139. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Fang, J.; Xu, Y.; Zhao, W.; Cao, J. Corynebacterium hadale sp. nov. isolated from hadopelagic water of the New Britain Trench. Int. J. Syst. Evol. Microbiol. 2018, 68, 1474–1478. [Google Scholar] [CrossRef]
- Mohd Khalid, M.K.; Ahmad, N.; Hii, S.Y.; Abd Wahab, M.A.; Hashim, R.; Liow, Y.L. Molecular characterization of Corynebacterium diphtheriae isolates in Malaysia between 1981 and 2016. J. Med. Microbiol. 2019, 68, 105–110. [Google Scholar] [CrossRef]
- Dorella, F.A.; Pacheco, L.G.C.; Oliveira, S.C.; Miyoshi, A.; Azevedo, V. Corynebacterium pseudotuberculosis: Microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet. Res. 2006, 37, 201–2018. [Google Scholar] [CrossRef]
- Smith, J.S.; Krull, A.C.; Schleining, J.A.; Derscheid, R.J.; Kreuder, A.J. Clinical presentations and antimicrobial susceptibilities of Corynebacterium cystitidis associated with renal disease in four beef cattle. J. Vet. Intern. Med. 2020, 34, 2169–2174. [Google Scholar] [CrossRef]
- Ballas, P.; Rückert, C.; Wagener, K.; Drillich, M.; Kämpfer, P.; Busse, H.J.; Ehling-Schulz, M. Corynebacterium endometrii sp. nov.; isolated from the uterus of a cow with endometritis. Int. J. Syst. Evol. Microbiol. 2020, 70, 146–152. [Google Scholar] [CrossRef]
- Lücken, A.; Wente, N.; Zhang, Y.; Woudstra, S.; Krömker, V. Corynebacteria in Bovine Quarter Milk Samples-Species and Somatic Cell Counts. Pathogens 2021, 10, 831. [Google Scholar] [CrossRef]
- Elshazly, M.O.; El-Rahman, S.S.A.; Hamza, D.A.; Ali, M.E. Pathological and bacteriological studies on reproductive tract abnormalities of she-camels (Camelus dromedarius), emphasizing on zoonotic importance. J. Adv. Vet. Anim. Res. 2020, 7, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Mshelia, G.D.; Okpaje, G.; Voltaire, Y.A.; Egwu, G.O. Comparative studies on genital infections and antimicrobial susceptibility patterns of isolates from camels (Camelus dromedarius) and cows (Bos indicus) in Maiduguri, north-eastern Nigeria. Springerplus 2014, 3, 91. [Google Scholar] [CrossRef] [PubMed]
- Elbir, H.; Almathen, F.; Almuhasen, F.M. Genomic differences among strains of Corynebacterium cystitidis isolated from uterus of camels. J. Infect. Dev. Ctries. 2022, 16, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Frontoso, R.; De Carlo, E.; Pasolini, M.P.; van der Meulen, K.; Pagnini, U.; Iovane, G.; De Martino, L. Retrospective study of bacterial isolates and their antimicrobial susceptibilities in equine uteri during fertility problems. Res. Vet. Sci. 2008, 84, 1–6. [Google Scholar] [CrossRef]
- Getahun, A.M.; Hunderra, G.C.; Gebrezihar, T.G.; Boru, B.G.; Desta, N.T.; Ayana, T.D. Comparative study on lesions of reproductive disorders of cows and female dromedary camels slaughtered at Addis Ababa, Adama and Akaki abattoirs with bacterial isolation and characterization. BMC Vet. Res. 2021, 17, 134. [Google Scholar] [CrossRef]
- Ballas, P.; Reinländer, U.; Schlegl, R.; Ehling-Schulz, M.; Drillich, M.; Wagener, K. Characterization of intrauterine cultivable aerobic microbiota at the time of insemination in dairy cows with and without mild endometritis. Theriogenology 2021, 159, 28–34. [Google Scholar] [CrossRef]
- Schlegl, R.; Drillich, M.; Ballas, P.; Reinländer, U.; Iwersen, M.; Baumgartner, W.; Ehling-Schulz, M.; Wagener, K. Field trial on the post-insemination intrauterine treatment of dairy cows with mild endometritis with cephapirin. Theriogenology 2020, 156, 20–26. [Google Scholar] [CrossRef]
- Negi, V.; Singh, Y.; Schumann, P.; Lal, R. Corynebacterium pollutisoli sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int. J. Syst. Evol. Microbiol. 2016, 66, 3531–3537. [Google Scholar] [CrossRef]
- Koublová, V.; Sedlář, K.; Sedláček, I.; Musilová, J.; Staňková, E.; Králová, S.; Koudelková, S.; Krsek, D.; Švec, P. Corynebacterium mendelii sp. nov.; a novel bacterium isolated from Adélie penguin oral cavity. Int. J. Syst. Evol. Microbiol. 2024, 74, 006244. [Google Scholar] [CrossRef]
- Lee, I.; Ouk Kim, Y.; Park, S.C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, K.T.; Tiedje, J.M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 2567–2572. [Google Scholar] [CrossRef]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 22 September 2022).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar] [CrossRef]
- Wishart, D.S.; Han, S.; Saha, S.; Oler, E.; Peters, H.; Grant, J.R.; Stothard, P.; Gautam, V. PHASTEST: Faster than PHASTER, better than PHAST. Nucleic Acids Res. 2023, 51, W443–W450. [Google Scholar] [CrossRef]
- Contreras-Moreira, B.; Vinuesa, P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 2013, 79, 7696–7701. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Silvestro, D.; Michalak, I. raxmlGUI: A graphical front-end for RAxML. Org. Divers. Evol. 2012, 12, 335–337. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Vieira, F.G.; Rozas, J. BadiRate: Estimating family turnover rates by likelihood-based methods. Bioinformatics 2012, 28, 279–281. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Serra, F.; Bork, P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 2016, 33, 1635–1638. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog Facilitate Examination of the Genomic Links Among Antimicrobial Resistance, Stress Response, and Virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Pascual, C.; Lawson, P.A.; Farrow, J.A.; Gimenez, M.N.; Collins, M.D. Phylogenetic analysis of the genus Corynebacterium based on the 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 1995, 45, 724–728. [Google Scholar] [CrossRef]
- Rajendhran, J.; Gunasekaran, P. Microbial phylogeny and diversity: Small subunit ribosomal RNA sequence analysis and beyond. Microbiol. Res. 2011, 166, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lai, Q.; Dong, C.; Sun, F.; Wang, L.; Li, G.; Shao, Z. Phylogenetic diversity of the Bacillus pumilus group and the marine ecotype revealed by multilocus sequence analysis. PLoS ONE 2013, 8, e80097. [Google Scholar] [CrossRef] [PubMed]
- Stackebrandt, E.; Ebers, J. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 2006, 33, 152–155. [Google Scholar]
- Baek, I.; Kim, M.; Lee, I.; Na, S.I.; Goodfellow, M.; Chun, J. Phylogeny Trumps Chemotaxonomy: A Case Study Involving Turicella otitidis. Front. Microbiol. 2018, 9, 834. [Google Scholar] [CrossRef]
- Graña-Miraglia, L.; Lozano, L.F.; Velázquez, C.; Volkow-Fernández, P.; Pérez-Oseguera, Á.; Cevallos, M.A.; Castillo-Ramírez, S. Rapid gene turnover as a significant source of genetic variation in a recently seeded population of a healthcare-associated pathogen. Front. Microbiol. 2017, 8, 1817. [Google Scholar] [CrossRef]
- Zahrt, T.C.; Wozniak, C.; Jones, D.; Trevett, A. Functional analysis of the Mycobacterium tuberculosis MprAB two-component signal transduction system. Infect. Immun. 2003, 71, 6962–6970. [Google Scholar] [CrossRef]
- Parish, T.; Smith, D.A.; Roberts, G.; Betts, J.; Stoker, N.G. The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology 2003, 149, 1423–1435. [Google Scholar] [CrossRef]
- Mandlik, A.; Swierczynski, A.; Das, A.; Ton-That, H. Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol. Microbiol. 2007, 1, 111–124. [Google Scholar] [CrossRef]
- Woong Park, S.; Klotzsche, M.; Wilson, D.J.; Boshoff, H.I.; Eoh, H.; Manjunatha, U.; Blumenthal, A.; Rhee, K.; Barry, C.E., III; Aldrich, C.C.; et al. Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog. 2011, 7, e1002264. [Google Scholar] [CrossRef]
- Zaher, H.A.; Al-Fares, A.F.; Mesalam, A. Efficacy of different treatment protocols for endometritis in Camelus dromedarius. Front. Vet. Sci. 2023, 20, 1136823. [Google Scholar] [CrossRef]
- Azrad, M.; Shmuel, C.; Leshem, T.; Hamo, Z.; Baum, M.; Rokney, A.; Agay-Shay, K.; Peretz, A. Reduced Susceptibility to Chlorhexidine among Staphylococcus aureus Isolates in Israel: Phenotypic and Genotypic Tolerance. Antibiotics 2021, 10, 342. [Google Scholar] [CrossRef]
Features | 2581A | 2581A | 4168A | C. endometrii | Ayman | C. pseudodiphtheriticum | 3274 | C. renale |
---|---|---|---|---|---|---|---|---|
Nitrate reduction | - | - | - | - | - | + | - | - |
Pyrazinamidase | + | + | + | + | + | + | + | + |
Pyrrolidonyl arylamidase | + | + | + | - | - | d | - | - |
Alkaline phosphatase | - | - | - | - | + | d | - | - |
β-Glucuronidase | - | - | - | - | - | - | - | + |
β-Galactosidase | - | - | - | - | - | - | - | - |
α-Glucosidase | - | - | - | - | - | - | - | - |
N-Acetyl-β-glucosaminidase | - | - | - | - | - | - | - | - |
Esculin hydrolysis | - | - | - | - | - | - | - | - |
Urease (urea hydrolysis) | - | - | - | - | - | + | + | + |
Gelatin hydrolysis | - | - | - | - | - | - | - | |
Glucose fermentation | + | + | + | + | - | - | + | + |
Ribose fermentation | + | + | + | - | - | - | - | + |
Xylose fermentation | - | - | - | + | - | - | - | - |
Mannitol fermentation | - | - | - | - | - | - | - | - |
Maltose fermentation | + | + | + | + | - | - | - | - |
Lactose fermentation | - | - | - | - | - | - | - | - |
Sucrose fermentation | - | - | - | - | - | - | - | - |
Glycogen fermentation | - | - | - | - | - | - | - | _ |
Catalase | + | + | + | + | + | + | + | + |
Species | Size (bp) | CDS | rRNA | tRNA | tmRNA | CRISPR | Accession Number |
---|---|---|---|---|---|---|---|
Corynebacterium sp. 2581A | 2,990,088 | 2829 | 3 | 54 | 1 | - | SAMN49893244 |
Corynebacterium sp. 2583C | 2,863,892 | 2718 | 3 | 54 | 1 | - | SAMN49893245 |
Corynebacterium sp. 4168A | 2,965,271 | 2846 | 4 | 54 | 1 | - | SAMN49893247 |
Corynebacterium sp. 3274 | 2,378,403 | 2249 | 3 | 54 | 1 | 1 | SAMN49893246 |
Corynebacterium sp. ayman | 2,305,594 | 2114 | 3 | 53 | 1 | 1 | SAMN49893248 |
Species | Prophage | Genomic Island | ||||
---|---|---|---|---|---|---|
Size (Kb) | Total Genes | Number | Total Size (bp) | Total Genes | Number | |
Corynebacterium sp. 2581A | 46.7 | 71 | 1 | 334,281 | 365 | 26 |
Corynebacterium sp. 2583C | 46.7 | 71 | 1 | 223,521 | 246 | 17 |
Corynebacterium sp. 4168A | 44.4, 39.3 | 67, 44 | 2 | 311,761 | 358 | 25 |
Corynebacterium sp. 3274 | 41, 22.8 | 53, 26 | 2 | 134,505 | 139 | 11 |
Corynebacterium sp. ayman | - | - | - | 119,830 | 144 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbir, H. Genomic and Phylogenomic Characterization of Three Novel Corynebacterium Species from Camels: Insights into Resistome, Mobilome Virulence, and Biochemical Traits. Microorganisms 2025, 13, 2090. https://doi.org/10.3390/microorganisms13092090
Elbir H. Genomic and Phylogenomic Characterization of Three Novel Corynebacterium Species from Camels: Insights into Resistome, Mobilome Virulence, and Biochemical Traits. Microorganisms. 2025; 13(9):2090. https://doi.org/10.3390/microorganisms13092090
Chicago/Turabian StyleElbir, Haitham. 2025. "Genomic and Phylogenomic Characterization of Three Novel Corynebacterium Species from Camels: Insights into Resistome, Mobilome Virulence, and Biochemical Traits" Microorganisms 13, no. 9: 2090. https://doi.org/10.3390/microorganisms13092090
APA StyleElbir, H. (2025). Genomic and Phylogenomic Characterization of Three Novel Corynebacterium Species from Camels: Insights into Resistome, Mobilome Virulence, and Biochemical Traits. Microorganisms, 13(9), 2090. https://doi.org/10.3390/microorganisms13092090