Genomic and Metabolomic Insights into the Antimicrobial Activities and Plant-Promoting Potential of Streptomyces olivoreticuli YNK-FS0020
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Culture Media
2.2. Physiological and Biochemical Tests of Strain YNK-FS0020
2.3. Scanning Electron Microscopy Sample Preparation and Morphological Observation of Strain YNK-FS0020
2.4. Antagonism Test of Strain YNK-FS0020 Against Pathogenic Fungi
2.5. PGP Bioactivity Assays of Strain YNK-FS0020
2.6. Determination of Growth-Promoting Effect of Strain YNK-FS0020 on Greenhouse Tomato Seedlings
2.7. Genome Sequencing, Annotation, and Analysis of Strain YNK-FS0020
2.8. Non-Targeted Metabolomics Analysis of Metabolites from Strain YNK-FS0020
3. Results
3.1. Phenotypic Characteristics and Physiological-Biochemical Properties of Strain YNK-FS0020
3.2. Molecular Identification of Strain YNK-FS0020
3.3. Evaluation of Broad-Spectrum Antagonistic Activity of Strain YNK-FS0020
3.4. Evaluation of PGP Bioactivity and Plant Growth-Promoting Effect of Strain YNK-FS0020
3.5. Genome Sequencing and Analysis of Strain YNK-FS0020
3.6. Comparative Genomic Analysis of Strain YNK-FS0020
3.7. Genome Annotation Results of Strain YNK-FS0020
3.7.1. Results of Gene Analysis in COG Database for Strain YNK-FS0020
3.7.2. Results of Gene Analysis in KEGG Database for Strain YNK-FS0020
3.7.3. Results of Gene Analysis in GO Database for Strain YNK-FS0020
3.7.4. Results of Gene Analysis in CAZy Database for Strain YNK-FS0020
3.7.5. Results of Gene Analysis in CARD Database for Strain YNK-FS0020
3.8. Prediction and Analysis of Secondary Metabolite Biosynthetic Gene Clusters in Strain YNK-FS0020
3.9. Analysis of PGP-Related Genes in Strain YNK-FS0020
3.10. Non-Targeted Metabolomics Analysis of Strain YNK-FS0020
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niu, B.; Wang, W.; Yuan, Z.; Sederoff, R.; Sederoff, H.; Chiang, V.; Borriss, R. Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Front. Microbiol. 2020, 11, 585404. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, C.; Wang, Z.; Duan, T.; Yu, B.; Jia, X.; Pang, J.; Ma, L.; Wang, Y.; Nan, Z. Co-infection by soil-borne fungal pathogens alters disease responses among diverse alfalfa varieties. Front. Microbiol. 2021, 12, 664385. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, C.; Yang, J.; Du, R.; Zeng, F.; Bing, H.; Xia, B.; Shen, Y.; Liu, C. Endophytic Streptomyces sp. NEAU-ZSY13 from the leaf of Perilla frutescens, as a promising broad-spectrum biocontrol agent against soil-borne diseases. Front. Microbiol. 2023, 14, 1243610. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, J.; Suo, M.; Wu, H.; Zhao, M.; Yang, H. Biocontrol mechanisms of Bacillus velezensis against Fusarium oxysporum from Panax ginseng. Biol. Control 2023, 182, 105222. [Google Scholar] [CrossRef]
- Zhang, H.; Godana, E.; Sui, Y.; Yang, Q.; Zhang, X.; Zhao, L. Biological control as an alternative to synthetic fungicides for the management of grey and blue mould diseases of table grapes: A review. Crit. Rev. Microbiol. 2020, 46, 450–462. [Google Scholar] [CrossRef]
- Tao, C.; Li, R.; Xiong, W.; Shen, Z.; Liu, S.; Wang, B.; Ruan, Y.; Geisen, S.; Shen, Q.; Kowalchuk, G. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome 2020, 8, 137. [Google Scholar] [CrossRef]
- Wei, D.; Zhu, D.; Zhang, Y.; Yang, Z.; Wu, X.; Shang, J.; Yang, W.; Chang, X. Characterization of rhizosphere Pseudomonas chlororaphis IRHB3 in the reduction of Fusarium root rot and promotion of soybean growth. Biol. Control 2023, 186, 105349. [Google Scholar] [CrossRef]
- Erazo, J.; Palacios, S.; Pastor, N.; Giordano, F.; Rovera, M.; Reynoso, M.; Venisse, J.; Torres, A. Biocontrol mechanisms of Trichoderma harzianum ITEM 3636 against peanut brown root rot caused by Fusarium solani RC 386. Biol. Control 2021, 164, 104774. [Google Scholar] [CrossRef]
- Ta, Y.; Fu, S.; Liu, H.; Zhang, C.; He, M.; Yu, H.; Ren, Y.; Han, Y.; Hu, W.; Yan, Z.; et al. Evaluation of Bacillus velezensis F9 for cucumber growth promotion and suppression of Fusarium wilt disease. Microorganisms 2024, 12, 1882. [Google Scholar] [CrossRef]
- Jose, P.; Maharshi, A.; Jha, B. Actinobacteria in natural products research: Progress and prospects. Microbiol. Res. 2021, 246, 126708. [Google Scholar] [CrossRef]
- Mitchell, W. Natural products from synthetic biology. Curr. Opin. Chem. Biol. 2011, 15, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Gillon, A.; Abdelrahman, O.; Abou-Mansour, E.; L’Haridon, F.; Falquet, L.; Allard, P.; Weisskopf, L. Comparative genomic and metabolomic study of three Streptomyces sp. differing in biological activity. Microbiologyopen 2023, 12, e1389. [Google Scholar] [CrossRef]
- Zhang, Q.; Qian, S. Progress in research on alkaloids and pharmacological activities from Streptomyces. Nat. Prod. Res. Dev. 2019, 31, 1461–1473. [Google Scholar]
- Wei, M.; Jiao, M.; Nie, X.; Wang, C.; Yu, X.; Liu, Y.; Wei, X. Genomic and metabolomic profiling reveal Streptomyces rochei S32 contributes to plant growth by nitrogen fixation and production of bioactive substances. Plant Soil 2024, 501, 343–360. [Google Scholar] [CrossRef]
- Mascher, T.; Margulis, N.; Wang, T.; Ye, R.; Helmann, J. Cell wall stress responses in Bacillus subtilis: The regulatory network of the bacitracin stimulon. Mol. Microbiol. 2003, 50, 1591–1604. [Google Scholar] [CrossRef] [PubMed]
- Siewert, G.; Strominger, J. Bacitracin: An inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in the biosynthesis of the peptidoglycan of bacterial cell walls. Proc. Natl. Acad. Sci. USA 1967, 57, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, Y.; Zhang, H.; Du, X.; Cao, Z.; Wu, Y.; Liu, C.; Sun, Y. Antibacterial activity and mechanisms of troHepc2-22, a derived peptide of hepcidin2 from golden pompano (Trachinotus ovatus). Int. J. Mol. Sci. 2023, 24, 9251. [Google Scholar] [CrossRef]
- De la Cruz-Rodríguez, Y.; Adrián-López, J.; Martínez-López, J.; Neri-Márquez, B.; García-Pineda, E.; Alvarado-Gutiérrez, A.; Fraire-Velázquez, S. Biosynthetic gene clusters in sequenced genomes of four contrasting rhizobacteria in phytopathogen inhibition and interaction with Capsicum annuum roots. Microbiol. Spectr. 2023, 11, e0307222. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T. Inhibition of several antibotics on D-amino acid oxidase. J. Vitaminol. 1959, 5, 277–286. [Google Scholar] [CrossRef]
- Shi, L.; Nwet, T.; Ge, B.; Zhao, W.; Liu, B.; Cui, H.; Zhang, K. Antifungal and plant growth-promoting activities of Streptomyces roseoflavus strain NKZ-259. Biol. Control 2018, 125, 57–64. [Google Scholar] [CrossRef]
- Dong, X.; Zhou, Y.; Zhu, H. Manual for Systematic Classification and Identification of Common Bacteria and Archaea, 1st ed.; Science Press: Beijing, China, 2023; pp. 510–544. [Google Scholar]
- Xu, W.; Liu, Y.; Cheng, Y.; Zhang, J. Plant growth-promoting effect and complete genomic sequence analysis of the beneficial rhizosphere Streptomyces sp. GD-4 isolated from Leymus secalinus. Microorganisms 2025, 13, 286. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Z.; Zhao, Q.; Yang, X.; Li, Y.; Zhou, H.; Zhao, M.; Zheng, H. Whole-genome analysis revealed the growth-promoting and biological control mechanism of the endophytic bacterial strain Bacillus halotolerans Q2H2, with strong antagonistic activity in potato plants. Front. Microbiol. 2024, 14, 1287921. [Google Scholar] [CrossRef]
- Singh, R.; Singh, P.; Li, H.; Guo, D.; Song, Q.; Yang, L.; Malviya, M.; Song, X.; Li, Y. Plant-PGPR interaction study of plant growth-promoting diazotrophs Kosakonia radicincitans BA1 and Stenotrophomonas maltophilia COA2 to enhance growth and stress-related gene expression in Saccharum spp. J. Plant Interact. 2020, 15, 427–445. [Google Scholar] [CrossRef]
- Gao, M.; Zhou, J.; Wang, E.; Chen, Q.; Xu, J.; Sun, J. Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field. J. Integr. Agric. 2015, 14, 1855–1863. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.; Reitz, Z.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.; Metcalf, W.; Helfrich, E.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Alikhan, N.; Petty, N.; Ben Zakour, N.; Beatson, S. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lu, F.; Luo, Y.; Bie, L.; Xu, L.; Wang, Y. OrthoVenn3: An integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res. 2023, 51, W397–W403. [Google Scholar] [CrossRef]
- Liang, X.; Ishfaq, S.; Liu, Y.; Jijakli, M.; Zhou, X.; Yang, X.; Guo, W. Identification and genomic insights into a strain of Bacillus velezensis with phytopathogen-inhibiting and plant growth-promoting properties. Microbiol. Res. 2024, 285, 127745. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xie, Z.; Lou, T.; Wang, S. Complete genome sequence of Streptomyces olivoreticuli ATCC 31159 which can produce anticancer bestatin and show diverse secondary metabolic potentials. Curr. Microbiol. 2019, 76, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, J.; Guo, Y. Whole genome sequencing and antibacterial activity determination of two novel species of Microbispora. Microbiol. China 2021, 48, 1662–1673. [Google Scholar]
- Naughton, L.; Romano, S.; O’Gara, F.; Dobson, A. Identification of secondary metabolite gene clusters in the Pseudovibrio genus reveals encouraging biosynthetic potential toward the production of novel bioactive compounds. Front. Microbiol. 2017, 8, 1494. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Abouwarda, A.; Omar, F. Effect of kitasamycin and nitrofurantoin at subinhibitory concentrations on quorum sensing regulated traits of Chromobacterium violaceum. Antonie Leeuwenhoek 2020, 113, 1601–1615. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Khanna, D.; Kalra, S. Minocycline and doxycycline: More than antibiotics. Curr. Mol. Pharmacol. 2021, 14, 1046–1065. [Google Scholar] [CrossRef]
- Liao, J.; Qi, Q.; Kuang, L.; Zhou, Y.; Xiao, Q.; Liu, T.; Wang, X.; Guo, L.; Jiang, Y. Chloramphenicol binding sites of Acinetobacter baumannii chloramphenicol acetyltransferase CatB8. ACS Infect. Dis. 2024, 10, 870–878. [Google Scholar] [CrossRef]
- Zeng, H.; He, K.; He, Q.; Xu, L.; Zhang, W.; Lu, X.; Tang, Y.; Zhu, X.; Yin, J.; He, M.; et al. Exogenous indole-3-acetic acid suppresses rice infection of Magnaporthe oryzae by affecting plant resistance and fungal growth. Phytopathology 2024, 114, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Traxler, M.; Seyedsayamdost, M.; Clardy, J.; Kolter, R. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol. Microbiol. 2012, 86, 628–644. [Google Scholar] [CrossRef]
- Park, Y.; Kim, J.; Yun, C. Identification of ferrichrome- and ferrioxamine B-mediated iron uptake by Aspergillus fumigatus. Biochem. J. 2016, 473, 1203–1213. [Google Scholar] [CrossRef]
- Tziveleka, L.; Kourounakis, A.; Kourounakis, P.; Roussis, V.; Vagias, C. Antioxidant potential of natural and synthesised polyprenylated hydroquinones. Bioorg. Med. Chem. 2002, 10, 935–939. [Google Scholar] [CrossRef]
- Gescher, A. Staurosporine analogues-pharmacological toys or useful antitumour agents? Crit. Rev. Oncol./Hematol. 2000, 34, 127–135. [Google Scholar] [CrossRef]
- Li, Y.; Li, K.; Zhao, Y.; Li, Y.; Li, D.; Shen, L.; Wang, Q.; Yang, H.; Sun, Z. Emodin-8-O-β-D-glucopyranoside, a natural hydroxyanthraquinone glycoside from plant, suppresses cancer cell proliferation via p21-CDKs-Rb axis. Toxicol. Appl. Pharmacol. 2022, 438, 115909. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Varoglu, M.; Sherman, D. Genetic localization and molecular characterization of two key genes (mitAB) required for biosynthesis of the antitumor antibiotic mitomycin C. J. Bacteriol. 1999, 181, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
- Douka, D.; Spantidos, T.; Tsalgatidou, P.; Katinakis, P.; Venieraki, A. Whole-genome profiling of endophytic strain B.L.Ns.14 from Nigella sativa reveals potential for agricultural bioenhancement. Microorganisms 2024, 12, 2604. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Sui, W.; Bai, X.; Qiu, Z.; Li, X.; Zhu, J. Characterization and biocontrol mechanism of Streptomyces olivoreticuli as a potential biocontrol agent against Rhizoctonia solani. Pestic. Biochem. Physiol. 2023, 197, 105681. [Google Scholar] [CrossRef]
- Evangelista-Martínez, Z.; Ek-Cen, A.; Torres-Calzada, C.; Uc-Várguez, A. Potential of Streptomyces sp. strain AGS-58 in controlling anthracnose-causing Colletotrichum siamense from post-harvest mango fruits. J. Plant Pathol. 2022, 104, 553–563. [Google Scholar] [CrossRef]
- Zang, C.; Kong, T.; Liang, B.; Liu, X.; Xie, J.; Lin, Y.; Pei, X.; Yu, S.; Liang, C. Evaluation of imide substance from Streptomyces atratus PY-1 for the biocontrol of phytophthora blight. Eur. J. Plant Pathol. 2023, 165, 725–734. [Google Scholar] [CrossRef]
- Marian, M.; Ohno, T.; Suzuki, H.; Kitamura, H.; Kuroda, K.; Shimizu, M. A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulata. Microbiol. Res. 2020, 234, 126428. [Google Scholar] [CrossRef]
- Li, X.; Jing, T.; Zhou, D.; Zhang, M.; Qi, D.; Zang, X.; Zhao, Y.; Li, K.; Tang, W.; Chen, Y.; et al. Biocontrol efficacy and possible mechanism of Streptomyces sp. H4 against postharvest anthracnose caused by Colletotrichum fragariae on strawberry fruit. Postharvest Biol. Technol. 2021, 175, 111401. [Google Scholar] [CrossRef]
- Jing, T.; Zhou, D.; Zhang, M.; Yun, T.; Qi, D.; Wei, Y.; Chen, Y.; Zang, X.; Wang, W.; Xie, J. Newly isolated Streptomyces sp. JBS5-6 as a potential biocontrol agent to control banana fusarium wilt: Genome sequencing and secondary metabolite cluster profiles. Front. Microbiol. 2020, 11, 602591. [Google Scholar] [CrossRef]
- Tian, Z.; Du, Y.; Lu, Y.; Zhu, J.; Long, C. Exploration of the antimicrobial activities of biocontrol agent Streptomyces strain h114 against Penicillium digitatum in citrus. Postharvest Biol. Technol. 2024, 210, 112725. [Google Scholar] [CrossRef]
- Dong, W.; Wu, W.; Song, C.; Li, T.; Zhang, J. Jinggangmycin stimulates reproduction and increases CHCs-dependent desiccation tolerance in Drosophila melanogaster. Pestic. Biochem. Physiol. 2023, 194, 105484. [Google Scholar] [CrossRef]
- Li, M.; Chen, Z.; Zhang, X.; Song, Y.; Wen, Y.; Li, J. Enhancement of avermectin and ivermectin production by overexpression of the maltose ATP-binding cassette transporter in Streptomyces avermitilis. Bioresour. Technol. 2010, 101, 9228–9235. [Google Scholar] [CrossRef]
- Xu, G.; Wu, W.; Zhu, L.; Liang, Y.; Liang, M.; Tan, S.; Chen, H.; Huang, X.; He, C.; Lu, Y.; et al. Whole Genome sequencing and biocontrol potential of Streptomyces luteireticuli ASG80 against Phytophthora diseases. Microorganisms 2024, 12, 2255. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Kaur, R.; Salwan, R. Streptomyces: Host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021, 11, 340. [Google Scholar] [CrossRef]
- Barbuto Ferraiuolo, S.; Cammarota, M.; Schiraldi, C.; Restaino, O. Streptomycetes as platform for biotechnological production processes of drugs. Appl. Microbiol. Biotechnol. 2021, 105, 551–568. [Google Scholar] [CrossRef] [PubMed]
- Lacey, H.; Rutledge, P. Recently discovered secondary metabolites from Streptomyces species. Molecules 2022, 27, 887. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Che, Q.; Li, D.; Gu, Q.; Zhu, T. Progress in the research of antimycin-type compounds. Chin. J. Antibiot. 2015, 40, 892–900. [Google Scholar]
- Nakae, K.; Kojima, F.; Sawa, R.; Kubota, Y.; Igarashi, M.; Kinoshita, N.; Adachi, H.; Nishimura, Y.; Akamatsu, Y. Antipain Y, a new antipain analog that inhibits neurotransmitter release from rat dorsal root ganglion neurons. J. Antibiot. 2010, 63, 41–44. [Google Scholar] [CrossRef]
- Song, Q.; Sun, L.; Yin, Y.; Xia, C.; Xin, J. Bioprotection effect of ectoine and its application in food field. China Condiment 2024, 49, 213–220. [Google Scholar]
- Liu, M.; Liu, H.; Shi, M.; Jiang, M.; Li, L.; Zheng, Y. Microbial production of ectoine and hydroxyectoine as high-value chemicals. Microb. Cell Factories 2021, 20, 76. [Google Scholar] [CrossRef]
- Chen, J.; Qiao, D.; Yuan, T.; Feng, Y.; Zhang, P.; Wang, X.; Zhang, L. Biotechnological production of ectoine: Current status and prospects. Folia Microbiol. 2024, 69, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Pastor, J.; Salvador, M.; Argandoña, M.; Bernal, V.; Reina-Bueno, M.; Csonka, L.; Iborra, J.; Vargas, C.; Nieto, J.; Cánovas, M. Ectoines in cell stress protection: Uses and biotechnological production. Biotechnol. Adv. 2010, 28, 782–801. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yu, Z.; Zhang, M.; Li, X.; Wang, M.; Li, L.; Li, X.; Ding, Z.; Tian, H. Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis. J. Exp. Bot. 2022, 73, 3711–3725. [Google Scholar] [CrossRef]
- Zaidi, A.; Khan, M.; Ahemad, M.; Oves, M. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol. Immunol. Hung. 2009, 56, 263–284. [Google Scholar] [CrossRef]
- Huang, X.; Zeng, Z.; Chen, Z.; Tong, X.; Jiang, J.; He, C.; Xiang, T. Deciphering the potential of a plant growth promoting endophyte Rhizobium sp. WYJ-E13, and functional annotation of the genes involved in the metabolic pathway. Front. Microbiol. 2022, 13, 1035167. [Google Scholar] [CrossRef]
- Iqbal, S.; Ullah, N.; Janjua, H. In Vitro evaluation and genome mining of Bacillus subtilis strain RS10 reveals its biocontrol and plant growth-promoting potential. Agriculture 2021, 11, 1273. [Google Scholar] [CrossRef]
- Guo, D.; Singh, R.; Singh, P.; Li, D.; Sharma, A.; Xing, Y.; Song, X.; Yang, L.; Li, Y. Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root. Front. Microbiol. 2020, 11, 580081. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Rani, S.; Dahiya, P.; Kumar, A.; Dang, A.; Suneja, P. Whole genome analysis for plant growth promotion profiling of Pantoea agglomerans CPHN2, a non-rhizobial nodule endophyte. Front. Microbiol. 2022, 13, 998821. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Value |
---|---|
Genome size (bp) | 8,126,169 |
Chromosome1 size (bp) | 6,529,062 |
Chromosome2 size (bp) | 1,547,401 |
PlasmidA | 49,706 |
GC content (%) | 71.42 |
Protein-coding genes (CDS) | 7105 |
tRNA | 73 |
rRNA (5S, 16S, 23S) | 21 |
House-keeping gene | 31 |
sRNA | 86 |
Tandem repeat | 201 |
Prophge | 4 |
Genomic islands | 16 |
transmembrane protein-coding genes | 1479 |
secretory protein-coding genes | 182 |
GeneBank accession number | JBMYHM000000000 |
Region No. | Nucleotide Length (bp) | Gene Cluster Type | Most Similar Known Gene Cluster | Similarity (%) |
---|---|---|---|---|
PlasmidA | ||||
Region 1.1 | 49,706 | T1PKS | Nocamycin | 18 |
Chromosome2 | ||||
Region 2.1 | 21,281 | terpene | Ebelactone | 5 |
Region 2.2 | 23,959 | butyrolactone, nucleoside | Toyocamycin | 30 |
Region 2.3 | 34,047 | NAPAA | γ-ploy-L-2,4-diaminobutyric acid | 50 |
Region 2.4 | 29,785 | NI-siderophore | Legonoxamine A | 66 |
Region 2.5 | 150,874 | T1PKS, NRPS, betalactone, indole | Cyclomarin D | 73 |
Region 2.6 | 22,697 | lanthipeptide-class-iv | - | - |
Region 2.7 | 75,380 | T1PKS | Tiacumicin B | 19 |
Region 2.8 | 22,580 | lassopeptide | Sphaericin | 50 |
Region 2.9 | 63,001 | NRPS, terpene | Griseobactin | 61 |
Region 2.10 | 30,123 | 2dos | Hygromycin A | 51 |
Region 2.11 | 60,453 | RiPP-like, terpene, NAPAA | Hopene | 76 |
Region 2.12 | 47,461 | NRP-metallophore, NRPS | Griseobactin | 38 |
Region 2.13 | 110,141 | NRPS, indole, T1PKS | Abyssomicin C | 21 |
Region 2.14 | 22,073 | redox-cofactor | Lankacidin C | 20 |
Region 2.15 | 87,502 | NRPS, T1PKS | Antimycin | 100 |
Chromosome1 | ||||
Region 3.1 | 17,816 | lassopeptide | - | - |
Region 3.2 | 61,588 | hglE-KS, NI-siderophore | 8-azaguanine | 54 |
Region 3.3 | 51,288 | T1PKS, hglE-KS | Hexacosalactone A | 13 |
Region 3.4 | 21,188 | terpene | Legonindolizidine A6 | 12 |
Region 3.5 | 50,711 | NRPS, terpene, NRPS-like | Blasticidin S | 32 |
Region 3.6 | 55,001 | hglE-KS, hydrogen-cyanide | Aborycin | 21 |
Region 3.7 | 51,342 | hglE-KS, T1PKS | Hexacosalactone A | 13 |
Region 3.8 | 128,139 | NRPS, NRPS-like, T1PKS, terpene | Antipain | 100 |
Region 3.9 | 43,126 | NRPS-like | Guanipiperazine A | 80 |
Region 3.10 | 23,255 | indole | Reductasporine | 66 |
Region 3.11 | 61,661 | NRPS, terpene | Holomycin | 15 |
Region 3.12 | 22,727 | lanthipeptide-class-iv | - | - |
Region 3.13 | 46,396 | terpene, NAPAA | Geosmin | 100 |
Region 3.14 | 41,056 | T3PKS | Clipibycyclene | 13 |
Region 3.15 | 80,779 | T1PKS, PKS-like, NRPS, blactam | Valclavam | 57 |
Region 3.16 | 21,188 | terpene | - | - |
Region 3.17 | 10,852 | RiPP-like | - | - |
Region 3.18 | 31,669 | NI-siderophore | Peucechelin | 20 |
Region 3.19 | 23,225 | lanthipeptide-class-ii | Cinnamycin | 52 |
Region 3.20 | 10,399 | ectoine | Ectoine | 100 |
Region 3.21 | 22,673 | lanthipeptide-class-iii | Informatipeptin | 42 |
Region 3.22 | 43,771 | T1PKS | Q6402A | 7 |
Region 3.23 | 73,129 | Melanin, T2PKS | Hiroshidine | 34 |
Region 3.24 | 51,591 | NRPS | Omnipeptin | 17 |
Region 3.25 | 113,798 | T3PKS, T2PKS, butyrolactone, NRPS, NRPS-like | Fogacin | 40 |
Region 3.26 | 78,902 | NRPS-like, NRPS, T3PKS, lassopeptide | Vazabitide A | 76 |
Region 3.27 | 10,444 | melanin | Istamycin | 2 |
Region 3.28 | 10,972 | butyrolactone | Neocarzinostatin | 4 |
Region 3.29 | 21,074 | terpene | Pentamycin | 13 |
Region 3.30 | 29,914 | NI-siderophore | Kinamycin | 19 |
Region 3.31 | 30,319 | T1PKS | Mediomycin A | 72 |
PGP Activities | Gene Name | KO ID | KO Description |
---|---|---|---|
IAA production | trpC | K01609 | indole-3-glycerol phosphate synthase [EC:4.1.1.48] |
trpA | K01695 | tryptophan synthase alpha chain [EC:4.2.1.20] | |
trpE | K01657 | anthranilate synthase component I [EC:4.1.3.27] | |
trpD | K00766 | anthranilate phosphoribosyltransferase [EC:2.4.2.18] | |
trpS | K01867 | tryptophanyl-tRNA synthetase [EC:6.1.1.2] | |
trpF | K01817 | phosphoribosylanthranilate isomerase [EC:5.3.1.24] | |
amiE | K01426 | amidase [EC:3.5.1.4] | |
trpB | K01696 | tryptophan synthase beta chain [EC:4.2.1.20] | |
Phosphate metabolism | pstB | K02036 | phosphate transport system ATP-binding protein [EC:7.3.2.1] |
pstA | K02038 | phosphate transport system permease protein | |
pstC | K02037 | phosphate transport system permease protein | |
glpQ | K01126 | glycerophosphoryl diester phosphodiesterase [EC:3.1.4.46] | |
phoR | K07636 | two-component system, OmpR family, phosphate regulon sensor histidine kinase PhoR [EC:2.7.13.3] | |
ppx-gppA | K01524 | exopolyphosphatase/guanosine-5′-triphosphate,3′-diphosphate pyrophosphatase [EC:3.6.1.11 3.6.1.40] | |
ppa | K01507 | inorganic pyrophosphatase [EC:3.6.1.1] | |
pstS | K02040 | phosphate transport system substrate-binding protein | |
phoU | K02039 | phosphate transport system protein | |
pqqC | K06137 | pyrroloquinoline-quinone synthase [EC:1.3.3.11] | |
pqqD | K06138 | pyrroloquinoline quinone biosynthesis protein D | |
pqqE | K06139 | PqqA peptide cyclase [EC:1.21.98.4] | |
pqqB | K06136 | pyrroloquinoline quinone biosynthesis protein B | |
Siderophore | entF | K02364 | L-serine---[L-seryl-carrier protein] ligase [EC:6.3.2.14 6.2.1.72] |
entB | K01252 | bifunctional isochorismate lyase/aryl carrier protein [EC:3.3.2.1 6.3.2.14] | |
entE | K02363 | 2,3-dihydroxybenzoate---[aryl-carrier protein] ligase [EC:6.3.2.14 6.2.1.71] | |
entC | K02361 | isochorismate synthase [EC:5.4.4.2] | |
entA | K00216 | 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase [EC:1.3.1.28] | |
efeB | K16301 | deferrochelatase/peroxidase EfeB [EC:1.11.1.-] | |
efeU | K07243 | high-affinity iron transporter | |
efeO | K07224 | iron uptake system component EfeO | |
afuA | K02012 | iron(III) transport system substrate-binding protein | |
fepD | K23186 | iron-siderophore transport system permease protein | |
fepG | K23187 | iron-siderophore transport system permease protein | |
fepC | K23188 | iron-siderophore transport system ATP-binding protein [EC:7.2.2.17 7.2.2.-] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Liao, Y.; Shi, Z.; Pu, T.; Shi, Z.; Jia, J.; Wang, Y.; He, F.; Yang, P. Genomic and Metabolomic Insights into the Antimicrobial Activities and Plant-Promoting Potential of Streptomyces olivoreticuli YNK-FS0020. Microorganisms 2025, 13, 1964. https://doi.org/10.3390/microorganisms13091964
Liu X, Liao Y, Shi Z, Pu T, Shi Z, Jia J, Wang Y, He F, Yang P. Genomic and Metabolomic Insights into the Antimicrobial Activities and Plant-Promoting Potential of Streptomyces olivoreticuli YNK-FS0020. Microorganisms. 2025; 13(9):1964. https://doi.org/10.3390/microorganisms13091964
Chicago/Turabian StyleLiu, Xin, Yongqin Liao, Zhufeng Shi, Te Pu, Zhuli Shi, Jianpeng Jia, Yu Wang, Feifei He, and Peiwen Yang. 2025. "Genomic and Metabolomic Insights into the Antimicrobial Activities and Plant-Promoting Potential of Streptomyces olivoreticuli YNK-FS0020" Microorganisms 13, no. 9: 1964. https://doi.org/10.3390/microorganisms13091964
APA StyleLiu, X., Liao, Y., Shi, Z., Pu, T., Shi, Z., Jia, J., Wang, Y., He, F., & Yang, P. (2025). Genomic and Metabolomic Insights into the Antimicrobial Activities and Plant-Promoting Potential of Streptomyces olivoreticuli YNK-FS0020. Microorganisms, 13(9), 1964. https://doi.org/10.3390/microorganisms13091964