The Influence of Acetate and Sodium Chloride Concentration on the Toxic Response of Electroactive Microorganisms
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction and Operation of Microbial Fuel Cells
2.2. Electrochemical Tests
2.3. Analysis of Microbial Characteristics
3. Results and Discussion
3.1. Toxic Response on MFCs
3.1.1. Effect of Acetate Concentration
3.1.2. Effect of Sodium Chloride Concentration
3.2. Electrochemical Performance of MFCs Under Different Water Quality Conditions
3.2.1. Effect of Acetate and Sodium Chloride on Power Density of MFCs
3.2.2. Effect of Acetate and Sodium Chloride on Electrochemical Activity of MFCs
3.2.3. Effect of Acetate and Sodium Chloride on Redox Potential Between Biofilms
3.2.4. Effect of Acetate and Sodium Chloride on Microbial Morphology of Anodes
3.2.5. Effect of Acetate and Sodium Chloride on Microbial Extracellular Polymer
3.2.6. Effect of Acetate and Sodium Chloride on Microbial Community Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mo, L.Y.; Wang, J.; Qin, L.T.; Liang, N. Mechanism of time-dependent toxicity of quinolone antibiotics on luminescent bacteria Vibrio qinghaiensis sp. Q67. Ecotoxicol. Environ. Saf. 2023, 255, 114784. [Google Scholar] [CrossRef]
- Song, G.; Yu, Y.; Liu, T.; Xi, H.; Zhou, Y. Performance of microaeration hydrolytic acidification process in the pretreatment of 2-butenal manufacture wastewater. J. Hazard. Mater. 2019, 369, 465–473. [Google Scholar] [CrossRef]
- Galai, S.; Galai, S.; Perez de los Rios, A.; Hernández-Fernández, F.J.; Haj Kacem, S.; Mateo Ramírez, F.; Quesada-Medina, J. Microbial fuel cell application for azoic dye decolorization with simultaneous bioenergy production using Stenotrophomonas sp. Chem. Eng. Technol. 2015, 38, 1511–1518. [Google Scholar] [CrossRef]
- Addi, H.; Mateo-Ramírez, F.; Ortiz-Martínez, V.M.; Salar-García, M.J.; Hernández-Fernández, F.J.; Perez de los Rios, A.; Godinez, C.; Lotfi, E.M.; ElMahi, M.; Lozano Bco, L.J. Treatment of mineral oil refinery wastewater in microbial fuel cells using ionic liquid based separators. Appl. Sci. 2018, 8, 438. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, R.; Liu, G.; Li, M.; Chen, S. Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell. Bioresour. Technol. 2011, 102, 3827–3832. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, R.; Liu, G.; Li, J.; Zhang, C. Electricity generation from indole and microbial community analysis in the microbial fuel cell. J. Hazard. Mater. 2010, 176, 759–764. [Google Scholar] [CrossRef]
- Xiao, Y.; De Araujo, C.; Sze, C.C.; Stuckey, D.C. Toxicity measurement in biological wastewater treatment processes: A review. J. Hazard. Mater. 2015, 286, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Chu, N.; Liang, Q.; Hao, W.; Jiang, Y.; Liang, P.; Zeng, R.J. Microbial electrochemical sensor for water biotoxicity monitoring. Chem. Eng. J. 2021, 404, 127053. [Google Scholar] [CrossRef]
- Xing, F.; Song, Y.; Yu, Y.; Duan, L.; Xi, H.; Zhou, Y. Study on mechanism of electroactive microorganisms response to 2,4-DCP. Chem. Eng. J. 2023, 455, 140404. [Google Scholar] [CrossRef]
- Jiang, Y.; Liang, P.; Zhang, C.; Bian, Y.; Yang, X.; Huang, X.; Girguis, P.R. Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow-through electrodes and controlled anode potentials. Bioresour. Technol. 2015, 190, 367–372. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Thomson, A.R.; Schneider, K.; Cameron, P.J. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens. Bioelectron. 2014, 62, 182–188. [Google Scholar] [CrossRef]
- Du, L.; Thomson, A.R.; Schneider, K.; Cameron, P.J.; Ieropoulos, I. Machine Learning Enables Quantification of Multiple Toxicants with Microbial Electrochemical Sensors. Environ. Sci. Technol. 2021, 2, 92–100. [Google Scholar] [CrossRef]
- Catal, T.; Yavaser, S.; Enisoglu-Atalay, V.; Bermek, H.; Ozilhan, S. Monitoring of neomycin sulfate antibiotic in microbial fuel cells. Bioresour. Technol. 2018, 268, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Corbella, C.; Liang, Q.; Hao, W.; Jiang, Y.; Liang, P. MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands. Sci. Total Environ. 2019, 660, 218–226. [Google Scholar] [CrossRef]
- Hwang, J.H.; Kim, K.Y.; Resurreccion, E.P.; Lee, W.H. Surfactant addition to enhance bioavailability of bilge water in single chamber microbial fuel cells (MFCs). J. Hazard. Mater. 2019, 368, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Rosi, R.; Pant, D.; Logan, B.E. Chronoamperometry and linear sweep voltammetry reveals the adverse impact of high carbonate buffer concentrations on anode performance in microbial fuel cells. J. Power Sources 2020, 476, 228715. [Google Scholar] [CrossRef]
- Wang, X.; Tian, Y.; Liu, H.; Zhao, X.; Wu, Q. Effects of influent COD/TN ratio on nitrogen removal in integrated constructed wetland-microbial fuel cell systems. Bioresour. Technol. 2019, 271, 492–495. [Google Scholar] [CrossRef]
- Li, T.; Zhou, Q.; Zhou, L.; Yan, Y.; Liao, C.; Wan, L.; An, J.; Li, N.; Wang, X. Acetate limitation selects Geobacter from mixed inoculum and reduces polysaccharide in electroactive biofilm. Water Res. 2020, 177, 115776. [Google Scholar] [CrossRef]
- Jadhav, G.S.; Ghangrekar, M.M. Ghangrekar, Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour. Technol. 2009, 100, 717–723. [Google Scholar] [CrossRef]
- Stein, N.E.; Hamelers, H.M.V.; van Straten, G.; Keesman, K.J. On-line detection of toxic components using a microbial fuel cell-based biosensor. J. Process Control 2012, 22, 1755–1761. [Google Scholar] [CrossRef]
- Li, T.; Wang, X.; Zhou, L.; An, J.; Li, J.; Li, N.; Sun, H.; Zhou, Q. Bioelectrochemicalsensor using living biofilm to in Situ evaluate flocculant toxicity. ACS Sens. 2016, 1, 1374–1379. [Google Scholar] [CrossRef]
- Ledezma, P.; Tan, Z.; Kharkwal, S.; Ng, H.Y. Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells. Bioresour. Technol. 2012, 118, 615–618. [Google Scholar] [CrossRef]
- Chouler, J.; Di Lorenzo, M. Pesticide detection by a miniature microbial fuel cell under controlled operational disturbances. Water Sci. Technol. 2019, 79, 2231–2241. [Google Scholar] [CrossRef] [PubMed]
- Quek, S.B.; Cheng, L.; Cord-Ruwisch, R. Microbial fuel cell biosensor for rapid assessment of assimilable organic carbon under marine conditions. Water Res. 2015, 77, 64–71. [Google Scholar] [CrossRef]
- Adelaja, O.; Keshavarz, T.; Kyazze, G. The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells. J. Hazard. Mater. 2015, 283, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Md Khudzari, J.; Tartakovsky, B.; Raghavan, G.S.V. Effect of C/N ratio and salinity on power generation in compost microbial fuel cells. Waste Manag. 2016, 48, 135–142. [Google Scholar] [CrossRef]
- Lefebvre, O.; Tan, Z.; Kharkwal, S.; Ng, H.Y. Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresour. Technol. 2012, 112, 336–340. [Google Scholar] [CrossRef]
- Miyahara, M.; Kouzuma, A.; Watanabe, K. Sodium chloride concentration determines exoelectrogens in anode biofilms occurring from mangrove-grown brackish sediment. Bioresour. Technol. 2016, 218, 674–679. [Google Scholar] [CrossRef]
- Miyahara, M.; Kouzuma, A.; Watanabe, K. Effects of NaCl concentration on anode microbes in microbial fuel cells. AMB Express 2015, 5, 123. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Xi, H.; Yu, Y.; Zhou, Y. A sensitive, wide-ranging comprehensive toxicity indicator based on microbial fuel cell. Sci. Total Environ. 2020, 703, 134667. [Google Scholar] [CrossRef]
- Fu, B.; Xu, T.; Guo, X.; Liang, P.; Huang, X.; Zhang, X. Optimization and simulation of a carbon-based flow-through composite anode configuration to enhance power generation and improve effluent quality simultaneously for microbial fuel cells. J. Clean. Prod. 2019, 229, 542–551. [Google Scholar] [CrossRef]
- Zhang, S.; You, J.; An, N.; Zhao, J.; Wang, L.; Cheng, Z.; Ye, J.; Chen, D.; Chen, J. Gaseous toluene powered microbial fuel cell: Performance, microbial community, and electron transfer pathway. Chem. Eng. J. 2018, 351, 515–522. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, S.; Tang, J. In situ investigation of cathode and local biofilm microenvironments reveals important roles of OH− and oxygen transport in microbial fuel cells. Environ. Sci. Technol. 2013, 47, 4911–4917. [Google Scholar] [CrossRef]
- Dhar, B.R.; Sim, J.; Ryu, H.; Ren, H.; Santo Domingo, J.W.; Chae, J.; Lee, H.S. Microbial activity influences electrical conductivity of biofilm anode. Water Res. 2017, 127, 230–238. [Google Scholar] [CrossRef]
- Zhou, L.; Liao, C.; Li, T.; An, J.; Du, Q.; Wan, L.; Li, N.; Pan, X.; Wang, X. Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells. Appl. Energy 2018, 219, 199–206. [Google Scholar] [CrossRef]
- Chen, S.; Jing, X.; Tang, J.; Fang, Y.; Zhou, S. Quorum sensing signals enhance the electrochemical activity and energy recovery of mixed-culture electroactive biofilms. Biosens. Bioelectron. 2017, 97, 369–376. [Google Scholar] [CrossRef]
- Stöckl, M.; Teubner, N.C.; Holtmann, D.; Mangold, K.M.; Sand, W. Extracellular polymeric substances from Geobactersulfurreducens biofilms in microbial fuel cells. ACS Appl. Mater. Interfaces 2019, 11, 8961–8968. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars andrelated substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Yang, L.H.; Zhu, T.T.; Cai, W.W.; Haider, M.R.; Wang, H.C.; Cheng, H.Y.; Wang, A.J. Micro-oxygen bioanode: An efficient strategy for enhancement of phenol degradation and current generation in mix-cultured MFCs. Bioresour. Technol. 2018, 268, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Stager, J.L.; Zhang, X.; Logan, B.E. Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater. Bioelectrochemistry 2017, 118, 154–160. [Google Scholar] [CrossRef]
- Geng, B.Y.; Cao, L.Y.; Li, F.; Song, H.; Liu, C.G.; Zhao, X.Q.; Bai, F.W. Potential of Zymomonas mobilis as an electricity producer in ethanol production. Biotechnol. Biofuels 2020, 13, 36. [Google Scholar] [CrossRef]
- Li, F.; An, X.; Wu, D.; Xu, J.; Chen, Y.; Li, W.; Cao, Y.; Guo, X.; Lin, X.; Li, C.; et al. Engineering microbial consortia for high-performance cellulosic hydrolyzates-fed microbial fuel cells. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Qao, Y.; Qiao, Y.J.; Zou, L.; Ma, C.X.; Liu, J.H. Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes. Bioresour. Technol. 2015, 198, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Babauta, J.T.; Nguyen, H.D.; Beyenal, H. Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism. Environ. Sci. Technol. 2011, 45, 6654–6660. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Wang, Y.; Yan, L.; Wang, X.; Wang, M.; Xu, H.; Wang, S. Effect of bio-electrochemical system on the fate and proliferation of chloramphenicol resistance genes during the treatment of chloramphenicol wastewater. Water Res. 2017, 117, 95–101. [Google Scholar] [CrossRef]
- Lu, H.; Yu, Y.; Xi, H.; Wang, C.; Zhou, Y. Bacterial response to formaldehyde in an MFC toxicity sensor. Enzym. Microb. Technol. 2020, 140, 109565. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Rossi, R.; Ragab, A.; Saikaly, P.E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 2019, 17, 307–319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, F.; Zhang, H.; Xiao, S.; Lu, H. The Influence of Acetate and Sodium Chloride Concentration on the Toxic Response of Electroactive Microorganisms. Microorganisms 2025, 13, 2077. https://doi.org/10.3390/microorganisms13092077
Xing F, Zhang H, Xiao S, Lu H. The Influence of Acetate and Sodium Chloride Concentration on the Toxic Response of Electroactive Microorganisms. Microorganisms. 2025; 13(9):2077. https://doi.org/10.3390/microorganisms13092077
Chicago/Turabian StyleXing, Fei, Haiya Zhang, Shuhu Xiao, and Hongbin Lu. 2025. "The Influence of Acetate and Sodium Chloride Concentration on the Toxic Response of Electroactive Microorganisms" Microorganisms 13, no. 9: 2077. https://doi.org/10.3390/microorganisms13092077
APA StyleXing, F., Zhang, H., Xiao, S., & Lu, H. (2025). The Influence of Acetate and Sodium Chloride Concentration on the Toxic Response of Electroactive Microorganisms. Microorganisms, 13(9), 2077. https://doi.org/10.3390/microorganisms13092077