Optimization of Microbial Consortium Formulation for Oily Food Waste Composting Using Mixture Design Methodology
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Equipment
2.2. Strain and Mixture Design
2.3. Sample Collection
2.4. Composting Validation Test
2.5. Analytical Methods
2.6. Data Analysis
3. Results
3.1. Oil Degradation Efficiency in Three Groups of Experiments
3.2. Analysis of Variance and Model Calibration
3.3. Model Adequacy Test
3.4. Effects of Different Strains in the Bacterial, Fungal, and Bacterial–Fungal Groups
3.5. Optimization of Mixture Proportions
4. Discussion
4.1. Experimental Result Accuracy
4.2. Assessment of Experimental Design Completeness
4.3. Application Prospects of Food Waste Composting
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Awasthi, M.K.; Selvam, A.; Chan, M.T.; Wong, J.W.C. Bio-degradation of oily food waste employing thermophilic bacterial strains. Bioresour. Technol. 2017, 248, 141–147. [Google Scholar] [CrossRef]
- Notic of the Ministry of Housing and Urban-Rural Development and Other Departments on the Comprehensive Implementation of Municipal Waste Classification in Cities at and Above the Prefectural Level; Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD): Beijing, China, 2019. Available online: https://www.gov.cn/zhengce/zhengceku/2019-09/29/content_5434772.htm (accessed on 12 July 2025).
- Chang, Y.; Huang, H.; Zhao, Z.; Yin, J.; Zhang, H.; Zhang, J. Prospect for the development of recycling treatment and high-value utilization technologies of food waste. Environ. Sanit. Eng. 2021, 29, 44–51. [Google Scholar]
- Tang, F.; Yu, Z.; Li, Y.; Chen, L.; Ma, X. Catalytic co-pyrolysis behaviors, product characteristics and kinetics of rural solid waste and chlorella vulgaris. Bioresour. Technol. 2019, 122636. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.W.; Luyima, D.; Park, S.J.; Kim, S.H.; Oh, T.K. Mixing sodium-chloride-rich food waste compost with livestock manure composts enhanced the agronomic performance of leaf Lettuce. Sustainability 2021, 13, 13223. [Google Scholar] [CrossRef]
- Liu, J.; Shen, Y.; Ding, J.; Luo, W.; Zhou, H.; Cheng, H.; Wang, H.; Zhang, X.; Wang, J.; Xu, P.; et al. High oil content inhibits humification in food waste composting by affecting microbial community succession and organic matter degradation. Bioresour. Technol. 2023, 376, 128832. [Google Scholar] [CrossRef]
- Zhou, Y.; Engler, N.; Nelles, M. Symbiotic relationship between hydrothermal carbonization technology and anaerobic digestion for food waste in China. Bioresour. Technol. 2018, 260, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Li, S.; Yuan, H.; Zou, D.; Liu, Y.; Zhu, B.; Chufo, A.; Jaffar, M.; Li, X. Evaluating biomethane production from anaerobic mono- and co-digestion of food waste and floatable oil (FO) skimmed from food waste. Bioresour. Technol. 2015, 185, 7–13. [Google Scholar] [CrossRef]
- Chang, Y.; Zhou, K.; Yang, T.; Zhao, X.; Li, R.; Li, J.; Xu, S.; Feng, Z.; Ding, X.; Zhang, L.; et al. Bacillus licheniformis inoculation promoted humification process for kitchen waste composting: Organic components transformation and bacterial metabolic mechanism. Environ. Res. 2023, 237, 117016. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, Y.; Yao, X.; Zhou, M.; Li, W.; Liu, Z.; Hu, B. Inoculation enhances directional humification by increasing microbial interaction intensity in food waste composting. Chemosphere 2023, 322, 138191. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Yan, Y.; Wang, R.; Chi, Y.; Zhang, D.; Zhou, P.; Chu, S. Enhancing aerobic composting performance of high-salt oily food waste with Bacillus safensis YM1. Bioresour. Technol. 2024, 397, 130475. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Z.; Yang, J.; Lian, X.; Xie, X.; Chen, H.; Wang, M.; Zheng, H. Application of oil-degrading agents consisted of thermophilic Bacillus subtilis and Bacillus glycinifermentans in food waste. Environ. Technol. 2024, 45, 4704–4714. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Hua, X.; Sun, J.; Zheng, R.; Zheng, Y. Synergetic degradation of waste oil by constructed bacterial consortium for rapid in-situ reduction of kitchen waste. J. Biosci. Bioeng. 2021, 131, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Wang, T.; Guo, X.; Huang, P.; Li, C.; Qu, Y. Construction and application of petroleum-degrading bacterial agents: Community composition, lyophilization technology, and degradation mechanism. J. Environ. Chem. Eng. 2024, 12, 114904. [Google Scholar] [CrossRef]
- Li, L.; Ding, X.; Qian, K.; Ding, Y.; Yin, Z. Effect of microbial consortia on the composting of pig manure. J. Anim. Vet. Adv. 2011, 10, 1738–1742. [Google Scholar] [CrossRef]
- Pilkington, J.L.; Preston, C.; Gomes, R.L. Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua. Ind. Crops Prod. 2014, 58, 15–24. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Cui, R.; Ren, L.; Zhang, M.; Wang, Y. Effects of two different proportions of microbial formulations on microbial communities in kitchen waste composting. Microorganisms 2023, 11, 2605. [Google Scholar] [CrossRef]
- Bagheri, A.R.; Ghaedi, M.; Dashtian, K.; Hajati, S.; Bazrafshan, A.A. Simultaneous removal of Cu2+ and Cr3+ ions from aqueous solution based on complexation with eriochrome cyanine-R and derivative spectrophotometric method. Appl. Organomet. Chem. 2014, 32, e3918. [Google Scholar] [CrossRef]
- Baj, T.; Kowalska, G.; Kowalski, R.; Szymanska, J.; Kai, G.; Coutinho, H.D.M.; Sieniawska, E. Synergistic antioxidant activity of four—Component mixture of essential oils: Basil, cedarwood, citronella and thyme for the use as medicinal and food ingredient. Antioxidants 2023, 12, 577. [Google Scholar] [CrossRef]
- Gasemloo, S.; Khosravi, M.; Sohrabi, M.R.; Dastmalchi, S.; Gharbani, P. Response surface methodology (RSM) modeling to improve removal of Cr (VI) ions from tannery wastewater using sulfated carboxymethyl cellulose nanofilter. J. Clean. Prod. 2019, 208, 736–742. [Google Scholar] [CrossRef]
- Wu, J.; Yao, W.; Zhao, L.; Zhao, Y.; Qi, H.; Zhang, R.; Song, C.; Wei, Z. Estimating the synergistic formation of humus by abiotic and biotic pathways during composting. J. Clean. Prod. 2022, 363, 132470. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, Z.; Li, M.; Li, Q. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting. J. Environ. Manag. 2019, 243, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Selvam, A.; Lai, K.M.; Wong, J.W.C. Critical evaluation of post-consumption food waste composting employing thermophilic bacterial consortium. Bioresour. Technol. 2017, 245, 665–672. [Google Scholar] [CrossRef] [PubMed]
- GB/T 5009.6-2016; National Food Safety Standards Determination of Fat in Food. National Health and Family Planning Commission of the People’s Republic of China, The National Medical Products Administration: Beijing, China, 2016. Available online: https://img.antpedia.com/standard/files/pdfs_ora/20211002/GB%205009.6-2016.pdf (accessed on 12 July 2025).
- NY/T 525-2021; Organic Fertilizer. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2021. Available online: https://www.doc88.com/p-17939225808636.html (accessed on 12 July 2025).
- Ye, Y.; Xu, J.; Zhang, Z.; Zhang, Y.; Zhao, Q.; Xu, J.; Yuan, H. Complex multi-dimensional integration for T2 and R2 mapping. Magn. Reson. Imaging 2024, 108, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Filli, K.B.; Nkama, I.; Abubakar, U.M.; Jideani, V.A. Influence of extrusion variables on some functional properties of extruded millet-soybean for the manufacture of fura: A Nigerian traditional food. Afr. J. Food Sci. 2010, 4, 342–352. Available online: https://www.researchgate.net/publication/228366235_Influence_of_extrusion_variables_on_some_functional_properties_of_extruded_millet-soybean_for_the_manufacture_of_%27fura%27_A_Nigerian_traditional_food (accessed on 12 July 2025).
- Asadu, C.O.; Egbuna, S.O.; Chime, T.O.; Eze, C.N.; Kevin, D.; Mbah, G.O.; Ezema, A.C. Survey on solid wastes management by composting: Optimization of key process parameters for biofertilizer synthesis from agro wastes using response surface methodology (RSM). Artif. Intell. Agric. 2019, 3, 52–61. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Y.; Wang, S.; Wang, K.; Zhang, Y. Development of a compound microbial agent beneficial to the composting of Chinese medicinal herbal residues. Bioresour. Technol. 2021, 330, 124948. [Google Scholar] [CrossRef]
- Chen, G.; Chen, J.; Srinivasakannan, C.; Peng, J. Application of response surface methodology for optimization of the synthesis of synthetic rutile from titania slag. Appl. Surf. Sci. 2012, 258, 3068–3073. [Google Scholar] [CrossRef]
- Hidalgo, D.; Corona, F.; Martín-Marroquín, J.M. Manure biostabilization by effective microorganisms as a way to improve its agronomic value. Biomass Convers. Bior. 2022, 12, 4649–4664. [Google Scholar] [CrossRef]
- Xu, J.; Lu, G.; Shan, G.; He, X.; Huang, J.; Li, Q. Inoculation with compost-born thermophilic complex microbial consortium induced organic matters degradation while reduced nitrogen loss during co-composting of dairy manure and sugarcane leaves. Waste. Biomass. Valori. 2019, 10, 2467–2477. [Google Scholar] [CrossRef]
- Patil, N.; Mote, G.; Khot, J.A.; Prathapan, K. Simplex lattice mixture design approach for optimization of jaggery granules and finger millet flour-based functional muffins. Sugar Tech. 2025, 27, 1300–1312. [Google Scholar] [CrossRef]
- Khalid, W.; Koraqi, H.; Benmebarek, I.E.; Moreno, A.; Alsulami, T.; Mugabi, R.; Nayik, G.A. Optimization of UAE-NADES green extraction of bioactive compounds from chickpea (Cicer arietinum L.) sprouts using simplex lattice mixture design methodology. Ultrason. Sonochem. 2025, 112, 107186. [Google Scholar] [CrossRef] [PubMed]
- Rodriguesa, B.; Hermana, C. Optimization of the recovery yield of the enzymatic aqueous extraction of oil from wet açaí decocts using Design of Experiment. Grasas Aceites 2023, 74, e528. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Lemos, V.A.; Novaes, C.G.; Mota de Jesus, R.; Filho, H.R.S.; Araújo, S.A.; Alves, J.P.S. Application of mixture design in analytical chemistry. Microchem. J. 2020, 152, 104336. [Google Scholar] [CrossRef]
- Gou, C.; Wang, Y.; Zhang, X.; Lou, Y.; Gao, Y. Inoculation with a psychrotrophic-thermophilic complex microbial agent accelerates onset and promotes maturity of dairy manure-rice straw composting under cold climate conditions. Bioresour. Technol. 2017, 243, 339–346. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Y.; Yang, X.; Hu, C.; Wang, K. Regulation of soil enzyme activity and bacterial communities by food waste compost application during field tobacco cultivation cycle. Appl. Soil. Ecol. 2023, 192, 105016. [Google Scholar] [CrossRef]
- Hiaaham, N.F.N.; Kadir, A.A.; Sarani, N.A.; Hassan, M.I.H.; Fadeli, M.F.A.; Mazilan, S.N. The evaluation of composted food waste effects in conserving and enhancing growth performance of Azolla Pinnata. Int. J. Conserv. Sci. 2024, 15, 685–698. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, J.; Xu, S.; Wang, J.; Zhou, Q.; Li, Y.; Tong, X. Rapid in-situ composting of household food waste. Process Saf. Environ. 2020, 141, 259–266. [Google Scholar] [CrossRef]
Microbial Agent Compounding Experiment | Material | pH | Electrical Conductivity (mS/cm) | Moisture Content (%) | Total Carbon (%) a | Total Nitrogen (%) a | C/N a |
---|---|---|---|---|---|---|---|
First experiment | Food waste | 6.14 ± 0.04 | 2.64 ± 0.02 | 70.55 ± 0.38 | 46.30 ± 0.23 | 2.00 ± 0.06 | 23.17 ± 0.63 |
Cornstalk | 7.15 ± 0.03 | 3.30 ± 0.04 | 6.90 ± 0.14 | 38.94 ± 0.10 | 0.97 ± 0.03 | 39.11 ± 1.12 | |
Second experiment | Food waste | 6.71 ± 0.05 | 3.10 ± 0.01 | 72.57 ± 0.01 | 45.31 ± 0.04 | 1.86 ± 0.08 | 24.36 ± 1.10 |
Cornstalk | 7.33 ± 0.02 | 3.21 ± 0.00 | 6.44 ± 0.01 | 39.56 ± 0.51 | 1.02 ± 0.04 | 38.78 ± 0.97 |
Run | Bacterial Group | Fungal Group | Bacterial–Fungal Group |
---|---|---|---|
Oil Removal Efficiency/% | |||
1 | 17.47 | 18.89 | 10.98 |
2 | 10.38 | 18.10 | 12.06 |
3 | 20.26 | 28.14 | 18.99 |
4 | 15.92 | 23.00 | 17.84 |
5 | 22.68 | 26.80 | 19.25 |
6 | 12.46 | 29.00 | 8.80 |
7 | 24.99 | 31.32 | 6.84 |
8 | 18.61 | 31.91 | 10.62 |
9 | 25.31 | 36.34 | |
10 | 32.17 | 45.05 | |
11 | 19.52 | 16.37 | |
12 | 5.67 | 20.00 | |
13 | 23.18 | 23.25 | |
14 | 17.70 | 20.53 |
Source | Sequential p-Value | Lack of Fit p-Value | Adjusted R2 | Predicted R2 | Estimate | |
---|---|---|---|---|---|---|
Bacteria | Linear | 0.0329 | 0.0256 | 0.3648 | 0.2130 | |
Quadratic | 0.1394 | 0.0366 | 0.5438 | –0.5138 | ||
Special Cubic | 0.0003 | 0.8278 | 0.9268 | 0.8258 | Suggested | |
Fungi | Linear | 0.3940 | 0.0061 | 0.0023 | –0.2922 | |
Quadratic | 0.0289 | 0.0195 | 0.5300 | –0.6110 | ||
Special Cubic | <0.0001 | 0.8703 | 0.9477 | 0.8756 | Suggested | |
Bacteria–Fungi | Linear | 0.3181 | 0.0082 | 0.0258 | –0.4730 | |
Quadratic | 0.0044 | 0.0690 | 0.7999 | 0.6930 | ||
Special Cubic | 0.0282 | 0.2884 | 0.9347 | 0.8203 | Suggested |
Compounding Group | Polynomial Models | R2 | Adj. R2 | Pred. R2 |
---|---|---|---|---|
Bacteria | 18.36 × A + 7.97 × B + 21.70 × C + 13.82 × AB + 9.36 × AC − 10.13 × BC + 362.87 | 0.9606 | 0.9268 | 0.8258 |
Fungi | 17.6 × A + 18.93 × B + 25.66 × C + 13.38 × AB + 20.11 × AC + 25.56 × BC + 448.44 × ABC | 0.9718 | 0.9477 | 0.8756 |
Bacteria–Fungi | 7.72 × A + 11.24 × B + 33.79 × AB − 33.33 × AB (A − B) | 0.9627 | 0.9347 | 0.8203 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Shen, Y.; Ding, J.; Zhou, H.; Zhao, H.; Cheng, H.; Xu, P.; Qin, Y.; Jia, Y. Optimization of Microbial Consortium Formulation for Oily Food Waste Composting Using Mixture Design Methodology. Microorganisms 2025, 13, 2066. https://doi.org/10.3390/microorganisms13092066
Zhang Y, Shen Y, Ding J, Zhou H, Zhao H, Cheng H, Xu P, Qin Y, Jia Y. Optimization of Microbial Consortium Formulation for Oily Food Waste Composting Using Mixture Design Methodology. Microorganisms. 2025; 13(9):2066. https://doi.org/10.3390/microorganisms13092066
Chicago/Turabian StyleZhang, Yun, Yujun Shen, Jingtao Ding, Haibin Zhou, Hang Zhao, Hongsheng Cheng, Pengxiang Xu, Yiwei Qin, and Yang Jia. 2025. "Optimization of Microbial Consortium Formulation for Oily Food Waste Composting Using Mixture Design Methodology" Microorganisms 13, no. 9: 2066. https://doi.org/10.3390/microorganisms13092066
APA StyleZhang, Y., Shen, Y., Ding, J., Zhou, H., Zhao, H., Cheng, H., Xu, P., Qin, Y., & Jia, Y. (2025). Optimization of Microbial Consortium Formulation for Oily Food Waste Composting Using Mixture Design Methodology. Microorganisms, 13(9), 2066. https://doi.org/10.3390/microorganisms13092066