The Distribution of Neospora caninum Secretory Proteins in Mouse and Calf Brains
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals
2.3. Parasites
2.4. Production of Polyclonal Antibodies Against N. caninum Proteins
2.5. Immunofluorescence
2.6. In Vivo Infection and Sample Collection
2.7. Histopathology and Immunohistochemistry
2.8. Analysis of Staining Patterns
2.9. Statistical Analysis
3. Results
3.1. Immunofluorescence Revealed the Distribution of N. caninum Proteins in the Infected HFF Cells
3.2. Histological and Immunohistochemical Analysis Showed Pathological Lesions and the Distribution of N. caninum Proteins in the Brains of Experimentally Infected Mice
3.3. Histological and Immunohistochemical Analysis Showed Pathological Lesions and the Distribution of N. caninum Proteins in the Brains of Experimentally Infected Calves
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubey, J.P.; Lindsay, D.S. A review of Neospora caninum and neosporosis. Vet. Parasitol. 1996, 67, 1–59. [Google Scholar] [CrossRef]
- Dubey, J.P.; Barr, B.C.; Barta, J.R.; Bjerkås, I.; Björkman, C.; Blagburn, B.L.; Bowman, D.D.; Buxton, D.; Ellis, J.T.; Gottstein, B.; et al. Redescription of Neospora caninum and its differentiation from related coccidia. Int. J. Parasitol. 2002, 32, 929–946. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Schares, G.; Ortega-Mora, L.M. Epidemiology and control of neosporosis and Neospora caninum. Clin. Microbiol. Rev. 2007, 20, 323–367. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Schares, G. Neosporosis in animals--the last five years. Vet. Parasitol. 2011, 180, 90–108. [Google Scholar] [CrossRef] [PubMed]
- Reichel, M.P.; Alejandra Ayanegui-Alcérreca, M.; Gondim, L.F.; Ellis, J.T. What is the global economic impact of Neospora caninum in cattle-The billion dollar question. Int. J. Parasitol. 2013, 43, 133–142. [Google Scholar] [CrossRef]
- Parraguez, M.C.; Ponssa, E.; Caffarena, D.; Artagaveytia, J.; Sotelo, F.; Fariña, S.; Mendoza, A.; Giannitti, F. Estimation of direct economic and productive losses due to abortions caused by Neospora caninum in the primary dairy sector of Uruguay. Front. Vet. Sci. 2025, 12, 1502742. [Google Scholar] [CrossRef]
- Carruthers, V.B.; Sibley, L.D. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur. J. Cell Biol. 1997, 73, 114–123. [Google Scholar]
- Dubremetz, J.F.; Garcia-Réguet, N.; Conseil, V.; Fourmaux, M.N. Apical organelles and host-cell invasion by Apicomplexa. Int. J. Parasitol. 1998, 28, 1007–1013. [Google Scholar] [CrossRef]
- Cesbron-Delauw, M.F. Dense-granule organelles of Toxoplasma gondii: Their role in the host-parasite relationship. Parasitol. Today 1994, 10, 293–296. [Google Scholar] [CrossRef]
- Hemphill, A.; Gajendran, N.; Sonda, S.; Fuchs, N.; Gottstein, B.; Hentrich, B.; Jenkins, M. Identification and characterization of a dense granule-associated protein in Neospora caninum tachyzoites. Int. J. Parasitol. 1998, 28, 429–438. [Google Scholar] [CrossRef]
- Guevara, R.B.; Fox, B.A.; Bzik, D.J. Toxoplasma gondii Parasitophorous Vacuole Membrane-Associated Dense Granule Proteins Regulate Maturation of the Cyst Wall. mSphere 2020, 5, e00851-19. [Google Scholar] [CrossRef]
- Rastogi, S.; Cygan, A.M.; Boothroyd, J.C. Translocation of effector proteins into host cells by Toxoplasma gondii. Curr. Opin. Microbiol. 2019, 52, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Griffith, M.B.; Pearce, C.S.; Heaslip, A.T. Dense granule biogenesis, secretion, and function in Toxoplasma gondii. J. Eukaryot. Microbiol. 2022, 69, e12904. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.D.; Ravindran, S.; Kim, S.K.; Boothroyd, J.C. The Toxoplasma gondii dense granule protein GRA7 is phosphorylated upon invasion and forms an unexpected association with the rhoptry proteins ROP2 and ROP4. Infect. Immun. 2008, 76, 5853–5861. [Google Scholar] [CrossRef] [PubMed]
- Pernas, L.; Adomako-Ankomah, Y.; Shastri, A.J.; Ewald, S.E.; Treeck, M.; Boyle, J.P.; Boothroyd, J.C. Toxoplasma effector MAF1 mediates recruitment of host mitochondria and impacts the host response. PLoS Biol. 2014, 12, e1001845. [Google Scholar] [CrossRef]
- He, H.; Brenier-Pinchart, M.P.; Braun, L.; Kraut, A.; Touquet, B.; Coute, Y.; Tardieux, I.; Hakimi, M.A.; Bougdour, A. Characterization of a Toxoplasma effector uncovers an alternative GSK3/beta-catenin-regulatory pathway of inflammation. eLife 2018, 7, e39887. [Google Scholar] [CrossRef]
- Bougdour, A.; Durandau, E.; Brenier-Pinchart, M.P.; Ortet, P.; Barakat, M.; Kieffer, S.; Curt-Varesano, A.; Curt-Bertini, R.L.; Bastien, O.; Coute, Y.; et al. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression. Cell Host Microbe. 2013, 13, 489–500. [Google Scholar] [CrossRef]
- Saeij, J.P.J.; Coller, S.; Boyle, J.P.; Jerome, M.E.; White, M.W.; Boothroyd, J.C. Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 2007, 445, 324–327. [Google Scholar] [CrossRef]
- Coppens, I.; Romano, J.D. Hostile intruder: Toxoplasma holds host organelles captive. PLoS Pathog. 2018, 14, e1006893. [Google Scholar] [CrossRef]
- Braun, L.; Brenier-Pinchart, M.P.; Yogavel, M.; Curt-Varesano, A.; Curt-Bertini, R.L.; Hussain, T.; Kieffer-Jaquinod, S.; Coute, Y.; Pelloux, H.; Tardieux, I.; et al. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. J. Exp. Med. 2013, 210, 2071–2086. [Google Scholar] [CrossRef]
- Rome, M.E.; Beck, J.R.; Turetzky, J.M.; Webster, P.; Bradley, P.J. Intervacuolar transport and unique topology of GRA14, a novel dense granule protein in Toxoplasma gondii. Infect. Immun. 2008, 76, 4865–4875. [Google Scholar] [CrossRef]
- Atkinson, R.A.; Ryce, C.; Miller, C.M.; Balu, S.; Harper, P.A.; Ellis, J.T. Isolation of Neospora caninum genes detected during a chronic murine infection. Int. J. Parasitol. 2001, 31, 67–71. [Google Scholar] [CrossRef]
- Lally, N.; Jenkins, M.; Liddell, S.; Dubey, J.P. A dense granule protein (NCDG1) gene from Neospora caninum. Mol. Biochem. Parasitol. 1997, 87, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.T.; Ryce, C.; Atkinson, R.; Balu, S.; Jones, P.; Harper, P.A. Isolation, characterization and expression of a GRA2 homologue from Neospora caninum. Parasitology 2000, 120 Pt 4, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Liddell, S.; Lally, N.C.; Jenkins, M.C.; Dubey, J.P. Isolation of the cDNA encoding a dense granule associated antigen (NCDG2) of Neospora caninum. Mol. Biochem. Parasitol. 1998, 93, 153–158. [Google Scholar] [CrossRef]
- Henriquez, F.L.; Nickdel, M.B.; McLeod, R.; Lyons, R.E.; Lyons, K.; Dubremetz, J.F.; Grigg, M.E.; Samuel, B.U.; Roberts, C.W. Toxoplasma gondii dense granule protein 3 (GRA3) is a type I transmembrane protein that possesses a cytoplasmic dilysine (KKXX) endoplasmic reticulum (ER) retrieval motif. Parasitology 2005, 131 Pt 2, 169–179. [Google Scholar] [CrossRef]
- Dong, J.; Li, J.; Wang, J.; Li, F.; Yang, J.; Gong, P.; Li, H.; Zhang, X. Identification and characterization of GRA6/GRA7 of Neospora caninum in MDBK cells. Acta Biochim. Biophys. Sin. 2017, 49, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.P.; Vemulapalli, R.; Sriranganathan, N.; Zajac, A.M.; Jenkins, M.C.; Lindsay, D.S. Molecular comparison of the dense granule proteins GRA6 and GRA7 of Neospora hughesi and Neospora caninum. Int. J. Parasitol. 2001, 31, 253–258. [Google Scholar] [CrossRef]
- Leineweber, M.; Spekker-Bosker, K.; Ince, V.; Schares, G.; Hemphill, A.; Eller, S.K.; Däubener, W. First Characterization of the Neospora caninum Dense Granule Protein GRA9. Biomed. Res. Int. 2017, 2017, 6746437. [Google Scholar] [CrossRef]
- Liu, G.; Cui, X.; Hao, P.; Yang, D.; Liu, J.; Liu, Q. GRA 14, a novel dense granule protein from Neospora caninum. Acta Biochim. Biophys. Sin. 2013, 45, 607–609. [Google Scholar] [CrossRef]
- Yang, C.; Liu, J.; Ma, L.; Zhang, X.; Zhang, X.; Zhou, B.; Zhu, X.; Liu, Q. NcGRA17 is an important regulator of parasitophorous vacuole morphology and pathogenicity of Neospora caninum. Vet. Parasitol. 2018, 264, 26–34. [Google Scholar] [CrossRef]
- Jenkins, M.C.; Tuo, W.; Feng, X.; Cao, L.; Murphy, C.; Fetterer, R. Neospora caninum: Cloning and expression of a gene coding for cytokine-inducing profilin. Exp. Parasitol. 2010, 125, 357–362. [Google Scholar] [CrossRef]
- Kameyama, K.; Nishimura, M.; Punsantsogvoo, M.; Ibrahim, H.M.; Xuan, X.; Furuoka, H.; Nishikawa, Y. Immunological characterization of Neospora caninum cyclophilin. Parasitology 2012, 139, 294–301. [Google Scholar] [CrossRef]
- Nishikawa, Y.; Shimoda, N.; Fereig, R.M.; Moritaka, T.; Umeda, K.; Nishimura, M.; Ihara, F.; Kobayashi, K.; Himori, Y.; Suzuki, Y.; et al. Neospora caninum Dense Granule Protein 7 Regulates the Pathogenesis of Neosporosis by Modulating Host Immune Response. Appl. Environ. Microbiol. 2018, 84, e01350-18. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, X.; Song, X.; Ma, L.; Yang, J.; Liu, Q.; Liu, J. Function of Neospora caninum dense granule protein 7 in innate immunity in mice. Parasitol. Res. 2021, 120, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Sonda, S.; Fuchs, N.; Connolly, B.; Fernandez, P.; Gottstein, B.; Hemphill, A. The major 36 kDa Neospora caninum tachyzoite surface protein is closely related to the major Toxoplasma gondii surface antigen. Mol. Biochem. Parasitol. 1998, 97, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Howe, D.K.; Crawford, A.C.; Lindsay, D.; Sibley, L.D. The p29 and p35 immunodominant antigens of Neospora caninum tachyzoites are homologous to the family of surface antigens of Toxoplasma gondii. Infect. Immun. 1998, 66, 5322–5328. [Google Scholar] [CrossRef]
- Dellarupe, A.; Moré, G.; Unzaga, J.M.; Pardini, L.; Venturini, M.C. Study of specific immunodominant antigens in different stages of Neospora caninum, Toxoplasma gondii, Sarcocystis spp. and Hammondia spp. Exp. Parasitol. 2024, 262, 108772. [Google Scholar] [CrossRef]
- Udonsom, R.; Adisakwattana, P.; Popruk, S.; Reamtong, O.; Jirapattharasate, C.; Thiangtrongjit, T.; Rerkyusuke, S.; Chanlun, A.; Hasan, T.; Kotepui, M.; et al. Evaluation of Immunodiagnostic Performances of Neospora caninum Peroxiredoxin 2 (NcPrx2), Microneme 4 (NcMIC4), and Surface Antigen 1 (NcSAG1) Recombinant Proteins for Bovine Neosporosis. Animals 2024, 4, 531. [Google Scholar] [CrossRef]
- Fereig, R.M.; Abdelbaky, H.H.; Nishikawa, Y. Comparative Evaluation of Four Potent Neospora caninum Diagnostic Antigens Using Immunochromatographic Assay for Detection of Specific Antibody in Cattle. Microorganisms 2021, 9, 2133. [Google Scholar] [CrossRef]
- Hiasa, J.; Nishimura, M.; Itamoto, K.; Xuan, X.; Inokuma, H.; Nishikawa, Y. Enzyme-linked immunosorbent assays based on Neospora caninum dense granule protein 7 and profilin for estimating the stage of neosporosis. J. Vet. Med. Sci. 2011, 73, 633–639. [Google Scholar] [CrossRef]
- Rettigner, C.; Leclipteux, T.; De Meerschman, F.; Focant, C.; Losson, B. Survival, immune responses and tissue cyst production in outbred (Swiss white) and inbred (CBA/Ca) strains of mice experimentally infected with Neospora caninum tachyzoites. Vet. Res. 2004, 35, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Barr, B.C.; Conrad, P.A.; Dubey, J.P.; Anderson, M.L. Neospora-like encephalomyelitis in a calf: Pathology, ultrastructure, and immunoreactivity. J. Vet. Diagn. Investig. 1991, 3, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Pescador, C.A.; Corbellini, L.G.; Oliveira, E.C.; Raymundo, D.L.; Driemeier, D. Histopathological and immunohistochemical aspects of Neospora caninum diagnosis in bovine aborted fetuses. Vet. Parasitol. 2007, 150, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Micheloud, J.F.; Moore, D.P.; Canal, A.M.; Lischinsky, L.; Hecker, Y.P.; Canton, G.J.; Odriozola, E.; Odeon, A.C.; Campero, C.M. First Report of Congenital Neospora caninum Encephalomyelitis in Two Newborn Calves in the Argentinean Pampas. J. Vet. Sci. Tech. 2015, 6, 5. [Google Scholar] [CrossRef]
- Wouda, W.; Moen, A.R.; Visser, I.J.; van Knapen, F. Bovine fetal neosporosis: A comparison of epizootic and sporadic abortion cases and different age classes with regard to lesion severity and immunohistochemical identification of organisms in brain, heart, and liver. J. Vet. Diagn. Investig. 1997, 9, 180–185. [Google Scholar] [CrossRef]
- De Meerschman, F.; Focant, C.; Detry, J.; Rettigner, C.; Cassart, D.; Losson, B. Clinical, pathological and diagnostic aspects of congenital neosporosis in a series of naturally infected calves. Vet. Rec. 2005, 157, 115–118. [Google Scholar] [CrossRef]
- Tuo, W.; Fetterer, R.; Jenkins, M.; Dubey, J.P. Identification and characterization of Neospora caninum cyclophilin that elicits gamma interferon production. Infect. Immun. 2005, 73, 5093–5100. [Google Scholar] [CrossRef]
- Rommereim, L.M.; Fox, B.A.; Butler, K.L.; Cantillana, V.; Taylor, G.A.; Bzik, D.J. Rhoptry and Dense Granule Secreted Effectors Regulate CD8+ T Cell Recognition of Toxoplasma gondii Infected Host Cells. Front. Immunol. 2019, 10, 2104. [Google Scholar] [CrossRef]
- Nolan, S.J.; Romano, J.D.; Luechtefeld, T.; Coppens, I. Neospora caninum Recruits Host Cell Structures to Its Parasitophorous Vacuole and Salvages Lipids from Organelles. Eukaryot. Cell 2015, 14, 454–473. [Google Scholar] [CrossRef]
- Díaz, M.; Robello, C.; Cabrera, A.; Malacrida, L. Modulation of Host Cell Membrane Biophysics Dynamics by Neospora caninum: A Study Using LAURDAN Fluorescence with Hyperspectral Imaging and Phasor Analysis. J. Microsc. 2025, in press. 1–12. [Google Scholar] [CrossRef]
- Al-Bajalan, M.M.M.; Xia, D.; Armstrong, S.; Randle, N.; Wastling, J.M. Toxoplasma gondii and Neospora caninum induce different host cell responses at proteome-wide phosphorylation events; a step forward for uncovering the biological differences between these closely related parasites. Parasitol. Res. 2017, 116, 2707–2719. [Google Scholar] [CrossRef]
- Pinheiro, A.M.; Santos, C.V.C.D.; Rodrigues, L.E.A. Neospora caninum: Infection induces high lysosomal activity. Exp. Parasitol. 2013, 134, 409–412. [Google Scholar] [CrossRef]
- Fereig, R.M.; Nishikawa, Y. From Signaling Pathways to Distinct Immune Responses: Key Factors for Establishing or Combating Neospora caninum Infection in Different Susceptible Hosts. Pathogens. 2020, 9, 384. [Google Scholar] [CrossRef]
- Velásquez, Z.D.; Rojas-Barón, L.; Larrazabal, C.; Salierno, M.; Gärtner, U.; Pervizaj-Oruqaj, L.; Herold, S.; Hermosilla, C.; Taubert, A. Neospora caninum Infection Triggers S-phase Arrest and Alters Nuclear Characteristics in Primary Bovine Endothelial Host Cells. Front. Cell Dev. Biol. 2022, 10, 946335. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ushio-Watanabe, N.; Fujihara, R.; Watanabe, K.; Yamada, M.; Kobayashi, Y.; Nishikawa, Y. The Distribution of Neospora caninum Secretory Proteins in Mouse and Calf Brains. Microorganisms 2025, 13, 1970. https://doi.org/10.3390/microorganisms13091970
Ushio-Watanabe N, Fujihara R, Watanabe K, Yamada M, Kobayashi Y, Nishikawa Y. The Distribution of Neospora caninum Secretory Proteins in Mouse and Calf Brains. Microorganisms. 2025; 13(9):1970. https://doi.org/10.3390/microorganisms13091970
Chicago/Turabian StyleUshio-Watanabe, Nanako, Rio Fujihara, Kenichi Watanabe, Manabu Yamada, Yoshiyasu Kobayashi, and Yoshifumi Nishikawa. 2025. "The Distribution of Neospora caninum Secretory Proteins in Mouse and Calf Brains" Microorganisms 13, no. 9: 1970. https://doi.org/10.3390/microorganisms13091970
APA StyleUshio-Watanabe, N., Fujihara, R., Watanabe, K., Yamada, M., Kobayashi, Y., & Nishikawa, Y. (2025). The Distribution of Neospora caninum Secretory Proteins in Mouse and Calf Brains. Microorganisms, 13(9), 1970. https://doi.org/10.3390/microorganisms13091970