Genetic Diversity, Extended-Spectrum Beta-Lactamase (ESBL) Screening, and Potential Public Health Implications of Gram-Negative Bacteria Recovered from Man-Made Lakes and Surrounding Vegetables
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Survey of Agricultural Producers
2.3. Physicochemical Analysis of Lake Water
2.4. Isolation of Gram-Negative Bacteria
2.5. Molecular Identification of the Isolates
2.6. 16S rDNA Sequencing and Phylogenetic Analysis
2.7. Antibiotic Susceptibility Testing
2.8. Evaluation of Multiple Antibiotic Resistance Phenotypes (MARPs) and the Multiple Antibiotic Resistance Index (MARI)
2.9. Screening for ESBL Resistance Genes
2.10. Data Analysis
3. Results
3.1. Sociodemographic Characteristics of Lettuce Producers Around Yamoussoukro Lakes
3.2. Biocontamination Risk Practices for Lettuce in the Field
3.3. Physicochemical Properties of the Lakes
3.4. Distribution and Diversity of the Bacterial Community in Each Sample
3.5. Relationship Between Lake Physicochemical Properties and Bacterial Diversity and Abundance
3.6. Antibiotic Susceptibility Patterns
3.7. Prevalence and Antibiotic Resistance Genes Among the ESBL Bacteria
3.8. MARI Index of the Lake and Lettuce Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neyen, C.; Lemaitre, B. Sensing Gram-Negative Bacteria: A Phylogenetic Perspective. Curr. Opin. Immunol. 2016, 38, 8–17. [Google Scholar] [CrossRef]
- Silhavy, T.J.; Kahne, D.; Walker, S. The Bacterial Cell Envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef]
- Oliveira, J.; Reygaert, W.C. Gram Negative Bacteria. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Gauba, A.; Rahman, K.M. Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics 2023, 12, 1590. [Google Scholar] [CrossRef]
- WHO. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 20 June 2023).
- Bonomo, R.A. β-Lactamases: A Focus on Current Challenges. Cold Spring Harb. Perspect. Med. 2017, 7, a025239. [Google Scholar] [CrossRef]
- Islam, K.; Heffernan, A.J.; Naicker, S.; Henderson, A.; Chowdhury, M.A.H.; Roberts, J.A.; Sime, F.B. Epidemiology of Extended-Spectrum β-Lactamase and Metallo-β-Lactamase-Producing Escherichia Coli in South Asia. Future Microbiol. 2021, 16, 521–535. [Google Scholar] [CrossRef]
- Kiros, T.; Workineh, L.; Tiruneh, T.; Eyayu, T.; Damtie, S.; Belete, D. Prevalence of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Ethiopia: A Systematic Review and Meta-Analysis. Int. J. Microbiol. 2021, 2021, 6669778. [Google Scholar] [CrossRef]
- Wilson, H.; Török, M.E. Extended-Spectrum β-Lactamase-Producing and Carbapenemase-Producing Enterobacteriaceae. Microb. Genom. 2018, 4, e000197. [Google Scholar] [CrossRef]
- Stephens, P.R.; Gottdenker, N.; Schatz, A.M.; Schmidt, J.P.; Drake, J.M. Characteristics of the 100 Largest Modern Zoonotic Disease Outbreaks. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Wu, T.; Ma, K.; Cheng, Z.; Yi, Q.; Dai, Y.; Wang, B.; Chen, Y.; Wang, B.; et al. Characteristics of Antibiotic Resistance Genes and Microbial Community Distribution in Wanfeng Lake, Upper Pearl River, China. Environ. Sci. Pollut. Res. 2023, 30, 83214–83230. [Google Scholar] [CrossRef] [PubMed]
- Fouz, N.; Pangesti, K.N.A.; Yasir, M.; Al-Malki, A.L.; Azhar, E.I.; Hill-Cawthorne, G.A.; Abd El Ghany, M. The Contribution of Wastewater to the Transmission of Antimicrobial Resistance in the Environment: Implications of Mass Gathering Settings. Trop. Med. Infect. Dis. 2020, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Zaatout, N.; Bouras, S.; Slimani, N. Prevalence of Extended-Spectrum β-Lactamase (ESBL)-Producing Enterobacteriaceae in Wastewater: A Systematic Review and Meta-Analysis. J. Water Health 2021, 19, 705–723. [Google Scholar] [CrossRef]
- Cho, S.; Jackson, C.R.; Frye, J.G. Freshwater Environment as a Reservoir of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae. J. Appl. Microbiol. 2023, 134, lxad034. [Google Scholar] [CrossRef]
- Iwu, C.D.; du Plessis, E.M.; Korsten, L.; Nontongana, N.; Okoh, A.I. Antibiogram Signatures of Some Enterobacteria Recovered from Irrigation Water and Agricultural Soil in Two District Municipalities of South Africa. Microorganisms 2020, 8, 1206. [Google Scholar] [CrossRef]
- Quarcoo, G.; Boamah Adomako, L.A.; Abrahamyan, A.; Armoo, S.; Sylverken, A.A.; Addo, M.G.; Alaverdyan, S.; Jessani, N.S.; Harries, A.D.; Ahmed, H.; et al. What Is in the Salad? Escherichia Coli and Antibiotic Resistance in Lettuce Irrigated with Various Water Sources in Ghana. Int. J. Environ. Res. Public. Health 2022, 19, 12722. [Google Scholar] [CrossRef]
- Liao, N.; Borges, C.A.; Rubin, J.; Hu, Y.; Ramirez, H.A.; Chen, J.; Zhou, B.; Zhang, Y.; Zhang, R.; Jiang, J.; et al. Prevalence of β-Lactam Drug-Resistance Genes in Escherichia Coli Contaminating Ready-to-Eat Lettuce. Foodborne Pathog. Dis. 2020, 17, 739–742. [Google Scholar] [CrossRef]
- Richter, L.; Du Plessis, E.M.; Duvenage, S.; Korsten, L. Occurrence, Identification, and Antimicrobial Resistance Profiles of Extended-Spectrum and AmpC β-Lactamase-Producing Enterobacteriaceae from Fresh Vegetables Retailed in Gauteng Province, South Africa. Foodborne Pathog. Dis. 2019, 16, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Gekenidis, M.-T.; Rigotti, S.; Hummerjohann, J.; Walsh, F.; Drissner, D. Long-Term Persistence of blaCTX-M-15 in Soil and Lettuce after Introducing Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia Coli via Manure or Water. Microorganisms 2020, 8, 1646. [Google Scholar] [CrossRef] [PubMed]
- Tano, B.; Abo, K.; Dembele, A.; Fondio, L. Systèmes de Production et Pratiques à Risque En Agriculture Urbaine: Cas Du Maraîchage Dans La Ville de Yamoussoukro En Côte d’Ivoire. Int. J. Biol. Chem. Sci. 2012, 5, 2317–2329. [Google Scholar] [CrossRef]
- Anoman, T.M.; Voko, D.-R.R.B.; Zézé, A. Spatial and Temporal Dynamics of Coliform Contamination within Yamoussoukro Lake Waters in Côte d’Ivoire: Impact on the Safety of Surrounding Vegetable Cropping. Microbiol. Nat. 2019, 1, 29–43. [Google Scholar]
- Anoman, T.M.; Voko, D.-R.R.B.; Doga, D.; Kouadio, A.N.M.S.; Ahoudjo, K.S.; Zeze, A. Monitoring the Influence of Anthropogenic Pollution on the Quality of Irrigation Water for Market Gardening in Yamoussoukro, Côte d’Ivoire. Indian J. Agric. Res. 2021, 55, 715–720. [Google Scholar] [CrossRef]
- Kouamé, P.K.; Nguyen-Viet, H.; Dongo, K.; Zurbrügg, C.; Biémi, J.; Bonfoh, B. Microbiological Risk Infection Assessment Using QMRA in Agriculture Systems in Côte d’Ivoire, West Africa. Environ. Monit. Assess. 2017, 189, 587. [Google Scholar] [CrossRef]
- Ministère du Développement Durable, de l’Environnement, de la Faune et des Parcs (MDDEFP). Guide Pour L’évaluation de La Qualité Bactériologique de L’eau En Lac; Direction du Suivi de L’état de L’environnement: Quebec, QC, Canada, 2013; ISBN 978-2-550-67327-9. Available online: https://www.environnement.gouv.qc.ca/publications/2013/env20130509.htm (accessed on 30 September 2021).
- AFNOR. Qualité de L’eau: Environnement Recueil de Normes Françaises; Association Française de Normalisation, Ed.; AFNOR: Paris-La Défense, France, 1994; ISBN 978-2-12-179011-4. [Google Scholar]
- Rawat, S.; Joshi, G.; Annapurna, D.; Arunkumar, A.N.; Karaba, N.N. Standardization of DNA Extraction Method from Mature Dried Leaves and ISSR-PCR Conditions for Melia Dubia Cav.—A Fast Growing Multipurpose Tree Species. Am. J. Plant Sci. 2016, 7, 437–445. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 24, 189–204. [Google Scholar] [CrossRef]
- Rogers, J.; Swofford, D. A Fast Method for Approximating Maximum Likelihoods of Phylogenetic Trees from Nucleotide Sequences. Syst. Biol. 1998, 47, 77–89. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Société Française de Microbiologie. Tableaux des concentrations critiques pour l’interprétation des CMI et des diamètres critiques des zones d’inhibition. In CA-SFM/EUCAST: Société Française de Microbiologie; Société Française de Microbiologie: Paris, France, 2025; pp. 47–63. Available online: https://www.sfm-microbiologie.org/boutique/_comite-de-lantibiogramme-de-la-sfm-ca-sfm-v1-1-juilet-2025/ (accessed on 10 July 2025).
- Drieux, L.; Brossier, F.; Sougakoff, W.; Jarlier, V. Phenotypic Detection of Extended-Spectrum Beta-Lactamase Production in Enterobacteriaceae: Review and Bench Guide. Clin. Microbiol. Infect. 2008, 14 (Suppl. S1), 90–103. [Google Scholar] [CrossRef] [PubMed]
- Jarlier, V.; Nicolas, M.-H.; Fournier, G.; Philippon, A. Extended Broad-Spectrum -Lactamases Conferring Transferable Resistance to Newer -Lactam Agents in Enterobacteriaceae: Hospital Prevalence and Susceptibility Patterns. Clin. Infect. Dis. 1988, 10, 867–878. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2011, 18, 268–281. [Google Scholar] [CrossRef]
- Titilawo, Y.; Sibanda, T.; Obi, L.; Okoh, A. Multiple Antibiotic Resistance Indexing of Escherichia Coli to Identify High-Risk Sources of Faecal Contamination of Water. Environ. Sci. Pollut. Res. 2015, 22, 10969–10980. [Google Scholar] [CrossRef] [PubMed]
- Krumperman, P.H. Multiple Antibiotic Resistance Indexing of Escherichia Coli to Identify High-Risk Sources of Fecal Contamination of Foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Olesen, I.; Hasman, H.; Aarestrup, F.M. Prevalence of Beta-Lactamases among Ampicillin-Resistant Escherichia Coli and Salmonella Isolated from Food Animals in Denmark. Microb. Drug Resist. Larchmt. N 2004, 10, 334–340. [Google Scholar] [CrossRef]
- Arlet, G.; Rouveau, M.; Philippon, A. Substitution of Alanine for Aspartate at Position 179 in the SHV-6 Extended-Spectrum β-Lactamase. FEMS Microbiol. Lett. 1997, 152, 163–167. [Google Scholar] [CrossRef]
- Hasman, H.; Mevius, D.; Veldman, K.; Olesen, I.; Aarestrup, F.M. β-Lactamases among Extended-Spectrum β-Lactamase (ESBL)-Resistant Salmonella from Poultry, Poultry Products and Human Patients in The Netherlands. J. Antimicrob. Chemother. 2005, 56, 115–121. [Google Scholar] [CrossRef]
- Krotov, V. A Quick Introduction to R and RStudio. 2017. Available online: https://www.researchgate.net/publication/321111041_A_Quick_Introduction_to_R_and_RStudio?channel=doi&linkId=5a0e121faca27244d2858844&showFulltext=true (accessed on 18 August 2025). [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009; ISBN 978-0-387-98140-6. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO irrigation and drainage paper; Food and Agriculture Organization of the UN: Rome, Italy, 1985; ISBN 978-92-5-102263-4. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality. 1: Recommendations; World Health Organization: Geneva, Switzerland, 2004; ISBN 978-92-4-154638-6. [Google Scholar]
- DoE. Environment Conservation Rules; Department of Environment of Ministry of Environment and Forest of Bangladesh: Dhaka, Bangladesh, 1997. [Google Scholar]
- Ugbaja, A.N.; Ephraim, B.E. Physicochemical and Bacteriological Parameters of Surface Water Quality in Part of Oban Massif, Nigeria. Glob. J. Geol. Sci. 2019, 17, 13–24. [Google Scholar] [CrossRef]
- Sawyer, C.N.; McCarty, P.L.; Parkin, G.F. Chemistry for Environmental Engineers, 5th ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Rusydi, A.F. Correlation between Conductivity and Total Dissolved Solid in Various Type of Water: A Review. IOP Conf. Ser. Earth Environ. Sci. 2018, 118, 012019. [Google Scholar] [CrossRef]
- Rahman, A.; Jahanara, I.; Jolly, Y.N. Assessment of Physicochemical Properties of Water and Their Seasonal Variation in an Urban River in Bangladesh. Water Sci. Eng. 2021, 14, 139–148. [Google Scholar] [CrossRef]
- Savic, R.; Stajic, M.; Blagojević, B.; Bezdan, A.; Vranesevic, M.; Nikolić Jokanović, V.; Baumgertel, A.; Bubalo Kovačić, M.; Horvatinec, J.; Ondrasek, G. Nitrogen and Phosphorus Concentrations and Their Ratios as Indicators of Water Quality and Eutrophication of the Hydro-System Danube–Tisza–Danube. Agriculture 2022, 12, 935. [Google Scholar] [CrossRef]
- Han, F.; Tian, Q.; Chen, N.; Hu, Z.; Wang, Y.; Xiong, R.; Xu, P.; Liu, W.; Stehr, A.; Barra, R.O.; et al. Assessing Ammonium Pollution and Mitigation Measures through a Modified Watershed Non-Point Source Model. Water Res. 2024, 254, 121372. [Google Scholar] [CrossRef] [PubMed]
- N’Guessan, K.A.; Konan, K.F.; Bony, K.Y.; Edia, O.E.; Gnagne, T.; Traore, K.S.; Houenou, P.V. Prospects for Rehabilitation of Man-Made Lake System of Yamoussoukro (Ivory Coast). Procedia Environ. Sci. 2011, 9, 140–147. [Google Scholar] [CrossRef]
- Sadat, A.; N’Goran, E.B.Z.; Siaka, S.; Parinet, B. Intérêt de l’analyse Multidimensionnelle Pour l’évaluation de La Qualité Physico-Chimique de l’eau d’un Système Lacustre Tropical: Cas Des Lacs de Yamoussoukro (Côte d’Ivoire). J. Appl. Biosci. 2011, 38, 2573–2585. [Google Scholar]
- Akinde, S.B.; Sunday, A.A.; Adeyemi, F.M.; Fakayode, I.B.; Oluwajide, O.O.; Adebunmi, A.A.; Oloke, J.K.; Adebooye, C.O. Microbes in Irrigation Water and Fresh Vegetables: Potential Pathogenic Bacteria Assessment and Implications for Food Safety. Appl. Biosaf. 2016, 21, 89–97. [Google Scholar] [CrossRef]
- Meier, H.; Spinner, K.; Crump, L.; Kuenzli, E.; Schuepbach, G.; Zinsstag, J. State of Knowledge on the Acquisition, Diversity, Interspecies Attribution and Spread of Antimicrobial Resistance between Humans, Animals and the Environment: A Systematic Review. Antibiotics 2023, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Reche, M.H.L.R.; Reali, C.; Pittol, M.; De Athayde Saul, D.; Macedo, V.R.M.; Valiati, V.H.; Machado, V.; Fiuza, L.M. Diversity of Culturable Gram-Negative Bacteria Isolated from Irrigation Water of Two Rice Crop Regions in Southern Brazil. Environ. Monit. Assess. 2016, 188, 359. [Google Scholar] [CrossRef]
- Yu, Y.-C.; Yum, S.-J.; Jeon, D.-Y.; Jeong, H.-G. Analysis of the Microbiota on Lettuce (Lactuca Sativa L.) Cultivated in South Korea to Identify Foodborne Pathogens. J. Microbiol. Biotechnol. 2018, 28, 1318–1331. [Google Scholar] [CrossRef]
- Huang, X.; Gu, Y.; Zhou, H.; Xu, L.; Cao, H.; Gai, C. Acinetobacter Venetianus, a Potential Pathogen of Red Leg Disease in Freshwater-Cultured Whiteleg Shrimp Penaeus Vannamei. Aquac. Rep. 2020, 18, 100543. [Google Scholar] [CrossRef]
- Adesakin, T.A.; Oyewale, A.T.; Bayero, U.; Mohammed, A.N.; Aduwo, I.A.; Ahmed, P.Z.; Abubakar, N.D.; Barje, I.B. Assessment of Bacteriological Quality and Physico-Chemical Parameters of Domestic Water Sources in Samaru Community, Zaria, Northwest Nigeria. Heliyon 2020, 6, e04773. [Google Scholar] [CrossRef]
- Morris, R.L.; Schmidt, T.M. Shallow Breathing: Bacterial Life at Low O2. Nat. Rev. Microbiol. 2013, 11, 205–212. [Google Scholar] [CrossRef]
- Steadmon, M.; Ngiraklang, K.; Nagata, M.; Masga, K.; Frank, K.L. Effects of Water Turbidity on the Survival of Staphylococcus Aureus in Environmental Fresh and Brackish Waters. Water Environ. Res. 2023, 95, e10923. [Google Scholar] [CrossRef] [PubMed]
- Hassard, F.; Andrews, A.; Jones, D.L.; Parsons, L.; Jones, V.; Cox, B.A.; Daldorph, P.; Brett, H.; McDonald, J.E.; Malham, S.K. Physicochemical Factors Influence the Abundance and Culturability of Human Enteric Pathogens and Fecal Indicator Organisms in Estuarine Water and Sediment. Front. Microbiol. 2017, 8, 1996. [Google Scholar] [CrossRef] [PubMed]
- Visca, P.; Seifert, H.; Towner, K.J. Acinetobacter Infection—An Emerging Threat to Human Health. IUBMB Life 2011, 63, 1048–1054. [Google Scholar] [CrossRef]
- Carvalheira, A.; Silva, J.; Teixeira, P. Lettuce and Fruits as a Source of Multidrug Resistant Acinetobacter spp. Food Microbiol. 2017, 64, 119–125. [Google Scholar] [CrossRef]
- Kitanaka, H.; Sasano, M.; Yokoyama, S.; Suzuki, M.; Jin, W.; Inayoshi, M.; Hori, M.; Wachino, J.; Kimura, K.; Yamada, K.; et al. Invasive Infection Caused by Carbapenem-Resistant Acinetobacter Soli, Japan. Emerg. Infect. Dis. 2014, 20, 1574–1576. [Google Scholar] [CrossRef] [PubMed]
- Adewoyin, M.A.; Okoh, A.I. The Natural Environment as a Reservoir of Pathogenic and Non-Pathogenic Acinetobacter Species. Rev. Environ. Health 2018, 33, 265–272. [Google Scholar] [CrossRef]
- Costa-Ribeiro, A.; Azinheiro, S.; Mota, S.; Prado, M.; Lamas, A.; Garrido-Maestu, A. Assessment of the Presence of Acinetobacter Spp. Resistant to β-Lactams in Commercial Ready-to-Eat Salad Samples. Food Microbiol. 2024, 118, 104410. [Google Scholar] [CrossRef]
- Kittinger, C.; Kirschner, A.; Lipp, M.; Baumert, R.; Mascher, F.; Farnleitner, A.H.; Zarfel, G.E. Antibiotic Resistance of Acinetobacter Spp. Isolates from the River Danube: Susceptibility Stays High. Int. J. Environ. Res. Public. Health 2018, 15, 52. [Google Scholar] [CrossRef]
- Gülbüz, M.; Saral Sariyer, A. Combined in Silico Approach and Whole Genome Sequencing: Acinetobacter Baumannii ST218 Isolate Harboring ADC-73 β-Lactamase Which Has a Similar C-Loop with ADC-56 and ADC-68 β-Lactamase. J. Mol. Graph. Model. 2022, 114, 108195. [Google Scholar] [CrossRef]
- Aminharati, F.; EhrampoushH, M.H.; Soltan Dallal, M.M.; Yaseri, M.; Dehghani Tafti, A.A.; Rajabi, Z. Citrobacter Freundii Foodborne Disease Outbreaks Related to Environmental Conditions in Yazd Province, Iran. Iran. J. Public Health 2019, 48, 1099–1105. [Google Scholar] [CrossRef]
- Hirai, Y.; Asahata-Tago, S.; Ainoda, Y.; Fujita, T.; Kikuchi, K. Edwardsiella Tarda Bacteremia. A Rare but Fatal Water- and Foodborne Infection: Review of the Literature and Clinical Cases from a Single Centre. Can. J. Infect. Dis. Med. Microbiol. 2015, 26, 702615. [Google Scholar] [CrossRef]
- Griffiths, J.K. Waterborne Diseases. In International Encyclopedia of Public Health; Elsevier: Amsterdam, The Netherlands, 2017; pp. 388–401. ISBN 978-0-12-803708-9. [Google Scholar]
- Ruppé, É.; Woerther, P.-L.; Barbier, F. Mechanisms of Antimicrobial Resistance in Gram-Negative Bacilli. Ann. Intensive Care 2015, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Duran-Bedolla, J.; Téllez-Sosa, J.; Bocanegra-Ibarias, P.; Schilmann, A.; Bravo-Romero, S.; Reyna-Flores, F.; Villa-Reyes, T.; Barrios-Camacho, H. Citrobacter spp. and Enterobacter spp. as Reservoirs of Carbapenemase blaNDM and blaKPC Resistance Genes in Hospital Wastewater. Appl. Environ. Microbiol. 2024, 90, e01165-24. [Google Scholar] [CrossRef] [PubMed]
- Caliskan-Aydogan, O.; Alocilja, E.C. A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques. Microorganisms 2023, 11, 1491. [Google Scholar] [CrossRef]
- Loiodice, M.; Ribeiro, M.; Peixe, L.; Novais, Â. Emergence of NDM-1 and KPC-3 Carbapenemases in Kluyvera Cryocrescens: Investigating Genetic Heterogeneity and Acquisition Routes of blaNDM-1 in Enterobacterales Species in Portugal. J. Glob. Antimicrob. Resist. 2023, 34, 195–198. [Google Scholar] [CrossRef]
- Vatterrodt, D.; Lee, J.; Ho, D.; Stevig, C.; Chow, S.-K. Misidentification and Misreporting of Antibiotic Resistance in Kluyvera Bacteremia by Blood Culture Molecular Identification Panels. Microbiol. Spectr. 2024, 12, e00542-24. [Google Scholar] [CrossRef]
- Anokyewaa Appau, A.A.; Ofori, L.A. Antibiotic Resistance Profile of E. Coli Isolates from Lettuce, Poultry Manure, Irrigation Water, and Soil in Kumasi, Ghana. Int. J. Microbiol. 2024, 2024, 6681311. [Google Scholar] [CrossRef]
- Ratshilingano, M.T.; du Plessis, E.M.; Duvenage, S.; Korsten, L. Characterization of Multidrug-Resistant Escherichia Coli Isolated from Two Commercial Lettuce and Spinach Supply Chains. J. Food Prot. 2022, 85, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.; Coque, T.M. The CTX-M β-Lactamase Pandemic. Curr. Opin. Microbiol. 2006, 9, 466–475. [Google Scholar] [CrossRef]
- Farzin, A.; Rahman, M.M.; Mollika, F.A.; Farzin, A.; Rahman, M.M.; Mollika, F.A. Pseudomonas aeruginosa: The Alarming Pathogen of Hospital Acquired Infection. In Pseudomonas aeruginosa—New Perspectives and Applications; IntechOpen: London, UK, 2023; ISBN 978-1-80356-825-6. [Google Scholar]
- Mekonnen, H.; Seid, A.; Fenta, G.M.; Gebrecherkos, T. Antimicrobial Resistance Profiles and Associated Factors of Acinetobacter and Pseudomonas Aeruginosa Nosocomial Infection among Patients Admitted at Dessie Comprehensive Specialized Hospital, North-East Ethiopia. A Cross-Sectional Study. PLoS ONE 2021, 16, e0257272. [Google Scholar] [CrossRef]
- Catho, G.; Martischang, R.; Boroli, F.; Chraïti, M.N.; Martin, Y.; Koyluk Tomsuk, Z.; Renzi, G.; Schrenzel, J.; Pugin, J.; Nordmann, P.; et al. Outbreak of Pseudomonas Aeruginosa Producing VIM Carbapenemase in an Intensive Care Unit and Its Termination by Implementation of Waterless Patient Care. Crit. Care 2021, 25, 301. [Google Scholar] [CrossRef]
- Wei, L.; Wu, Q.; Zhang, J.; Guo, W.; Gu, Q.; Wu, H.; Wang, J.; Lei, T.; Xue, L.; Zhang, Y.; et al. Prevalence, Virulence, Antimicrobial Resistance, and Molecular Characterization of Pseudomonas Aeruginosa Isolates From Drinking Water in China. Front. Microbiol. 2020, 11, 544653. [Google Scholar] [CrossRef] [PubMed]
- Georgakopoulou, V.E.; Avramopoulos, P.; Papalexis, P.; Bitsani, A.; Damaskos, C.; Garmpi, A.; Gkoufa, A.; Garmpis, N.; Mantzouranis, K.; Chlapoutakis, S.; et al. Exacerbation of Bronchiectasis by <em>Pseudomonas Putida</Em> Complicating COVID-19 Disease: A Case Report. Exp. Ther. Med. 2021, 22, 1452. [Google Scholar] [CrossRef]
- Lee, D.; Jung, K.H.; Son, H.-J.; Moon, I.T. Pseudomonas Monteilii Bacteremia and Sepsis Following Insertable Cardiac Monitor Implantation: A Case Report. J. Med. Case Rep. 2024, 18, 480. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Silva, V.; Igrejas, G.; Poeta, P. Carbapenems and Pseudomonas aeruginosa: Mechanisms and Epidemiology. In Antibiotics and Antimicrobial Resistance Genes in the Environment; Hashmi, M.Z., Ed.; Advances in Environmental Pollution Research series; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 253–268. ISBN 978-0-12-818882-8. [Google Scholar]
- Ntshanka, Z.; Ekundayo, T.C.; du Plessis, E.M.; Korsten, L.; Okoh, A.I. Occurrence and Molecular Characterization of Multidrug-Resistant Vegetable-Borne Listeria Monocytogenes Isolates. Antibiotics 2022, 11, 1353. [Google Scholar] [CrossRef] [PubMed]
- Adefisoye, M.A.; Okoh, A.I. Identification and Antimicrobial Resistance Prevalence of Pathogenic Escherichia Coli Strains from Treated Wastewater Effluents in Eastern Cape, South Africa. Microbiologyopen 2016, 5, 143–151. [Google Scholar] [CrossRef]
- Agyare, C.; Boamah, E.V.; Zumbi, N.C.; Osei, B.F. Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance. In Antimicrobial Resistance—A Global Threat; IntechOpen: London, UK, 2019; ISBN 978-1-78985-783-2. [Google Scholar]
- Mikhayel, M.; Doublet, B.; Sarkis, D.K. Antimicrobial Resistance of Enterobacteriaceae in Poultry in Lebanon. In Proceedings of the 15. Congrès National de la Société Française de Microbiologie (SFM), Paris, France, 30 September 2019; p. 436. [Google Scholar]
Genes | Name of Primer | Primer Sequence (5′–3′) | Size (pb) | Cycling | References |
---|---|---|---|---|---|
blaTEM | TEM front P1 | GCG GAA CCC CTA TTT G | 1017 | Initial denaturation at 95 °C for 2 min, followed by 30 cycles of denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, 72 °C for 1 min 30 s, and a final extension at 72 °C for 2 min | [39] |
TEM-C-R-ny | ACC AAT GCT TAA TCA GTG AG | ||||
blaSHV | SHV OS5 | TTA TCT CCC TGT TAG CCA CC | 797 | Initial denaturation at 95 °C for 2 min, followed by 30 cycles of denaturation at 95 °C for 30 s, annealing at 60 °C for 30 s, 72 °C for 1 min s, and a final extension at 72 °C for 2 min | [40] |
SHV OS6 | GAT TTG CTG ATT TCG CTC GG | ||||
blaCTX-M | F | ATG TGC AGY ACC AGT AAR GTK ATG GC | 593 | Initial denaturation at 95 °C for 2 min, followed by 30 cycles of denaturation at 95 °C for 30 s, annealing at 60 °C for 30 s, 72 °C for 45 s, and a final extension at 72 °C for 2 min | [41] |
R | TGG GTR AAR TAR GTS ACC AGA AYS AGC GG |
Characteristics | Distribution (%) | |||
---|---|---|---|---|
Lake 1 (n = 12) | Lake 5 (n = 3) | Lake 6 (n = 20) | Lake 8 (n = 30) | |
Gender | ||||
Men | 100 | 66.67 | 55 | 46.67 |
Women | 0 | 33.33 | 45 | 53.33 |
Nationality | ||||
Ivorian | 83 | 66.67 | 55 | 100 |
Not Ivorian | 17 | 33.33 | 45 | 0 |
Age | ||||
<30 years | 41.67 | 0 | 45 | 36.67 |
30 and 45 years | 58.33 | 100 | 50 | 63.33 |
>45 years | 0 | 0 | 5 | 0 |
Study level | ||||
Illiterate | 58.33 | 100 | 100 | 60 |
Primary | 41.67 | 0 | 0 | 40 |
Experience in the sector | ||||
<5 years | 25 | 0 | 0 | 16.67 |
5 and 10 years | 16.67 | 33.33 | 45 | 36.67 |
10 and 15 years | 0 | 66.67 | 45 | 30 |
15 and 20 years | 0 | 0 | 0 | 3.33 |
>20 years | 58.33 | 0 | 10 | 13.33 |
Lake Properties | Lake 1 | Lake 5 | Lake 6 | Lake 8 | p-Value |
---|---|---|---|---|---|
NO3− (mg/L) | 8.86 ± 7.66 a | 1.28 ± 0.16 a | 14.81 ± 11.82 a | 4.74 ± 3.01 a | 0.199 |
NO2− (mg/L) | 2 ± 1.73 a | 0.29 ± 0.04 a | 3.34 ± 2.67 a | 1.07 ± 0.68 a | 0.199 |
PO43− (mg/L) | 1.22 ± 1 a | 0.18 ± 0.05 a | 1.06 ± 0.1 a | 0.3 ± 0.23 a | 0.088 |
TDS (mg/L) | 1.44 ± 0.49 b | 2.25 ± 0.06 a | 2.17 ± 0.07 a | 2.02 ± 0.09 ab | <0.05 |
Conductivity (µS/cm) | 2.41 ± 0.82 b | 3.77 ± 0.1 a | 3.67 ± 0.02 a | 3.31 ± 0.12 ab | <0.05 |
Dissolved oxygen (mgO2/L) | 5.07 ± 0.9 a | 5.87 ± 1.19 a | 5.43 ± 1.36 a | 4.47 ± 0.35 a | 0.44 |
NH4+ (mg/L) | 0.65 ± 0.41 c | 11.82 ± 1.2 a | 10.45 ± 9.91 b | 5.43 ± 6.69 c | <0.001 |
HCO3− (mg/L) | 142 ± 50.2 b | 334 ± 20.9 a | 310 ± 25.5 a | 259 ± 26.9 a | <0.001 |
Ca2+ (mg/L) | 0.41 ± 0.04 c | 0.66 ± 0.05 a | 0.67 ± 0.02 a | 0.55 ± 0.05 b | <0.001 |
TH (mg/L) | 0.54 ± 0.13 b | 0.81 ± 0.05 a | 0.9 ± 0.06 a | 0.76 ± 0.08 ab | <0.01 |
Mg2+ (mg/L) | 0.13 ± 0.1 a | 0.14 ± 0.04 a | 0.23 ± 0.05 a | 0.21 ± 0.11 a | 0.409 |
Turbidity (NTU) | 7 ± 5.26 c | 95.67 ± 6.45 b | 107.63 ± 17.61 b | 216.67 ± 52.08 a | <0.001 |
pH | 5.96 ± 0.4 c | 7.32 ± 0.15 b | 7.35 ± 0.4 b | 8.47 ± 0.55 a | <0.001 |
Temperature (°C) | 22.83 ± 0.55 b | 25.83 ± 0.32 a | 24.83 ± 0.68 a | 25.2 ± 0.61 a | <0.001 |
Redox potential (mV) | 43 ± 24.52 b | 43 ± 9.17 b | 45 ± 24.58 b | 114 ± 34.64 a | <0.05 |
Parameters | Shannon Diversity Index | Abundance |
---|---|---|
NO3− (mg/L) | 0.14 | 0.025 |
NO2− (mg/L) | 0.14 | 0.025 |
PO43− (mg/L) | 0.09 | −0.461 |
TDS (mg/L) | −0.39 | 0.58 |
Conductivity (µS/cm) | −0.45 | 0.542 |
Dissolved oxygen (mgO2/L) | −0.99 ** | −0.48 |
NH4+ (mg/L) | −0.64 | 0.33 |
HCO3− (mg/L) | −0.49 | 0.494 |
Ca2+ (mg/L) | −0.52 | 0.46 |
TH (mg/L) | −0.31 | 0.63 |
Mg2+ (mg/L) | 0.4 | 0.85 |
Turbidity (NTU) | 0.48 | 0.962 * |
pH | 0.35 | 0.95 * |
Temperature (°C) | −0.30 | 0.61 |
Redox potential (mV) | 0.81 | 0.78 |
Isolation Source | MAR Phenotype | No. of Antibiotics | No. of Isolates | No. of Antibiotics Tested | MARI |
---|---|---|---|---|---|
Lake water | E. coli | ||||
AMP-IPM-CIP | 3 | 1 | 11 | 0.27 | |
AMP-FEP-ATM-CTX | 4 | 4 | 11 | 0.36 | |
AMP-FEP-CIP-ATM-CTX-AMC-CAZ | 7 | 1 | 11 | 0.63 | |
AMP-FEP-ATM-CTX-AMC-CAZ | 6 | 4 | 11 | 0.54 | |
AMP-CN-FEP-CIP-ATM-CTX-AMC | 7 | 1 | 11 | 0.63 | |
Pseudomonas spp. | |||||
FEP-IPM-CIP | 3 | 2 | 7 | 0.27 | |
Lettuce | E. coli | ||||
AMP-CN-CIP-C | 4 | 1 | 11 | 0.36 | |
AMP-FEP-ATM-CTX-AMC-CAZ | 6 | 1 | 11 | 0.54 | |
AMP-CN-FEP-CIP-FOX-ATM-CTX-AMC-CAZ | 9 | 1 | 11 | 0.81 | |
AMP-CN-FEP-FOX-ATM-CTX-AMC-CAZ | 8 | 1 | 11 | 0.72 | |
AMP-CN-FEP-CIP-ATM-CTX-AMC-CAZ | 8 | 1 | 11 | 0.72 | |
AMP-CN-FEP-ATM-CTX-CAZ | 6 | 1 | 11 | 0.54 | |
Citrobacter spp. | |||||
AMP-IPM-FOX | 3 | 1 | 11 | 0.27 | |
AMP-IPM-FEP-FOX | 4 | 1 | 11 | 0.36 | |
AMP-IPM-FEP-CIP-FOX | 5 | 1 | 11 | 0.45 | |
AMP-IPM-CIP-FOX | 4 | 1 | 11 | 0.36 | |
AMP-IPM-CIP-FOX-ATM-C | 6 | 1 | 11 | 0.54 | |
Enterobacter spp. | |||||
AMP-IPM-FOX-AMC | 4 | 2 | 11 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yebouet, A.C.I.; Fossou, K.R.; Kouadjo-Zézé, Z.G.C.; Okoh, A.I.; Zézé, A. Genetic Diversity, Extended-Spectrum Beta-Lactamase (ESBL) Screening, and Potential Public Health Implications of Gram-Negative Bacteria Recovered from Man-Made Lakes and Surrounding Vegetables. Microorganisms 2025, 13, 1997. https://doi.org/10.3390/microorganisms13091997
Yebouet ACI, Fossou KR, Kouadjo-Zézé ZGC, Okoh AI, Zézé A. Genetic Diversity, Extended-Spectrum Beta-Lactamase (ESBL) Screening, and Potential Public Health Implications of Gram-Negative Bacteria Recovered from Man-Made Lakes and Surrounding Vegetables. Microorganisms. 2025; 13(9):1997. https://doi.org/10.3390/microorganisms13091997
Chicago/Turabian StyleYebouet, Ahou Cinthia Inès, Kouakou Romain Fossou, Zaka Ghislaine Claude Kouadjo-Zézé, Anthony Ifeanyi Okoh, and Adolphe Zézé. 2025. "Genetic Diversity, Extended-Spectrum Beta-Lactamase (ESBL) Screening, and Potential Public Health Implications of Gram-Negative Bacteria Recovered from Man-Made Lakes and Surrounding Vegetables" Microorganisms 13, no. 9: 1997. https://doi.org/10.3390/microorganisms13091997
APA StyleYebouet, A. C. I., Fossou, K. R., Kouadjo-Zézé, Z. G. C., Okoh, A. I., & Zézé, A. (2025). Genetic Diversity, Extended-Spectrum Beta-Lactamase (ESBL) Screening, and Potential Public Health Implications of Gram-Negative Bacteria Recovered from Man-Made Lakes and Surrounding Vegetables. Microorganisms, 13(9), 1997. https://doi.org/10.3390/microorganisms13091997