Phyllosphere Arthropods Facilitate Secondary Dispersal of Putative Mycoparasite Simplicillium: A Potential Biocontrol Strategy for Soybean Rust
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Strain and Spore Preparation
2.2. Plant Growth Conditions
2.3. Inoculum Suspension and Application
2.4. Incubation and Detached-Leaf Assay
2.5. Isolation of Simplicillium and Arthropods
2.6. Molecular Identification by DNA Sequencing
2.7. Statistical Analysis
3. Results
3.1. Development of P. pachyrhizi Uredinia and Associated White Colonies
3.2. Recovery and Selection of Fungal Isolates
3.3. Molecular Identification of Simplicillium Species
3.4. Morphological Characterization of Preserved Isolates
3.5. Statistical Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hossain, M.M.; Sultana, F.; Yesmin, L.; Rubayet, M.T.; Abdullah, H.M.; Siddique, S.S.; Bhuiyan, M.A.B.; Yamanaka, N. Understanding Phakopsora pachyrhizi in soybean: Comprehensive insights, threats, and interventions from the Asian perspective. Front. Microbiol. 2024, 14, 1304205. [Google Scholar] [CrossRef]
- Twizeyimana, M.; Hartman, G.L. Effect of selected biopesticides in reducing soybean rust (Phakopsora pachyrhizi) development. Plant Dis. 2019, 103, 2460–2466. [Google Scholar] [CrossRef] [PubMed]
- Langenbach, C.; Campe, R.; Beyer, S.F.; Mueller, A.N.; Conrath, U. Fighting Asian soybean rust. Front. Plant Sci. 2016, 7, 797. [Google Scholar] [CrossRef] [PubMed]
- Twizeyimana, M.; Hammer, P.E.; Gachango, E.; Craig, K.; Espejo, B.; Biggs, M.B.; Kremer, J.; Ingham, D.J. Diverse environmental bacteria displaying activity against Phakopsora pachyrhizi, the cause of soybean rust. Front. Plant Sci. 2023, 14, 1080116. [Google Scholar] [CrossRef]
- Holz, S.; D’Alessandro, C.P.; Maximo, H.J.; Nascimento de Souza, P.H.; Raruang, Y.; Demétrio, C.G.B.; Delalibera Júnior, I.; Chen, Z.-Y.; Pascholati, S.F. The potential of using Metarhizium anisopliae and Metarhizium humberi to control the Asian soybean rust caused by Phakopsora pachyrhizi. Biocontrol Sci. Technol. 2023, 33, 366–382. [Google Scholar] [CrossRef]
- Chicowski, A.S.; Bredow, M.; Utiyama, A.S.; Marcelino-Guimarães, F.C.; Whitham, S.A. Soybean-Phakopsora pachyrhizi interactions: Towards the development of next-generation disease-resistant plants. Plant Biotechnol. J. 2023, 22, 296–315. [Google Scholar] [CrossRef]
- Hartman, G.L.; Miles, M.R.; Frederick, R.D. Breeding for resistance to soybean rust. Plant Dis. 2005, 89, 664–666. [Google Scholar] [CrossRef]
- Chen, W.H.; Han, Y.F.; Liang, J.D.; Liang, Z.Q. Taxonomic and phylogenetic characterizations reveal four new species of Simplicillium (Cordycipitaceae, Hypocreales) from Guizhou, China. Sci. Rep. 2021, 11, 15300. [Google Scholar] [CrossRef]
- Chen, W.; Liang, J.; Ren, X.; Zhao, J.; Han, Y.; Liang, Z. Multigene phylogeny, phylogenetic network, and morphological characterizations reveal four new arthropod-associated Simplicillium species and their evolutional relationship. Front. Microbiol. 2022, 13, 950773. [Google Scholar] [CrossRef]
- Wei, D.-P.; Wanasinghe, D.N.; Hyde, K.D.; Mortimer, P.E.; Xu, J.; Xiao, Y.-P.; Bhunjun, C.S.; To-anun, C. The genus Simplicillium. MycoKeys 2019, 60, 69–92. [Google Scholar] [CrossRef]
- Liu, F.; Cai, L. Morphological and Molecular Characterization of a Novel Species of Simplicillium from China. Cryptogam. Mycol. 2012, 33, 137–144. [Google Scholar] [CrossRef]
- Chen, W.H.; Liu, C.; Han, Y.F.; Liang, J.D.; Tian, W.Y.; Liang, Z.-Q. Three novel insect-associated species of Simplicillium (Cordycipitaceae, Hypocreales) from Southwest China. MycoKeys 2019, 58, 83–102. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Saha, S. The genus Simplicillium and Emericellopsis: A review of phytochemistry and pharmacology. Biotechnol. Appl. Biochem. 2021, 69, 2229–2239. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Fan, X.; Zhang, S.; Liu, B.; He, M.; Chen, X.; Tang, C.; Kang, Z.; Wang, X. Identification of a hyperparasitic Simplicillium obclavatum strain affecting the infection dynamics of Puccinia striiformis f. sp. tritici on wheat. Front. Microbiol. 2020, 11, 1277. [Google Scholar] [CrossRef]
- Ward, N.A.; Robertson, C.L.; Chanda, A.K. Effects of Simplicillium lanosoniveum on Phakopsora pachyrhizi, the soybean rust pathogen, and its use as a biological control agent. Phytopathology 2012, 102, 749–760. [Google Scholar] [CrossRef]
- Abaya, A.; Serajazari, M.; Hsiang, T. Control of Fusarium head blight using the endophytic fungus, Simplicillium lamellicola, and its effect on the growh of Triticum aestivum. Biol. Control. 2021, 160, 104684. [Google Scholar] [CrossRef]
- Borgmann-Winter, B.W.; Stephens, R.B.; Anthony, M.A.; Frey, S.D.; D’Amato, A.W.; Rowe, A.J. Wind and small mammals are complementary fungal dispersers. Ecology 2023, 104, e4039. [Google Scholar] [CrossRef]
- Brown, J.K.M.; Hovmøller, M.S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 2002, 297, 5581. [Google Scholar] [CrossRef]
- Campbell, R.E.; Wallis, D.R.; Walter, M. Methods for quantifying rain-splash dispersal of Neonectria ditissima conidia in apple. Front. Hortic. 2023, 2, 1242335. [Google Scholar] [CrossRef]
- Gorbushina, A.A.; Petersen, K. Distribution of microorganisms on ancient wall paintings as related to associated faunal elements. Int. Biodeterior. Biodegrad. 2000, 46, 277–284. [Google Scholar] [CrossRef]
- Trovão, J.; Mesquita, N.; Paiva, D.S.; Paiva de Carvalho, H.; Avelar, L.; Portugal, A. Can arthropods act as vectors of fungal dispersion in heritage collections? A case study on the archive of the University of Coimbra, Portugal. Int. Biodeterior. Biodegrad. 2013, 79, 49–55. [Google Scholar] [CrossRef]
- Okane, I.; Nonaka, K.; Kurihara, Y.; Abe, J.P.; Yamaoka, Y. A new species of Leptobacillim, L. symbioticum, isolated from mites and sori of soybean rust. Mycoscience 2020, 61, 165–171. [Google Scholar] [CrossRef]
- Yamaoka, Y.; Yamanaka, N.; Akamatsu, H.; Suenaga, K. Pathogenic races of soybean rust Phakopsora pachyrhizi were collected in Tsukuba and vicinity in Ibaraki, Japan. J. Gen. Plant Pathol. 2014, 80, 184–188. [Google Scholar] [CrossRef]
- Miura, K.; Kudo, M.Y. An agar-medium for aquatic Hyphomycetes. Trans. Mycol. Soc. Jpn. 1970, 11, 116–118. [Google Scholar]
- Izumitsu, K.; Hatoh, K.; Sumita, T.; Kitade, Y.; Morita, A.; Tanaka, C.; Gafur, A.; Ohta, A.; Kawai, M.; Yamanaka, T.; et al. Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience 2012, 53, 396–401. [Google Scholar] [CrossRef]
- Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. High-coverage ITS primers for the DNA-based identification of Ascomycetes and Basidiomycetes in environmental samples. PLoS ONE 2012, 7, e40863. [Google Scholar] [CrossRef]
- O’Donnell, K. Fusarium and its near relatives. In The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics; Reynolds, D.R., Taylor, J.W., Eds.; CAB International: Wallingford, UK, 1993; pp. 225–233. [Google Scholar]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. 1999, 41, 95–98. [Google Scholar]
- Anoumedem, E.G.M.; Mountessou, B.Y.G.; Kouam, S.F.; Narmani, A.; Surup, F. Simplicilones A and B Isolated from the endophyticfFungus Simplicillium subtropicum SPC3. Antibiotics 2020, 9, 753. [Google Scholar] [CrossRef]
- Baró Robaina, Y.; González Marrero, I.; Lorenzo Nicao, M.E.; Castañeda Ruiz, R.F.; Li, D.-W.; Ponce de la Cal, A.; Ben Gharsa, H.; Manfrino, R.G.; Schuster, C.; Leclerque, A. First description of Simplicillium lanosoniveum, a potential antagonist of the coffee leaf rust from Cuba. Appl. Microbiol. 2024, 4, 275–283. [Google Scholar] [CrossRef]
- Reitz, S.R.; Gao, Y.; Lei, Z. Thrips: Pests of concern to China and the United States. Agric. Sci. China 2011, 10, 867–892. [Google Scholar] [CrossRef]
- Sperotto, R.A.; Grbic, V.; Pappas, M.L.; Leiss, K.A.; Kant, M.R.; Wilson, C.R.; Santamaria, M.E.; Gao, Y. Editorial: Plant responses to phytophagous mites/thrips and search for resistance. Front. Plant Sci. 2019, 10, 866. [Google Scholar] [CrossRef]
Treatment | Replicate1 | Replicate2 | Replicate3 |
---|---|---|---|
Unsealed + Inoculated | 4 | 5 | 11 |
Sealed + Inoculated | 0 | 0 | 1 |
Unsealed + Control | 0 | 0 | 0 |
Sealed + Control | 0 | 0 | 0 |
Treatment | Replicate1 | Replicate2 | Replicate3 |
---|---|---|---|
Unsealed + Inoculated | 1 | 0 | 2 |
Sealed + Inoculated | 0 | 0 | 0 |
Unsealed + Control | 0 | 0 | 0 |
Sealed + Control | 0 | 0 | 0 |
Isolate ID | Species | Resource | Region | Accession Number |
---|---|---|---|---|
Sabi11 | Simplicillium lamellicola | White colony | ITS | PX113195 |
Th6 | S. lamellicola | Thrips | ITS | PX113194 |
3rep1 | Simplicillium lanosoniveum | White colony | ITS | PX113198 |
Th5 | Simplicillium subtropicum | Thrips | ITS | PX113197 |
3L3-1 | S. subtropicum | White colony | LSU | PX113200 |
Sabi7 | Simplicillium sympodiophorum | White colony | ITS | PX113199 |
Species | UI R1 | UI R2 | UI R3 | SI R1 | SI R2 | SI R3 | UC R1 | UC R2 | UC R3 | SC R1 | SC R2 | SC R3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. lamellicola | ✓ | ✓ | ✓ | - | - | - | - | - | - | - | - | - |
S. lanosoniveum | - | - | ✓ | - | - | ✓ | - | - | - | - | - | - |
S. subtropicum | ✓ | - | ✓ | - | - | - | - | - | - | - | - | - |
S. sympodiophorum | ✓ | ✓ | - | - | - | - | - | - | - | - | - | - |
Species | UI R1 | UI R2 | UI R3 | SI R1 | SI R2 | SI R3 | UC R1 | UC R2 | UC R3 | SC R1 | SC R2 | SC R3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. lamellicola | ✓ | ✓ | - | - | - | - | - | - | - | - | - | - |
S. lanosoniveum | - | - | ✓ | - | - | ✓ | - | - | - | - | - | - |
S. subtropicum | ✓ | - | ✓ | - | - | - | - | - | - | - | - | - |
S. sympodiophorum | ✓ | ✓ | - | - | - | - | - | - | - | - | - | - |
Species | UI R1 | UI R2 | UI R3 | SI R1 | SI R2 | SI R3 | UC R1 | UC R2 | UC R3 | SC R1 | SC R2 | SC R3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. lamellicola | ✓ | - | ✓ | - | - | - | - | - | - | - | - | - |
S. lanosoniveum | - | - | - | - | - | - | - | - | - | - | - | - |
S. subtropicum | - | - | ✓ | - | - | - | - | - | - | - | - | - |
S. sympodiophorum | - | - | - | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nada, T.; Ishiga, Y.; Okane, I. Phyllosphere Arthropods Facilitate Secondary Dispersal of Putative Mycoparasite Simplicillium: A Potential Biocontrol Strategy for Soybean Rust. Microorganisms 2025, 13, 2035. https://doi.org/10.3390/microorganisms13092035
Nada T, Ishiga Y, Okane I. Phyllosphere Arthropods Facilitate Secondary Dispersal of Putative Mycoparasite Simplicillium: A Potential Biocontrol Strategy for Soybean Rust. Microorganisms. 2025; 13(9):2035. https://doi.org/10.3390/microorganisms13092035
Chicago/Turabian StyleNada, Takuma, Yasuhiro Ishiga, and Izumi Okane. 2025. "Phyllosphere Arthropods Facilitate Secondary Dispersal of Putative Mycoparasite Simplicillium: A Potential Biocontrol Strategy for Soybean Rust" Microorganisms 13, no. 9: 2035. https://doi.org/10.3390/microorganisms13092035
APA StyleNada, T., Ishiga, Y., & Okane, I. (2025). Phyllosphere Arthropods Facilitate Secondary Dispersal of Putative Mycoparasite Simplicillium: A Potential Biocontrol Strategy for Soybean Rust. Microorganisms, 13(9), 2035. https://doi.org/10.3390/microorganisms13092035