Optimizing Nutritional Balance: Integrating the Mediterranean Diet into Low-FODMAP Nutrition
Abstract
1. Introduction
2. Irritable Bowel Syndrome (IBS)
3. Physiological Impact of FODMAPs in the Gastrointestinal Tract
3.1. Lactose
3.2. Fructose
3.3. Fructans
3.4. Galactooligosaccharides (GOS)
3.5. Polyols
4. The Low-FODMAP Diet as a Therapeutic Dietary Approach
5. Effectiveness of the Low-FODMAP Diet
6. Nutritional Implications of the Low-FODMAP Diet in Patients with IBS
6.1. Macronutrients
6.2. Micro-Nutrients
7. Impact of the Low-FODMAP Diet on Gut Microbiota Composition in IBS Patients
8. Mediterranean Diet as a Nutritional Paradigm
9. Interventional Studies Investigating the Mediterranean Diet in IBS
10. Observational and Cross-Sectional Evidence
11. Addressing Nutritional Inadequacies Through the Mediterranean Diet
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bercik, P.; Verdu, E.F.; Collins, S.M. Is irritable bowel syndrome a low-grade inflammatory bowel disease? Gastroenterol. Clin. N. Am. 2005, 34, 235–245. [Google Scholar] [CrossRef]
- Huang, K.Y.; Wang, F.Y.; Lv, M.; Ma, X.X.; Tang, X.D.; Lv, L. Irritable bowel syndrome. World J. Gastroenterol. 2023, 29, 4120–4135. [Google Scholar] [CrossRef] [PubMed]
- Bellini, M.; Gambaccini, D.; Stasi, C.; Urbano, M.T.; Marchi, S.; Usai-Satta, P. Irritable bowel syndrome: A disease still searching for pathogenesis, diagnosis and therapy. World J. Gastroenterol. 2014, 20, 8807–8820. [Google Scholar] [CrossRef]
- Holtmann, G.J.; Ford, A.C.; Talley, N.J. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol. Hepatol. 2016, 1, 133–146. [Google Scholar] [CrossRef]
- Soares, R.L.S. Irritable bowel syndrome: A clinical review. World J. Gastroenterol. 2014, 20, 12144–12160. [Google Scholar] [CrossRef]
- Alammar, N.; Stein, E.E. Irritable bowel syndrome: What treatments really work. Med. Clin. N. Am. 2019, 103, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, A.; Zorzi, F.; Del Chierico, F.; Altomare, A.; Cocca, S.; Avola, A.; De Biasio, F.; Russo, A.; Cella, E.; Reddel, S.; et al. Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease. Front. Microbiol. 2019, 10, 1655. [Google Scholar] [CrossRef] [PubMed]
- Bennet, S.; Ohman, L.; Simren, M. Gut microbiota as potential orchestrators of irritable bowel syndrome. Gut Liver 2015, 9, 318–331. [Google Scholar] [CrossRef]
- Altomare, A.; Del Chierico, F.; Rocchi, G.; Emerenziani, S.; Nuglio, C.; Putignani, L.; Angeletti, S.; Lo Presti, A.; Ciccozzi, M.; Russo, A.; et al. Association between dietary habits and fecal microbiota composition in irritable bowel syndrome patients: A pilot study. Nutrients 2021, 13, 1479. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. Food additives, gut microbiota, and irritable bowel syndrome: A hidden track. Int. J. Environ. Res. Public Health 2020, 17, 8816. [Google Scholar] [CrossRef]
- Sultan, N.; Varney, J.E.; Halmos, E.P.; Biesiekierski, J.R.; Yao, C.K.; Muir, J.G.; Gibson, P.R.; Tuck, C.J. How to implement the 3-phase FODMAP diet into gastroenterological practice. J. Neurogastroenterol. Motil. 2022, 28, 343–356. [Google Scholar] [CrossRef]
- Yu, X.; Pu, H.; Voss, M. Overview of anti-inflammatory diets and their promising effects on non-communicable diseases. Br. J. Nutr. 2024, 132, 898–918. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Dwivedi, R.; Bansal, M.; Tripathi, M.; Dada, R. Role of gut microbiota in neurological disorders and its therapeutic significance. J. Clin. Med. 2023, 12, 1650. [Google Scholar] [CrossRef]
- Evrensel, A.; Ünsalver, B.Ö.; Ceylan, M.E. Neuroinflammation, gut–brain axis and depression. Psychiatry Investig. 2020, 17, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Anand, N.; Gorantla, V.R.; Chidambaram, S.B. The role of gut dysbiosis in the pathophysiology of neuropsychiatric disorders. Cells 2022, 12, 54. [Google Scholar] [CrossRef]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 2016, 21, 786–796. [Google Scholar] [CrossRef]
- Kelly, J.R.; Borre, Y.; O’Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016, 82, 109–118. [Google Scholar] [CrossRef]
- Ballou, S.; Bedell, A.; Keefer, L. Psychosocial impact of irritable bowel syndrome: A brief review. World J. Gastrointest. Pathophysiol. 2015, 6, 120–123. [Google Scholar] [CrossRef]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut–brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar]
- Catassi, G.; Lionetti, E.; Gatti, S.; Catassi, C. The low FODMAP diet: Many question marks for a catchy acronym. Nutrients 2017, 9, 292. [Google Scholar] [CrossRef]
- Gibson, P.R.; Shepherd, S.J. Personal view: Food for thought—Western lifestyle and susceptibility to Crohn’s disease. The FODMAP hypothesis. Aliment. Pharmacol. Ther. 2005, 21, 1399–1409. [Google Scholar] [CrossRef]
- Muir, J.G.; Rose, R.; Rosella, O.; Liels, K.; Barrett, J.S.; Shepherd, S.J.; Gibson, P.R. Measurement of short-chain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography (HPLC). J. Agric. Food Chem. 2009, 57, 554–565. [Google Scholar] [CrossRef]
- Muir, J.G.; Shepherd, S.J.; Rosella, O.; Rose, R.; Barrett, J.S.; Gibson, P.R. Fructan and free fructose content of common Australian vegetables and fruit. J. Agric. Food Chem. 2007, 55, 6619–6627. [Google Scholar] [CrossRef]
- Biesiekierski, J.R. Quantification of fructans, galacto-oligosaccharides and other short-chain carbohydrates in processed grains and cereals. J. Hum. Nutr. Diet. 2011, 24, 154–176. [Google Scholar] [CrossRef]
- Gibson, P.R. History of the low FODMAP diet. J. Gastroenterol. Hepatol. 2017, 32, 5–7. [Google Scholar] [CrossRef]
- Barrett, J.S.; Gearry, R.B.; Muir, J.G.; Irving, P.M.; Rose, R.; Rosella, O.; Haines, M.L.; Shepherd, S.J.; Gibson, P.R. Dietary poorly absorbed, short-chain carbohydrates increase delivery of water and fermentable substrates to the proximal colon. Aliment. Pharmacol. Ther. 2010, 31, 874–882. [Google Scholar] [CrossRef]
- Bin Waqar, S.H.; Rehan, A. Methane and constipation-predominant irritable bowel syndrome: Entwining pillars of emerging neurogastroenterology. Cureus 2019, 11, e4764. [Google Scholar] [CrossRef] [PubMed]
- NHS. Lactose Intolerance; NHS: Leeds, UK, 2025; Available online: https://www.nhs.uk/conditions/lactose-intolerance/ (accessed on 20 June 2025).
- Shaukat, A.; Levitt, M.D.; Taylor, B.C.; MacDonald, R.; Shamliyan, T.A.; Kane, R.L.; Wilt, T.J. Systematic review: Effective management strategies for lactose intolerance. Ann. Intern. Med. 2010, 152, 797–803. [Google Scholar] [CrossRef]
- Di Costanzo, M.; Berni Canani, R. Lactose intolerance: Common misunderstandings. Ann. Nutr. Metab. 2019, 73, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Fedewa, A.; Rao, S.C. Dietary fructose intolerance, fructan intolerance and FODMAPs. Curr. Gastroenterol. Rep. 2014, 16, 370. [Google Scholar] [CrossRef]
- Rumessen, J.J. Fructose and related food carbohydrates: Sources, intake, absorption, and clinical implications. Scand. J. Gastroenterol. 1992, 27, 819–828. [Google Scholar] [CrossRef]
- Ferraris, R.P.; Choe, J.; Patel, C.R. Intestinal absorption of fructose. Annu. Rev. Nutr. 2018, 38, 41–67. [Google Scholar] [CrossRef] [PubMed]
- Riby, J.E.; Fujisawa, T.; Kretchmer, N. Fructose absorption. Am. J. Clin. Nutr. 1993, 58, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Ravich, W.J.; Bayless, T.M.; Thomas, M. Fructose: Incomplete intestinal absorption in humans. Gastroenterology 1983, 84, 26–29. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Introducing inulin-type fructans. Br. J. Nutr. 2005, 93, S13–S25. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Roberfroid, M.B.; Van Loo, J.A.; Gibson, G.R. The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr. 1998, 128, 11–19. [Google Scholar] [CrossRef]
- Gibson, G.R.; McCartney, A.L.; Rastall, R.A. Prebiotics and resistance to gastrointestinal infections. Br. J. Nutr. 2005, 93, S31–S34. [Google Scholar] [CrossRef]
- Mei, Z.; Yuan, J.; Li, D. Biological activity of galacto-oligosaccharides: A review. Front. Microbiol. 2022, 13, 993052. [Google Scholar] [CrossRef]
- Lamsal, B.P. Production, health aspects and potential food uses of dairy prebiotic galactooligosaccharides. J. Sci. Food Agric. 2012, 92, 2020–2028. [Google Scholar] [CrossRef]
- Urminská, D.; Haring, N.; Fábry, V.; Urminská, J. Fermentable oligosaccharides, disaccharides, monosaccharides and polyols and their role in food digestion. J. Microbiol. Biotechnol. Food Sci. 2022, 11, e5521. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Steed, H.; Macfarlane, S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 2008, 104, 305–344. [Google Scholar] [CrossRef]
- Grembecka, M. Sugar alcohols—Their role in the modern world of sweeteners: A review. Eur. Food Res. Technol. 2015, 241, 1–14. [Google Scholar] [CrossRef]
- Grembecka, M. Natural sweeteners in a human diet. Rocz. Panstw. Zakl. Hig. 2015, 66, 195–202. [Google Scholar] [PubMed]
- Hongo, A. Optimization of hydrogen production by mannitol utilizing a bacterium strain TM1. J. Environ. Biotechnol. 2014, 14, 65–68. Available online: https://www.jseb.jp/wordpress/wp-content/uploads/14-01-065.pdf (accessed on 28 May 2025).
- Tanisho, S.; Ishiwata, Y. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes. Int. J. Hydrogen Energy 1994, 19, 807–812. [Google Scholar] [CrossRef]
- Varney, J.; Barrett, J.; Scarlata, K.; Catsos, P.; Gibson, P.R.; Muir, J.G. FODMAPs: Food composition, defining cutoff values and international application. J. Gastroenterol. Hepatol. 2017, 32, 53–61. [Google Scholar] [CrossRef]
- Whelan, K.; Martin, L.D.; Staudacher, H.M.; Lomer, M.C.E. The low FODMAP diet in the management of irritable bowel syndrome: An evidence-based review of FODMAP restriction, reintroduction and personalisation in clinical practice. J. Hum. Nutr. Diet. 2018, 31, 239–255. [Google Scholar] [CrossRef]
- Tuck, C.; Barrett, J. Re-challenging FODMAPs: The low FODMAP diet phase two. J. Gastroenterol. Hepatol. 2017, 32, 11–15. [Google Scholar] [CrossRef]
- Bellini, M.; Tonarelli, S.; Barracca, F.; Morganti, R.; Pancetti, A.; Bertani, L.; De Bortoli, N.; Costa, F.; Mosca, M.; Marchi, S.; et al. A low-FODMAP diet for irritable bowel syndrome: Some answers to the doubts from a long-term follow-up. Nutrients 2020, 12, 2360. [Google Scholar] [CrossRef]
- Singh, P.; Tuck, C.; Gibson, P.R.; Chey, W.D. The role of food in the treatment of bowel disorders: Focus on irritable bowel syndrome and functional constipation. Am. J. Gastroenterol. 2022, 117, 947–957. [Google Scholar] [CrossRef]
- O’Keeffe, M.; Jansen, C.; Martin, L.; Williams, M.; Seamark, L.; Staudacher, H.M.; Irving, P.M.; Whelan, K.; Lomer, M.C. Long-term impact of the low-FODMAP diet on gastrointestinal symptoms, dietary intake, patient acceptability, and healthcare utilization in irritable bowel syndrome. Neurogastroenterol. Motil. 2018, 30, e13154. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, H.M.; Rossi, M.; Kaminski, T.; Dimidi, E.; Ralph, F.S.E.; Wilson, B.; Martin, L.D.; Louis, P.; Lomer, M.C.; Irving, P.M.; et al. Long-term personalized low FODMAP diet improves symptoms and maintains luminal Bifidobacteria abundance in irritable bowel syndrome. Neurogastroenterol. Motil. 2022, 34, e14241. [Google Scholar] [CrossRef]
- Varjú, P.; Farkas, N.; Hegyi, P.; Garami, A.; Szabó, I.; Illés, A.; Solymár, M.; Vincze, Á.; Balaskó, M.; Pár, G.; et al. Low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet improves symptoms in adults suffering from irritable bowel syndrome (IBS) compared to standard IBS diet: A meta-analysis of clinical studies. PLoS ONE 2017, 12, e0182942. [Google Scholar] [CrossRef]
- Altobelli, E.; Del Negro, V.; Angeletti, P.M.; Latella, G. Low-FODMAP diet improves irritable bowel syndrome symptoms: A meta-analysis. Nutrients 2017, 9, 940. [Google Scholar] [CrossRef] [PubMed]
- Van Lanen, A.; De Bree, A.; Greyling, A. Efficacy of a low-FODMAP diet in adult irritable bowel syndrome: A systematic review and meta-analysis. Eur. J. Nutr. 2021, 60, 3505–3522. [Google Scholar] [CrossRef]
- Ford, A.; Black, C.; Staudacher, H.M. Efficacy of a low FODMAP diet in irritable bowel syndrome: Systematic review and network meta-analysis. Gut 2021, 1, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Bohn, L.; Storsrud, S.; Liljebo, T.; Collin, L.; Lindfors, P.; Tornblom, H.; Simrén, M. Diet low in FODMAPs reduces symptoms of irritable bowel syndrome as well as traditional dietary advice: A randomized controlled trial. Gastroenterology 2015, 149, 1399–1407.e2. [Google Scholar] [CrossRef]
- Eswaran, S.; Dolan, R.D.; Ball, S.C.; Jackson, K.; Chey, W. The impact of a 4-week low-FODMAP and mNICE diet on nutrient intake in a sample of US adults with irritable bowel syndrome with diarrhea. J. Acad. Nutr. Diet. 2019, 120, 641–649. [Google Scholar] [CrossRef]
- Zahedi, M.J.; Behrouz, V.; Azimi, M. Low fermentable oligo-di-mono-saccharides and polyols diet versus general dietary advice in patients with diarrhea-predominant irritable bowel syndrome: A randomized controlled trial. J. Gastroenterol. Hepatol. 2018, 33, 1192–1199. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, L.; Wang, X.; Fox, M.; Luo, L.; Du, L.; Chen, B.; Chen, X.; He, H.; Zhu, S.; et al. Low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols diet compared with traditional dietary advice for diarrhea-predominant irritable bowel syndrome: A parallel-group, randomized controlled trial with analysis of clinical and microbial outcomes. Am. J. Clin. Nutr. 2021, 113, 1531–1541. [Google Scholar] [CrossRef]
- Harvie, R.M.; Chisholm, A.W.; Bisanz, J.E.; Burton, J.P.; Herbison, P.; Schultz, K.; Schultz, M. Long-term irritable bowel syndrome symptom control with reintroduction of selected FODMAPs. World J. Gastroenterol. 2017, 23, 4632–4643. [Google Scholar] [CrossRef]
- Shih, D.Q.; Kwan, L.Y. All roads lead to Rome: Update on Rome III criteria and new treatment options. Gastroenterol. Rep. 2007, 1, 56–65. [Google Scholar] [PubMed]
- Ostgaard, H.; Hausken, T.; Gundersen, D.; El-Salhy, M. Diet and effects of diet management on quality of life and symptoms in patients with irritable bowel syndrome. Mol. Med. Rep. 2012, 5, 1382–1390. [Google Scholar] [CrossRef]
- Guerreiro, M.M.; Santos, Z.; Carolino, E.; Correa, J.; Cravo, M.; Augusto, F.; Chagas, C.; Guerreiro, C.S. Effectiveness of two dietary approaches on the quality of life and gastrointestinal symptoms of individuals with irritable bowel syndrome. J. Clin. Med. 2020, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Alrasheedi, A. The effect of low-FODMAP diet on patients with irritable bowel syndrome. Sci. Rep. 2025, 15, 16382. [Google Scholar] [CrossRef]
- Pourmand, H.; Keshteli, A.H.; Saneei, P.; Daghaghzadeh, H.; Esmaillzadeh, A.; Adibi, P. Adherence to a low FODMAP diet in relation to symptoms of irritable bowel syndrome in Iranian adults. Dig. Dis. Sci. 2018, 63, 1261–1269. [Google Scholar] [CrossRef]
- Mazmanian, S.K.; Round, J.L.; Kasper, D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008, 453, 620–625. [Google Scholar] [CrossRef]
- Natividad, J.M.M.; Verdu, E.F. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacol Res. 2013, 69, 42–51. [Google Scholar] [CrossRef]
- Yadav, S.; Dwivedi, A.; Tripathi, A.; Tripathi, A.K. Therapeutic potential of short-chain fatty acid production by gut microbiota in neurodegenerative disorders. Nutr. Res. 2022, 106, 72–84. [Google Scholar] [CrossRef]
- Rangan, K.J.; Hang, H.C. Biochemical Mechanisms of Pathogen Restriction by Intestinal Bacteria. Trends Biochem. Sci. 2017, 42, 887–898. [Google Scholar] [CrossRef]
- Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2016, 14, 20–32. [Google Scholar] [CrossRef]
- Halmos, E.P.; Christophersen, C.T.; Bird, A.R.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 2015, 64, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Hustoft, T.N.; Hausken, T.; Ystad, S.O.; Valeur, J.; Brokstad, K.; Hatlebakk, J.G.; Lied, G.A. Effects of varying dietary content of fermentable short-chain carbohydrates on symptoms, fecal microenvironment, and cytokine profiles in patients with irritable bowel syndrome. Neurogastroenterol. Motil. 2017, 29, e12969. [Google Scholar] [CrossRef]
- Bennet, S.M.P.; Böhn, L.; Störsrud, S.; Liljebo, T.; Collin, L.; Lindfors, P.; Törnblom, H.; Öhman, L.; Simrén, M. Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs. Gut 2018, 67, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, H.M.; Clements, R.L.; Lomer, M.C.E.; Farquharson, F.M.; Louis, P.; Fava, F.; Franciosi, E.; Scholz, M.; Tuohy, K.M.; Lindsay, J.O.; et al. A diet low in FODMAPs reduces symptoms in patients with irritable bowel syndrome and a probiotic restores Bifidobacterium species: A randomized controlled trial. Gastroenterology 2017, 153, 936–947. [Google Scholar] [CrossRef] [PubMed]
- Moroni, O.; Kheadr, E.; Boutin, Y.; Lacroix, C.; Fliss, I. Inactivation of adhesion and invasion of food-borne Listeria monocytogenes by bacteriocin-producing Bifidobacterium strains of human origin. Appl. Environ. Microbiol. 2006, 72, 6894–6901. [Google Scholar] [CrossRef]
- Cotar, A.I.; Chifiriuc, M.C.; Dinu, S.; Pelinescu, D.; Banu, O.; Lazăr, V. Quantitative real-time PCR study of the influence of probiotic culture soluble fraction on the expression of Pseudomonas aeruginosa quorum sensing genes. Roum. Arch. Microbiol. Immunol. 2010, 69, 213–223. [Google Scholar]
- Fanning, S.; Hall, L.J.; Cronin, M.; Zomer, A.; MacSharry, J.; Goulding, D.; Motherway, M.O.; Shanahan, F.; Nally, K.; Dougan, G.; et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc. Natl. Acad. Sci. USA 2012, 109, 2108–21013. [Google Scholar] [CrossRef]
- Wilson, B.; Rossi, M.; Kanno, T.; Parkes, G.C.; Anderson, S.; Mason, A.J.; Irving, P.M.; Lomer, M.C.; Whelan, K. β-Galactooligosaccharide in Conjunction With Low FODMAP Diet Improves Irritable Bowel Syndrome Symptoms but Reduces Fecal Bifidobacteria. Am. J. Gastroenterol. 2020, 115, 906–915. [Google Scholar] [CrossRef]
- McIntosh, K.; Reed, D.E.; Schneider, T.; Dang, F.; Keshteli, A.H.; De Palma, G.; Madsen, K.; Bercik, P.; Vanner, S. FODMAPs alter symptoms and the metabolome of patients with IBS: A randomised controlled trial. Gut 2017, 66, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, H.M.; Lomer, M.C.; Anderson, J.L.; Barrett, J.S.; Muir, J.G.; Irving, P.M.; Whelan, K. Fermentable carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with irritable bowel syndrome. J. Nutr. 2012, 142, 1510–1518. [Google Scholar] [CrossRef]
- Willett, W.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61, 1402–1426. [Google Scholar] [CrossRef]
- Keys, A. Coronary heart disease in seven countries. Circulation 1970, 41, 186–195. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean diet and cardiovascular health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
- Mirabelli, M.; Chiefari, E.; Arcidiacono, B.; Corigliano, D.M.; Brunetti, F.S.; Maggisano, V.; Russo, D.; Foti, D.P.; Brunetti, A. Mediterranean diet nutrients to turn the tide against insulin resistance and related diseases. Nutrients 2020, 12, 1066. [Google Scholar] [CrossRef]
- Sofi, F.; Abbate, R.; Gensini, G.F.; Casini, A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. Am. J. Clin. Nutr. 2010, 92, 1189–1196. [Google Scholar] [CrossRef]
- Yannakoulia, M.; Kontogianni, M.; Scarmeas, N. Cognitive health and Mediterranean diet: Just diet or lifestyle pattern? Ageing Res. Rev. 2015, 20, 74–78. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today: Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.H. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 2013, 75, 645–662. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, K.; Aggarwal, B.B.; Singh, R.B.; Buttar, H.S.; Wilson, D.; De Meester, F. Food antioxidants and their anti-inflammatory properties: A potential role in cardiovascular diseases and cancer prevention. Diseases 2016, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Kiyimba, T. Efficacy of dietary polyphenols from whole foods and purified food polyphenol extracts in optimizing cardiometabolic health: A meta-analysis of randomized controlled trials. Adv. Nutr. 2023, 14, 270–282. [Google Scholar] [CrossRef]
- Dürholz, K.; Hofmann, J.; Iljazovic, A.; Häger, J.; Lucas, S.; Sarter, K.; Strowig, T.; Bang, H.; Rech, J.; Schett, G.; et al. Dietary short-term fiber interventions in arthritis patients increase systemic SCFA levels and regulate inflammation. Nutrients 2020, 12, 3207. [Google Scholar] [CrossRef]
- Jiang, T.A. Health benefits of culinary herbs and spices. J. AOAC Int. 2019, 102, 395–411. [Google Scholar] [CrossRef]
- Vahid, F.; Rahmani, D. Can an anti-inflammatory diet be effective in preventing or treating viral respiratory diseases? A systematic narrative review. Clin. Nutr. ESPEN 2021, 43, 9–15. [Google Scholar] [CrossRef]
- Ravaut, G.; Légiot, A.; Bergeron, K.F.; Mounier, C. Monounsaturated fatty acids in obesity-related inflammation. Int. J. Mol. Sci. 2020, 22, 330. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; De la Cruz, J.N.; Bach-Faig, A.; Donini, L.M.; Medina, F.X.; Belahsen, R.; et al. Updating the Mediterranean diet pyramid towards sustainability: Focus on environmental concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [Google Scholar] [CrossRef]
- Abete, I.; Romaguera, D.; Vieira, A.R.; Lopez de Munain, A.; Norat, T. Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: A meta-analysis of cohort studies. Br. J. Nutr. 2014, 112, 762–775. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Riddle, M.C.; Wylie-Rosett, J.; Hu, F.B. Red and processed meats and health risks: How strong is the evidence? Diabetes Care 2020, 43, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Baranski, M.; Srednicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef]
- Bonaccio, M.; Iacoviello, L.; Donati, M.B.; de Gaetano, G. The tenth anniversary as a UNESCO world cultural heritage: An unmissable opportunity to get back to the cultural roots of the Mediterranean diet. Eur. J. Clin. Nutr. 2022, 76, 179–183. [Google Scholar] [CrossRef]
- Medina, F.-X. Looking for commensality: On culture, health, heritage, and the Mediterranean diet. Int. J. Environ. Res. Public Health 2021, 18, 2605. [Google Scholar] [CrossRef]
- UNESCO. Representative List of the Intangible Cultural Heritage of Humanity; UNESCO: Paris, France, 2010; Available online: https://www.unesco.org/culture/ich/RL/00884 (accessed on 20 June 2025).
- Donini, L.M.; Dernini, S.; Lairon, D.; Serra-Majem, L.; Amiot, M.-J.; Del Balzo, V.; Giusti, A.M.; Burlingame, B.; Belahsen, R.; Maiani, G.; et al. A consensus proposal for nutritional indicators to assess the sustainability of a healthy diet: The Mediterranean diet as a case study. Front. Nutr. 2016, 3, 37. [Google Scholar] [CrossRef]
- Dernini, S.; Berry, E.; Serra-Majem, L.; La Vecchia, C.; Capone, R.; Medina, F.; Aranceta-Bartrina, J.; Belahsen, R.; Burlingame, B.; Calabrese, G.; et al. Med Diet 4.0: The Mediterranean diet with four sustainable benefits. Public Health Nutr. 2017, 20, 1322–1330. [Google Scholar] [CrossRef]
- Paduano, D.; Cingolani, A.; Tanda, E.; Usai, P. Effect of three diets (low-FODMAP, gluten-free and balanced) on irritable bowel syndrome symptoms and health-related quality of life. Nutrients 2019, 11, 1566. [Google Scholar] [CrossRef]
- Staudacher, H.M.; Mahoney, S.; Canale, K.; Opie, R.S.; Loughman, A.; So, D.; Beswick, L.; Hair, C.; Jacka, F.N. Clinical trial: A Mediterranean diet is feasible and improves gastrointestinal and psychological symptoms in irritable bowel syndrome. Aliment. Pharmacol. Ther. 2024, 59, 492–503. [Google Scholar] [CrossRef]
- Kasti, A.; Katsas, K.; Pavlidis, D.; Stylianakis, E.; Petsis, K.I.; Lambrinou, S.; Nikolaki, M.D.; Papanikolaou, I.S.; Hatziagelaki, E.; Papadimitriou, K.; et al. Clinical trial: A Mediterranean low-FODMAP diet alleviates symptoms of non-constipation IBS—Randomized controlled study and volatomics analysis. Nutrients 2025, 17, 1545. [Google Scholar] [CrossRef]
- Zito, F.P.; Polese, B.; Vozzella, L.; Gala, A.; Genovese, D.; Verlezza, V.; Medugno, F.; Santini, A.; Barrea, L.; Cargiolli, M.; et al. Good adherence to Mediterranean diet can prevent gastrointestinal symptoms: A survey from Southern Italy. World J. Gastrointest. Pharmacol. Ther. 2016, 7, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Baghdadi, G.; Feyzpour, M.; Shahrokhi, S.A.; Amiri, R.; Rahimlou, M. The association between the Mediterranean diet and the prime diet quality score and new-diagnosed irritable bowel syndrome: A matched case-control study. Front. Med. 2025, 12, 1529374. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Y.; Mahurkar-Joshi, S.; Liu, C.; Jaffe, N.; Labus, J.S.; Dong, T.S.; Gupta, A.; Patel, S.; Mayer, E.A.; Chang, L. The association between a Mediterranean diet and symptoms of irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 2024, 22, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Bertin, L.; Zanconato, M.; Crepaldi, M.; Marasco, G.; Cremon, C.; Barbara, G.; Barberio, B.; Zingone, F.; Savarino, E.V. The role of the FODMAP diet in IBS. Nutrients 2024, 16, 370. [Google Scholar] [CrossRef] [PubMed]
- García-Montero, C.; Fraile-Martínez, O.; Gómez-Lahoz León, A.M.; Pekarek, I.; Castellanos, A.J.; Noguerales-Fraguas, F.; Coca, S.; Guijarro, L.G.; García-Honduvilla, N.; Asúnsolo, A.; et al. Nutritional components in Western diet versus Mediterranean diet at the gut microbiota–immune system interplay: Implications for health and disease. Nutrients 2021, 13, 699. [Google Scholar] [CrossRef]
- Mann, E.R.; Lam, Y.K.; Uhlig, H.H. Short-chain fatty acids: Linking diet, the microbiome and immunity. Nat. Rev. Immunol. 2024, 24, 577–595. [Google Scholar] [CrossRef]
- Obayomi, O.V.; Olaniran, A.F.; Owa, S.O. Unveiling the role of functional foods with emphasis on prebiotics and probiotics in human health: A review. J. Funct. Foods 2024, 119, 106337. [Google Scholar] [CrossRef]
- Atzler, J.J.; Sahin, A.W.; Gallagher, E.; Zannini, E.; Arendt, E.K. Characteristics and properties of fibres suitable for a low FODMAP diet—An overview. Trends Food Sci. Technol. 2021, 112, 823–836. [Google Scholar] [CrossRef]
- Singh, R.P.; Bhardwaj, A. β-glucans: A potential source for maintaining gut microbiota and the immune system. Front. Nutr. 2023, 10, 1143682. [Google Scholar] [CrossRef]
- Ross, J.K.; English, C.; Perlmutter, C.A. Dietary fiber constituents of selected fruits and vegetables. J. Am. Diet. Assoc. 1985, 85, 1111–1116. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.L.; Hollis, J.J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant starch: Promise for improving human health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef]
- Nagpal, R.; Shively, C.A.; Register, T.C.; Craft, S.; Yadav, H. Gut microbiome–Mediterranean diet interactions in improving host health. F1000Research 2019, 8, 699. [Google Scholar] [CrossRef] [PubMed]
- Perrone, P.; D’Angelo, S. Gut microbiota modulation through Mediterranean diet foods: Implications for human health. Nutrients 2025, 17, 948. [Google Scholar] [CrossRef] [PubMed]
- Vesa, T.H.; Seppo, L.M.; Marteau, P.R.; Sahi, T.; Korpela, R. Role of irritable bowel syndrome in subjective lactose intolerance. Am. J. Clin. Nutr. 1998, 67, 710–715. [Google Scholar] [CrossRef]
- Geissler, C. Human Nutrition, 11th ed.; Elsevier Churchill Livingstone: London, UK, 2005. [Google Scholar]
- Kuellenberg de Gaudry, D.; Lohner, S.; Bischoff, K.; Schmucker, C.; Hoerrlein, S.; Roeger, C.; Schwingshackl, L.; Meerpohl, J.J. A1- and A2 beta-casein on health-related outcomes: A scoping review of animal studies. Eur. J. Nutr. 2022, 61, 1–21. [Google Scholar] [CrossRef]
- Kay, S.-I.S.; Delgado, S.; Mittal, J.; Eshraghi, R.S.; Mittal, R.; Eshraghi, A.A. Beneficial effects of milk having A2 β-casein protein: Myth or reality? J. Nutr. 2021, 151, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Chandran, M.G.; Varghese, R.; Thoppil, A.J.; Joseph, M.; Augustine, T.; Varghese, R. A prospective study evaluating the role of homemade yogurt as a treatment option for irritable bowel disease. Am. J. Gastroenterol. 2017, 112, S238–S239. [Google Scholar] [CrossRef]
- Dos Santos, E.F.; Tsuboi, K.H.; Araújo, M.R.; Andreollo, N.A.; Miyasaka, C.K. Dietary galactooligosaccharides increase calcium absorption in normal and gastrectomized rats. Rev. Col. Bras. Cir. 2011, 38, 186–191. [Google Scholar] [CrossRef]
- Whisner, C.M.; Martin, B.R.; Schoterman, M.H.C.; Nakatsu, C.H.; McCabe, L.D.; McCabe, G.P.; Wastney, M.E.; van den Heuvel, E.G.H.M.; Weaver, C.M. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: A double-blind cross-over trial. Br. J. Nutr. 2013, 110, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Dietary reference values for riboflavin. EFSA J. 2017, 15, e04919. [Google Scholar] [CrossRef]
- Bellini, M.; Tonarelli, S.; Nagy, A.G.; Pancetti, A.; Costa, F.; Ricchiuti, A.; De Bortoli, N.; Mosca, M.; Marchi, S.; Rossi, A. Low FODMAP diet: Evidence, doubts, and hopes. Nutrients 2020, 12, 148. [Google Scholar] [CrossRef]
- Jeroense, F.M.D.; Zeder, C.; Zimmermann, M.B.; Herter-Aeberli, I. Acute consumption of prebiotic galacto-oligosaccharides increases iron absorption from ferrous fumarate, but not from ferrous sulfate and ferric pyrophosphate: Stable iron isotope studies in iron-depleted young women. J. Nutr. 2020, 150, 2391–2397. [Google Scholar] [CrossRef]
- Chen, J.H.; Wang, Y.; An, J.; Lu, L.W.; Yu, J.; Liu, B.; Che, F.; Deng, H. Prebiotic oligosaccharides enhance iron absorption via modulation of protein expression and gut microbiota in a dose-response manner in iron-deficient growing rats. Mol. Nutr. Food Res. 2022, 66, e2101064. [Google Scholar] [CrossRef]
- National Institutes of Health (NIH). Vitamin C Fact Sheet for Consumers. 2019. Available online: https://ods.od.nih.gov/pdf/factsheets/VitaminC-Consumer.pdf (accessed on 28 May 2025).
- O’Brien, L.; Kasti, A.; Halmos, E.P.; Tuck, C.; Varney, J. Evolution, adaptation, and new applications of the FODMAP diet. JGH Open 2024, 8, e13066. [Google Scholar] [CrossRef] [PubMed]
Individual FODMAPs | Grams Per Serve α (Individual Food) |
---|---|
Oligosaccharides β (core grain products, legumes, nuts, and seeds) | <0.30 |
Oligosaccharides β (vegetables, fruits, and all other products) | <0.20 |
Polyols—sorbitol or mannitol | <0.20 |
Total polyols | <0.40 |
Excess fructose γ | <0.15 |
Excess fructose (for fresh fruit and vegetables when “fructose in excess of glucose” is the only FODMAP present) | <0.40 |
Lactose | <1.00 |
Study | Duration | Study Design | Criteria Used for IBS Diagnosis and IBS Subtype | Methodology | Results |
---|---|---|---|---|---|
Bohn 2015 [59], Sweden | 4 weeks | 38 patients on LFD 37 patients on BDA/NICE diet | Rome III IBS-C IBS-D IBS-M | 4-day food diary (at screening and during last week of intervention period) | LFD group had greater reductions in energy (p = 0.03), carbohydrates (p = 0.007), dietary fiber (p = 0.003) and meals/day (p = 0.05) vs. BDA/NICE diet |
Eswaran 2019 [60], USA | 4 weeks | 41 patients on LFD 39 patients on mNICE diet | Rome III IBS-D | 3-day food diary (at baseline and last week of intervention period). | Reduction in energy, carbs and number of meals in both groups (p < 0.01). Reduction in thiamin (p < 0.01), rivoflabin (p < 0.05), calcium (p < 0.01) and sodium (p < 0.001) in the LFD vs. mNICe group. After calorie-adjustment: reduction in total sugars (p < 0.001), carbs and sodium (p < 0.01), rivoflabin (p < 0.05) in the LFD group vs. mNICE. Fewer patients met the DRIs for thiamin and iron in the LFD group, vs. fewer patients meeting the DRIs for calcium and copper in the control group. |
Zahedi 2018 [61], Iran | 6 weeks | 55 patients on LFD 55 patients on BDA diet | Rome III IBS-D | 3-day food diary (at baseline and last week of intervention period) | Reduced energy (p < 0.05) and carbs for both groups with greater carb reduction in LFD (p < 0.001) vs. BDA (p < 0.05). Fat reduction in BDA group (p < 0.001). |
Zhang 2021 [62], China | 3 weeks | 54 patients on LFD 54 patients on BDA/NICE diet | ROME III IBS-D | 3-week food diary | Reduced total intake of energy and carbs in LFD vs. BDA/NICE group (p < 0.05) |
Harvie 2017 [63], New Zealand | 3 months | 23 patients on LFD 27 patients on habitual diet | Rome III IBS-C IBS-D IBS-M | FFQ | Energy reduction in both groups (LFD, p < 0.01, Hab diet, p < 0.05) and fiber reduction from baseline to 3 months in LFD (p < 0.01) |
Guerreiro 2020 [66], England | 4 weeks | 47 patients on LFD 23 patients on BDA | ROME IV IBS-C IBS-D IBS-M | 24 h dietary recall method (baseline, 4th week follow-up, 10th week follow-up | Both groups had significant reductions from baseline to 4 weeks in energy (LFD, p = 0.001) carb intake (p = 0.006) and LFD had significant reduction in total fiber (p = 0.048) and iron (p = 0.003) compared to BDA group |
O’Keeffe 2018 [53], UK | Prospective 6–18-month follow-up after initial 6-week LFD | 84 patients on LFD, 19 patients on habitual diet | NICE | Semi-quantitative FFQ (at follow-up) | Higher folate (p = 0.02) and vitamin A (p = 0.045) intakes compared to habitual diet |
Ostgaard 2012 [65], Norway | Prospective follow-up study 2 years after LFD advice | 35 controls, 36 unguided IBS patients (no advice), 43 guided IBS patients (LFD advice) | ROME III | MoBa FFQ | No statistically significant difference for energy and macronutrient intake between groups. Lower intakes of riboflavin and calcium (p < 0.05). Higher intake of β-carotene and vitamin B6 (p < 0.05) for LFD guided patients vs. healthy controls. |
Pourmand 2018 [68], Iran | Cross-sectional | 3362 IBS patients Quintiles of FODMAP adherence | A modified Persian version of ROME III questionnaire IBS-C IBS-D IBS-M | 106-item semi-quantitative food frequency questionnaire | Individuals with the highest adherence to the LFD had lower dietary intakes of all measured foods groups and (micro) nutrients (p < 0.001) |
Alrasheedi 2025 [67], Saudi Arabia | 10-week intervention program on LFD | 45 IBS patients (baseline on LFD) | ROME III IBSD IBSM | FFQ | Energy reduction (p < 0.01). Reductions in carbs, fiber, starch, sugar, fat, iron, zinc, magnesium, sodium, potassium, riboflavin, and vitamin C. |
Study | Duration | Study Design | Criteria Used for IBS Diagnosis | Methodology | Result |
---|---|---|---|---|---|
Paduano 2019 [107], Italy | 12 weeks | Clinical trial 28 patients on balanced Med diet 30 patients on gluten free diet 34 patients on low-FODMAP diet | ROME IV IBS-C IBS-D IBS-M IBS-U | 24 h food recall | All three diets reduced the severity of symptoms (p < 0.01). The MD was as effective as the LFD with no difference between them (p = 0.44). The MD had a higher acceptance rate. |
Staudacher 2024 [108], Australia | 6 weeks | Clinical trial 29 patients on MD 30 patients on habitual diet | ROME IV IBS-C IBS-D IBS-M IBS-U | MEDAS DSS 3-Day Food Diary | Energy, macronutrient and fiber intake were not different. Contribution of MUFAs to total energy was higher in MD compared with controls (p = 0.041). There was a greater proportion of responders to gastrointestinal symptoms in the MD group than the control group (p < 0.001). |
Kasti A 2025 [109], Greece | 6 months | Clinical trial 54 patients on MD-LFD 54 patients on NICE dietary guidelines | ROME IV IBS-D IBS-M IBS-U | 5-point Likert scale on the adherence to the diet through weekly telephone | The MD–LFD group showed a significantly greater improvement in symptom severity (p < 0.001) and (p = 0.001). Responder rates (84.6% vs. 60.8%, p = 0.007) and (79.1% vs. 52.3%, p = 0.006). Adherence (75% vs. 41%, p = 0.007) and 45% vs. 7%, p < 0.001). |
Zito 2016 [110], Italy | May 2011–April 2012 | Observational study 1193 patients 172 IBS 719 controls 243 FD | ROME ΙΙΙ | FFQ KIDMED for 17–24 aged patients SMDQ to those older than 24 years | A significantly lower MD adherence score was found in individuals with IBS compared to controls (p < 0.001) |
Chen 2024 [112], USA | July 2013–November 2021 | Cross-Sectional Study 106 IBS 108 controls | Rome III and Rome IV IBS-C IBS-D IBS-M IBS-U | Diet history Questionnaire II aMED MEDAS Healthy Eating Index-2010 | Adherence to the MD was similar between IBS and control subjects and was not associated with IBS-SSS. There were no differences in aMED and MEDAS scores between IBS and control (p = 0.83) and (p = 0.46). |
Altomare 2021 [9], Italy | 2015–2017 | Cross-Sectional Study 28 IBS 21 controls | Rome IV IBS-C IBS-D IBS-M | 3-Day Food record FFQ | Adherence to the MD Med score was lower in the IBS group compared to the control group p < 0.01 |
Baghdadi 2025 [111], Iran | December 2023–June 2024 | Case–control Study 170 IBS 340 controls | Rome IV IBS-C IBS-D IBS-M IBS-U | Semiquantitative 168-item FFQ MD PDQS-dietary quality index | Greater adherence to the MD was associated with a 51% lower likelihood of IBS (p < 0.001). Participants in the higher quartile of MD and PDQS significantly consumed lower amounts of energy and macronutrients compared to subjects in the first quartile (p < 0.001). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitriou, A.; Aggeletopoulou, I.; Triantos, C. Optimizing Nutritional Balance: Integrating the Mediterranean Diet into Low-FODMAP Nutrition. Microorganisms 2025, 13, 2085. https://doi.org/10.3390/microorganisms13092085
Dimitriou A, Aggeletopoulou I, Triantos C. Optimizing Nutritional Balance: Integrating the Mediterranean Diet into Low-FODMAP Nutrition. Microorganisms. 2025; 13(9):2085. https://doi.org/10.3390/microorganisms13092085
Chicago/Turabian StyleDimitriou, Athanasia, Ioanna Aggeletopoulou, and Christos Triantos. 2025. "Optimizing Nutritional Balance: Integrating the Mediterranean Diet into Low-FODMAP Nutrition" Microorganisms 13, no. 9: 2085. https://doi.org/10.3390/microorganisms13092085
APA StyleDimitriou, A., Aggeletopoulou, I., & Triantos, C. (2025). Optimizing Nutritional Balance: Integrating the Mediterranean Diet into Low-FODMAP Nutrition. Microorganisms, 13(9), 2085. https://doi.org/10.3390/microorganisms13092085