Identification of Bioactive Peptides from Caenorhabditis elegans Secretions That Promote Indole-3-Acetic Acid Production in Arthrobacter pascens ZZ21
Abstract
1. Introduction
2. Materials and Methods
2.1. C. elegans Culture and Collection of Excretions
2.2. Bacterial Cultivation and IAA Quantification
2.3. Preliminary Screening of Bioactive Compounds in Nematode Excretions
2.4. Peptide Identification
2.5. Absolute Quantification of Active Peptides
2.6. Peptide Activity Verification and Dose-Dependent Analysis of Synthetic Peptides
2.7. Statistical Analysis
3. Results
3.1. Peptides in C. elegans Exudates Enhance IAA Production by A. pascens ZZ21
3.2. Identification of Bioactive Peptides in C. elegans Exudates
3.3. Activity Validation of Synthetic Peptides
3.4. Dose-Dependent Effects of Active Peptides on IAA Production
3.5. Quantitative Analysis of Candidate Bioactive Peptides
4. Discussion
4.1. Nematode Peptides as Potent Promoters of Bacterial IAA Synthesis
4.2. Ecological Significance and Future Perspectives of Nematode Peptides
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yeates, G.W.; Bongrns, T.; De Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding habits in soil nematode families and genera-an outline for soil ecologists. J. Nematol. 1993, 25, 315–331. [Google Scholar] [PubMed]
- Bardgett, R.D.; Van Der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, Z.H.; Liu, Y.; Han, Y.L.; Wang, Y.; Wang, Q.; Liu, T. Nematodes and their bacterial prey improve phosphorus acquisition by wheat. New Phytol. 2023, 237, 974–986. [Google Scholar] [CrossRef] [PubMed]
- van den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; de Goede, R.G.; Adams, B.J.; Ahmad, W.; Andriuzzi, W.S. Soil nematode abundance and functional group composition at a global scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef]
- Fu, S.L.; Ferris, H.; Brown, D.; Plant, R. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil. Biol. Biochem. 2005, 37, 1979–1987. [Google Scholar] [CrossRef]
- Ferris, H.; Venette, R.C.; van der Meulen, H.R.; Lau, S.S. Nitrogen mineralization by bacterial-feeding nematodes: Verification and measurement. Plant Soil 1998, 203, 159–171. [Google Scholar] [CrossRef]
- Ferris, H. Contribution of Nematodes to the Structure and Function of the Soil Food Web. J. Nematol. 2010, 42, 63–67. [Google Scholar]
- Djigal, D.; Brauman, A.; Diop, T.A.; Chotte, J.L.; Villenave, C. Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth. Soil Biol. Biochem. 2004, 36, 323–331. [Google Scholar] [CrossRef]
- Mao, X.F.; Hu, F.; Griffiths, B.; Chen, X.Y.; Liu, M.Q.; Li, H.X. Do bacterial-feeding nematodes stimulate root proliferation through hormonal effects? Soil Biol. Biochem. 2007, 39, 1816–1819. [Google Scholar] [CrossRef]
- Yang, B.Y.; Wang, J.; Zheng, X.; Wang, X. Nematode Pheromones: Structures and Functions. Molecules 2023, 28, 2409. [Google Scholar] [CrossRef]
- Srinivasan, J.; von Reuss, S.H.; Bose, N.; Zaslaver, A.; Mahanti, P.; Ho, M.C.; O’Doherty, O.G.; Edison, A.S.; Sternberg, P.W.; Schroeder, F.C. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol. 2012, 10, e1001237. [Google Scholar] [CrossRef]
- Fatima, S.; Zeb, S.Z.; Tariq, M.; Nishat, Y.; Mohamed, H.I.; Siddiqui, M.A. Role of CLE peptide signaling in root-knot nematode parasitism of plants. Planta 2025, 261, 3. [Google Scholar] [CrossRef]
- Hsueh, Y.P.; Mahanti, P.; Schroeder, F.C.; Sternberg, P.W. Nematode-trapping fungi eavesdrop on nematode pheromones. Curr. Biol. 2013, 23, 83–86. [Google Scholar] [CrossRef]
- Klessig, D.F.; Manohar, M.; Baby, S.; Koch, A.; Danquah, W.B.; Luna, E.; Park, H.J.; Kolkman, J.M.; Turgeon, B.G.; Nelson, R.; et al. Nematode ascaroside enhances resistance in a broad spectrum of plant-pathogen systems. J. Phytopathol. 2019, 167, 265–272. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Jiang, Y.; Griffiths, B.S.; Li, D.M.; Li, H.X.; Hu, F. Stimulatory effects of bacterial-feeding nematodes on plant growth vary with nematode species. Nematology 2011, 13, 369–372. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Y.; Xu, W.S.; Xu, L.; Cheng, Y.H.; Chen, J.D.; Xu, L.; Hu, F.; Li, H.X. IAA-producing bacteria and bacterial-feeding nematodes promote Arabidopsis thaliana root growth in natural soil. Eur. J. Soil Biol. 2012, 52, 20–26. [Google Scholar] [CrossRef]
- Zhao, Y.D. Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid in Plants. Mol. Plant 2012, 5, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Li, M.S.; Guo, R.; Yu, F.; Chen, X.; Zhao, H.Y.; Li, H.X.; Wu, J. Indole-3-Acetic Acid Biosynthesis Pathways in the Plant-Beneficial Bacterium Arthrobacter pascens ZZ21. Int. J. Mol. Sci. 2018, 19, 443. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.L.; Cai, R.L.; Cai, G.J.; Aweya, J.J.; Xie, J.M.; Chen, Z.M.; Wang, H. Indole Acetic Acid: A Key Metabolite That Protects Marine Sulfftobacter mediterraneus Against Oxidative Stress. Microorganisms 2025, 13, 1014. [Google Scholar] [CrossRef]
- Mohan, A.; Kumar, B. Plant Growth Promoting Activities of Cyanobacteria Growing In Rhizosphere of Agriculturally Fertile Soil. IOSR J. Biotechnol. Biochem. 2019, 5, 28–36. [Google Scholar]
- Calatrava, V.; Hom, E.F.Y.; Guan, Q.J.; Llamas, A.; Fernández, E.; Galván, A. Genetic evidence for algal auxin production in Chlamydomonas and its role in algal-bacterial mutualism. iScience 2024, 27, 108762. [Google Scholar] [CrossRef] [PubMed]
- Spaepen, S.; Vanderleyden, J.; Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007, 31, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.M.M.; Berrué, F.; Kerr, R.; Patten, C.L. Metabolomic analysis of indolepyruvate decarboxylase pathway derivatives in the rhizobacterium Enterobacter cloacae. Rhizosphere 2018, 6, 98–111. [Google Scholar] [CrossRef]
- Etesami, H.; Glick, B.R. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol. Res. 2024, 281, 127602. [Google Scholar] [CrossRef]
- Li, M.S.; Li, T.; Zhou, M.; Li, M.D.; Zhao, Y.X.; Xu, J.J.; Hu, F.; Li, H.X. Caenorhabditis elegans Extracts Stimulate IAA Biosynthesis in Arthrobacter pascens ZZ21 via the Indole-3-pyruvic Acid Pathway. Microorganisms 2021, 9, 970. [Google Scholar] [CrossRef]
- Baermann, G. Eine einfache Methode zur Auffindung von Anklostomum (Nematoden) Larven in Erdproben. Geneeskd. Tijdschr. Voor Ned.-Indië 1917, 57, 131–137. [Google Scholar]
- Srinivasan, J.; Kaplan, F.; Ajredini, R.; Zachariah, C.; Alborn, H.T.; Teal, P.E.A.; Malik, R.U.; Edison, A.S.; Sternberg, P.W.; Schroeder, F.C. A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 2018, 454, 1115–1118. [Google Scholar] [CrossRef]
- Tintori, S.C.; Sloat, S.A.; Rockman, M.V. Rapid Isolation of Wild Nematodes by Baermann Funnel. J. Vis. Exp. 2022, 31, 179. [Google Scholar]
- de Oliveira, C.G.; dos Santos, A.A.; Pritsch, E.J.P.; Bressan, S.K.; Gieh, A.; Fogolari, O.; Mossi, A.J.; Treichel, H.; Jr Alves, S.L. Production of Indole-3-Acetic Acid and Degradation of 2,4-D by Yeasts Isolated from Pollinating Insects. Microorganisms 2025, 13, 1492. [Google Scholar] [CrossRef]
- Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- Ren, Y.; Shi, Z.M.; Zhang, C.Q.; Han, Y.; Liu, S.Q.; Hao, P.L. Evaluation and minimization of over-alkylation in proteomic sample preparation. Int. J. Mass Spectrom. 2022, 481, 116919. [Google Scholar] [CrossRef]
- Geary, T.G.; Price, D.A.; Bowman, J.W.; Winterrowd, C.A.; Mackenzie, C.D.; Garrison, R.D.; Williams, J.F.; Friedman, A.R. Two FMRFamide-like peptides from the free-living nematode Panagrellus redivivus. Peptides 1992, 13, 209–214. [Google Scholar] [CrossRef]
- Maule, A.G.; Shaw, C.; Bowman, J.W.; Halton, D.W.; Thompson, D.P.; Thim, L.; Kubiak, T.M.; Martin, R.A.; Geary, T.G. Isolation and preliminary biological characterization of KPNFIRFamide, a novel FMRFamide-related peptide from the free-living nematode, Panagrellus redivivus. Peptides 1995, 16, 87–93. [Google Scholar] [CrossRef]
- Une, R.; Kageyama, N.; Ono, M.; Matsunaga, Y.; Iwasaki, T.; Kawano, T. The FMRFamide-like peptide FLP-1 modulates larval development by regulating the production and secretion of the insulin-like peptide DAF-28 in Caenorhabditis elegans. Biosci. Biotechnol. Biochem. 2023, 87, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Une, R.; Uegaki, R.; Maega, S.; Ono, M.; Bito, T.; Iwasaki, T.; Shiraishi, A.; Satake, H.; Kawano, T. FRPR-1, a G protein-coupled receptor in the FMRFamide-related peptide receptor family, modulates larval development as a receptor candidate of the FMRFamide-like peptide FLP-1 in Caenorhabditis elegans. Biosci. Biotechnol. Biochem. 2025, 89, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Mitchum, M.G.; Wang, X.; Wang, J.; Davis, E.L. Role of nematode peptides and other small molecules in plant parasitism. Annu. Rev. Phytopathol. 2012, 50, 175–195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Li, Y.L.; Ling, J.; Zhao, J.L.; Li, Y.; Mao, Z.C.; Cheng, X.Y.; Xie, B.Y. NRPS-like ATRR in Plant-Parasitic Nematodes Involved in Glycine Betaine Metabolism to Promote Parasitism. Int. J. Mol. Sci. 2024, 25, 4275. [Google Scholar] [CrossRef]
- Davis, E.L.; Hussey, R.S.; Baum, T.J.; Bakker, J.; Schots, A.; Rosso, M.; Abad, P. Nematode parasitism genes. Annu. Rev. Phytopathol. 2000, 38, 365–396. [Google Scholar] [CrossRef]
- Yimer, H.Z.; Luu, D.D.; Blundell, A.C.; Ercoli, M.F. Root- knot nematodes produce functional mimics of tyrosine- sulfated plant peptides. Proc. Natl. Acad. Sci. USA 2023, 120, e2304612120. [Google Scholar] [CrossRef]
- Siddique, S.; Radakovic, Z.S.; De La Torre, C.M.; Chronis, D.; Novák, O.; Ramireddy, E.; Holbein, J.; Matera, C.; Hütten, M.; Gutbrod, P.; et al. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. Proc. Natl. Acad. Sci. USA 2015, 112, 12669–12674. [Google Scholar] [CrossRef]
- Bali, S.; Gleason, C. Unveiling the Diversity: Plant Parasitic Nematode Effectors and Their Plant Interaction Partners. Mol. Plant Microbe Interact. 2024, 37, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Van Bael, S.; Zels, S.; Boonen, K.; Beets, I.; Schoofs, L.; Temmerman, L. A Caenorhabditis elegans mass spectrometric resource for neuropeptidomics. J. Am. Soc. Mass Spectrom. 2018, 29, 879–889. [Google Scholar] [CrossRef]
- Amare, A.; Hummon, A.B.; Southey, B.; Zimmerman, T.A.; Rodriguez-Zas, S.L.; Sweedler, J.V. Bridging neuropeptidomics and genomics with bioinformatics: Prediction of mammalian neuropeptide prohormone processing. J. Proteome Res. 2006, 5, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Owen, S.C.; Doak, A.K.; Ganesh, A.N.; Nedyalkova, L.; McLaughlin, C.K.; Shoichet, B.K.; Shoichet, M.S. Colloidal drug formulations can explain “bell-shaped” concentration–response curves. ACS Chem. Biol. 2014, 9, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, V.V.; Gurevich, E.V. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol. Ther. 2006, 110, 465–502. [Google Scholar] [CrossRef]
- Brandman, O.; Meyer, T. Feedback loops shape cellular signals in space and time. Science 2008, 322, 390–395. [Google Scholar] [CrossRef]
- Ferguson, S.S.G. Evolving concepts in G protein–coupled receptor endocytosis: The role in receptor desensitization and signaling. Pharmacol. Rev. 2001, 53, 1–24. [Google Scholar] [CrossRef]
- Wagi, S.; Ahmed, A. Bacillus spp.: Potent microfactories of bacterial IAA. PeerJ 2019, 7, e7258. [Google Scholar] [CrossRef]
- Bessai, S.A.; Bensidhoum, L.; Nabti, E. Optimization of IAA production by telluric bacteria isolated from northern Algeria. Biocatal. Agric. Biotechnol. 2022, 41, 102319. [Google Scholar] [CrossRef]
- Li, K.; Fang, S.B.; Zhang, X.; Wei, X.D.; Wu, P.L.; Zheng, R.; Liu, L.J.; Zhang, H.B. Effects of Environmental Stresses on Synthesis of 2-Phenylethanol and IAA by Enterobacter sp. CGMCC 5087. Microorganisms 2024, 12, 663. [Google Scholar] [CrossRef]
- Manosalva, P.; Manohar, M.; von Reuss, S.H.; Chen, S.; Koch, A.; Kaplan, F.; Choe, A.; Micikas, R.J.; Wang, X.; Kogel, K.; et al. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat. Commun. 2015, 6, 7795. [Google Scholar] [CrossRef]
- Oliveira-Hofman, C.; Kaplan, F.; Stevens, G.; Lewis, E.; Wu, S.; Alborn, H.T.; Perret-Gentil, A.; Shapiro-Ilan, D.I. Pheromone extracts act as boosters for entomopathogenic nematodes efficacy. J. Invertebr. Pathol. 2019, 164, 38–42. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.K.; Manohar, M.; Artyukhin, A.B.; Kumari, A.; Tenjo-Castano, F.J.; Nguyen, H.; Routray, P.; Choe, A.; Klessig, D.F.; et al. Nematode Signaling Molecules Are Extensively Metabolized by Animals, Plants, and Microorganisms. ACS Chem. Biol. 2021, 16, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.R.; Zheng, X.; Tian, M.Q.; Zhang, K.Q. Ammonia and Nematode Ascaroside Are Synergistic in Trap Formation in Arthrobotrys oligospora. Pathogens 2023, 12, 1114. [Google Scholar] [CrossRef] [PubMed]
- Moens, T.; Dos Santos, G.A.P.; Thompson, F.; Swings, J.; Fonsêca-Genevois, V.; Vincx, M.; De Mesel, I. Do nematode mucus secretions affect bacterial growth. Aquat. Microb. Ecol. 2005, 40, 77–83. [Google Scholar] [CrossRef]
- Kaplan, F.; Badri, D.V.; Zachariah, C.; Ajredini, R.; Sandoval, F.J.; Roje, S.; Levine, L.H.; Zhang, F.; Robinette, S.L.; Alborn, H.T.; et al. Bacterial attraction and quorum sensing inhibition in Caenorhabditis elegans exudates. J. Chem. Ecol. 2009, 35, 878–892. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, N.; Vitale, S.; Turrà, D.; Reverberi, M.; Fanelli, C.; Vinale, F.; Marra, R.; Ruocco, M.; Pascale, A.; d’Errico, G.; et al. Root Exudates of Stressed Plants Stimulate and Attract Trichoderma Soil Fungi. Mol. Plant Microbe Interact. 2018, 31, 982–994. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Srivastava, A.K.; Rajput, V.D.; Chauhan, P.K.; Bhojiya, A.A.; Jain, D.; Chaubey, G.; Dwivedi, P.; Sharma, B.; Minkina, T. Root Exudates: Mechanistic Insight of Plant Growth Promoting Rhizobacteria for Sustainable Crop Production. Front. Microbiol. 2022, 13, 916488. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y. The Function of Root Exudates in the Root Colonization by Beneficial Soil Rhizobacteria. Biology 2024, 13, 95. [Google Scholar] [CrossRef]
- Shi, Y.H.; Zhang, X.; Zhao, M.; Zheng, X.Y.; Gu, J.Y.; Wang, Z.Q.; Fan, C.Z.; Gu, W.W. The Status of Research on the Root Exudates of Submerged Plants and Their Effects on Aquatic Organisms. Water 2024, 16, 1920. [Google Scholar] [CrossRef]
- Ng, J.L.P.; Perrine-Walker, F.; Wasson, A.P.; Mathesius, U. The Control of Auxin Transport in Parasitic and Symbiotic Root–Microbe Interactions. Plants 2015, 4, 606–643. [Google Scholar] [CrossRef]
- Irshad, U.; Yergeau, E. Bacterial Subspecies Variation and Nematode Grazing Change P Solubilization. Front. Microbiol. 2018, 9, 1990. [Google Scholar] [CrossRef]
Parameter Category | Parameter | Setting/Value |
---|---|---|
Full MS Scan (MS1) | Mass Resolution | 70,000 |
Automatic Gain Control (AGC) Target | 3 × 106 | |
Maximum Injection Time (IT) | 40 ms | |
Scan Range | 350 to 1800 m/z | |
MS/MS Scan (dd-MS2) | Mass Resolution | 75,000 |
Automatic Gain Control (AGC) Target | 1 × 105 | |
Maximum Injection Time (IT) | 60 ms | |
TopN (Number of Precursors for Fragmentation) | 60 | |
Normalized Collision Energy (NCE) | 27 |
Peptides | m/z | Start Time (min) | End Time (min) | Charge |
---|---|---|---|---|
GNAL*ATR | 355.21 | 5 | 20 | 2 |
QHGL*PQEV | 457.74 | 10 | 35 | 2 |
QPL*EVL*VPN | 511.81 | 40 | 70 | 2 |
TL*VDFL*R | 439.27 | 50 | 75 | 2 |
TL*VDL*FR | 439.27 | 55 | 70 | 2 |
GNALATR | 351.70 | 5 | 20 | 2 |
QHGLPQEV | 454.24 | 10 | 35 | 2 |
QPLEVLVPN | 504.79 | 40 | 70 | 2 |
TLVDFLR | 432.25 | 50 | 75 | 2 |
TLVDLFR | 432.25 | 55 | 70 | 2 |
No. | Peptides | Charge | m/z | Peptide Mass |
---|---|---|---|---|
P1 | GNALATR | 2 | 351.70 | 701.38 |
P2 | GPGPVADYDPGLAR | 3 | 462.23 | 1383.68 |
P3 | SSYQYKDPGLAR | 3 | 462.23 | 1383.68 |
P4 | SSQYYKDPGLAR | 3 | 462.23 | 1383.68 |
P5 | GSAVAVGR | 3 | 358.71 | 715.40 |
P6 | AEFAEVSK | 2 | 440.72 | 879.43 |
P7 | VVTDSFR | 2 | 412.22 | 822.42 |
P8 | LVSELTK | 2 | 395.24 | 788.46 |
P9 | QHGLPQEV | 2 | 454.24 | 906.46 |
P10 | ALADDFR | 2 | 404.20 | 806.39 |
P11 | DSGLVLK | 2 | 366.22 | 730.42 |
P12 | TLALAFGLTA | 2 | 489.29 | 976.56 |
P13 | LVLQLDNAK | 2 | 507.30 | 1012.59 |
P14 | LYYELAR | 2 | 464.25 | 926.49 |
P15 | FASFLDK | 2 | 414.22 | 826.42 |
P16 | NLTLSNPSDGLTSTTPNPK | 2 | 979.00 | 1955.98 |
P17 | TTPHNLDVLE | 2 | 569.79 | 1137.57 |
P18 | FLDLSLK | 2 | 418.25 | 834.49 |
P19 | QPLEVLVPN | 2 | 504.79 | 1007.57 |
P20 | PQLEVLVPN | 2 | 504.79 | 1007.57 |
P21 | QPLVELVPN | 2 | 504.79 | 1007.57 |
P22 | PQLELVVPN | 2 | 504.79 | 1007.57 |
P23 | LVVNGSAALGL | 2 | 507.30 | 1012.59 |
P24 | VLQAASAALGL | 2 | 507.30 | 1012.59 |
P25 | TLVDFLR | 2 | 432.25 | 862.49 |
P26 | TLVDLFR | 2 | 432.25 | 862.49 |
P27 | LTVDLFR | 2 | 432.25 | 862.49 |
P28 | VTDVSEVFFK | 2 | 585.81 | 1169.60 |
P29 | EPTSVNLLAE | 2 | 536.78 | 1071.54 |
P30 | EPTSVGVALAE | 2 | 536.78 | 1071.54 |
No. | Peptides | Concentration of Peptides (ng/μL) | Peptide Content per Nematode (ng/worm) | Concentration of Peptides in Medium (μg/mL) |
---|---|---|---|---|
P1 | GNALATR | (3.50 ± 0.07) × 10−1 | (2.33 ± 0.04) × 10−2 | (4.66 ± 0.09) × 10−2 |
P9 | QHGLPQEV | (3.92 ± 0.06) × 10−1 | (2.61 ± 0.04) × 10−2 | (5.22 ± 0.07) × 10−2 |
P19 | QPLEVLVPN | (2.49 ± 0.34) × 10−1 | (1.66 ± 0.23) × 10−2 | (3.32 ± 0.46) × 10−2 |
P25 | TLVDFLR | (1.80 ± 0.06) × 10−1 | (1.20 ± 0.04) × 10−2 | (2.40 ± 0.08) × 10−2 |
P26 | TLVDLFR | (9.94 ± 1.68) × 10−2 | (6.63 ± 1.10) × 10−3 | (1.33 ± 0.22) × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Li, M.; Tao, L.; Liu, X.; Ouyang, L.; Li, G.; Hu, F.; Li, H. Identification of Bioactive Peptides from Caenorhabditis elegans Secretions That Promote Indole-3-Acetic Acid Production in Arthrobacter pascens ZZ21. Microorganisms 2025, 13, 1951. https://doi.org/10.3390/microorganisms13081951
Sun S, Li M, Tao L, Liu X, Ouyang L, Li G, Hu F, Li H. Identification of Bioactive Peptides from Caenorhabditis elegans Secretions That Promote Indole-3-Acetic Acid Production in Arthrobacter pascens ZZ21. Microorganisms. 2025; 13(8):1951. https://doi.org/10.3390/microorganisms13081951
Chicago/Turabian StyleSun, Shan, Mengsha Li, Luchen Tao, Xiran Liu, Lei Ouyang, Gen Li, Feng Hu, and Huixin Li. 2025. "Identification of Bioactive Peptides from Caenorhabditis elegans Secretions That Promote Indole-3-Acetic Acid Production in Arthrobacter pascens ZZ21" Microorganisms 13, no. 8: 1951. https://doi.org/10.3390/microorganisms13081951
APA StyleSun, S., Li, M., Tao, L., Liu, X., Ouyang, L., Li, G., Hu, F., & Li, H. (2025). Identification of Bioactive Peptides from Caenorhabditis elegans Secretions That Promote Indole-3-Acetic Acid Production in Arthrobacter pascens ZZ21. Microorganisms, 13(8), 1951. https://doi.org/10.3390/microorganisms13081951