PapB Family Regulators as Master Switches of Fimbrial Expression
Abstract
1. Introduction
2. P Fimbriae in E. coli
2.1. Structural Architecture and Biogenesis
2.2. Epigenetic and Global Regulatory Control
3. PapB-like Regulators Controlling Fimbrial Expression and Bacterial Pathogenesis
3.1. F1C and SFA Fimbriae and the FocB/SfaB Regulators
3.2. Pef Fimbriae and the PefB Regulator
3.3. Pix Fimbriae and PixB Regulator
3.4. Orf G from Plasmid pMB2: A Non-Fimbrial Member of the PapB Regulatory Family
3.5. Additional Regulators Belonging to the PapB Family
4. FaeA: Regulation of F4 (K88) Fimbriae in Enterotoxigenic E. coli
5. Functional and Regulatory Comparison of DaaA and PapB
6. ClpB of the CS31A Fimbriae
7. Regulatory Functions of FanA and FanB of the K99 Fimbrial Operon
8. Comparative Analysis of AfaA and PapB
9. PapB in Relation to Other Fimbrial Regulators
10. Cross-Talk Between Fim Regulation and the PapB Family Regulators
11. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Bouguénec, C.; Servin, A.L. Diffusely adherent Escherichia coli strains expressing Afa/Dr adhesins (Afa/Dr DAEC): Hitherto unrecognized pathogens. FEMS Microbiol. Lett. 2006, 256, 185–194. [Google Scholar] [CrossRef]
- Denamur, E.; Clermont, O.; Bonacorsi, S.; Gordon, D. The population genetics of pathogenic Escherichia coli. Nat. Rev. Microbiol. 2021, 19, 37–54. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, P.; Zhao, Y.; Ma, X. Enterotoxigenic Escherichia coli: Intestinal pathogenesis mechanisms and colonization resistance by gut microbiota. Gut Microbes 2022, 14, 2055943. [Google Scholar] [CrossRef]
- Poolman, J.T.; Wacker, M. Extraintestinal pathogenic Escherichia coli, a common human pathogen: Challenges for vaccine development and progress in the field. J. Infect. Dis. 2016, 213, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Zacchè, M.M.; Giarenis, I. Therapies in early development for the treatment of urinary tract inflammation. Expert Opin. Investig. Drugs 2016, 25, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Bonten, M.; Johnson, J.R.; van den Biggelaar, A.H.; Georgalis, L.; Geurtsen, J.; de Palacios, P.I.; Gravenstein, S.; Verstraeten, T.; Hermans, P.; Poolman, J.T. Epidemiology of Escherichia coli bacteremia: A systematic literature review. Clin. Infect. Dis. 2021, 72, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Allard, M.W.; Strain, E.; Melka, D.; Bunning, K.; Musser, S.M.; Brown, E.W.; Timme, R. Practical value of food pathogen traceability through building a whole-genome sequencing network and database. J. Clin. Microbiol. 2016, 54, 1975–1983. [Google Scholar] [CrossRef]
- Gahlot, D.K.; Taheri, N.; MacIntyre, S. Diversity in genetic regulation of bacterial fimbriae assembled by the chaperone usher pathway. Int. J. Mol. Sci. 2022, 24, 161. [Google Scholar] [CrossRef]
- Low, D.; Robinson, E.; McGee, Z.; Falkow, S. The frequency of expression of pyelonephritis-associated pili is under regulatory control. Mol. Microbiol. 1987, 1, 335–346. [Google Scholar] [CrossRef]
- Holden, N.J.; Totsika, M.; Mahler, E.; Roe, A.J.; Catherwood, K.; Lindner, K.; Dobrindt, U.; Gally, D.L. Demonstration of regulatory cross-talk between P fimbriae and type 1 fimbriae in uropathogenic Escherichia coli. Microbiology 2006, 152, 1143–1153. [Google Scholar] [CrossRef]
- Buckles, E.L.; Luterbach, C.L.; Wang, X.; Lockatell, C.V.; Johnson, D.E.; Mobley, H.L.; Donnenberg, M.S. Signature-tagged mutagenesis and co-infection studies demonstrate the importance of P fimbriae in a murine model of urinary tract infection. Pathog. Dis. 2015, 73, ftv014. [Google Scholar] [CrossRef]
- Luterbach, C.L.; Mobley, H.L. Cross talk between MarR-like transcription factors coordinates the regulation of motility in uropathogenic Escherichia coli. Infect. Immun. 2018, 86, e00338-18. [Google Scholar] [CrossRef]
- Wurpel, D.J.; Beatson, S.A.; Totsika, M.; Petty, N.K.; Schembri, M.A. Chaperone-usher fimbriae of Escherichia coli. PLoS ONE 2013, 8, e52835. [Google Scholar] [CrossRef]
- Bayliss, C.D.; Clark, J.L.; van der Woude, M.W. 100+ years of phase variation: The premier bacterial bet-hedging phenomenon. Microbiology 2025, 171, 001537. [Google Scholar] [CrossRef]
- Huisman, T.T.; De Graaf, F.K. Negative control of fae (K88) expression by the ‘global’regulator Lrp is modulated by the ‘local’regulator FaeA and affected by DNA methylation. Mol. Microbiol. 1995, 16, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Mol, O.; Oudhuis, W.C.; Oud, R.P.; Sijbrandi, R.; Luirink, J.; Harms, N.; Oudega, B. Biosynthesis of K88 fimbriae in Escherichia coli: Interaction of tip-subunit FaeC with the periplasmic chaperone FaeE and the outer membrane usher FaeD. J. Mol. Microbiol. Biotechnol. 2001, 3, 135–142. [Google Scholar]
- Payne, D.; O’Reilly, M.; Williamson, D. The K88 fimbrial adhesin of enterotoxigenic Escherichia coli binds to beta 1-linked galactosyl residues in glycosphingolipids. Infect. Immun. 1993, 61, 3673–3677. [Google Scholar] [CrossRef]
- Habouria, H.; Bessaiah, H.; Pokharel, P.; Dhakal, S.; Maris, S.; Buron, J.; Houle, S.; Dozois, C.M. A Newly Identified Group of P-like (PL) Fimbria Genes from Extraintestinal Pathogenic Escherichia coli (ExPEC) Encode Distinct Adhesin Subunits and Mediate Adherence to Host Cells. Appl. Environ. Microbiol. 2022, 88, e0142121. [Google Scholar] [CrossRef]
- Hernday, A.D.; Braaten, B.A.; Low, D.A. The mechanism by which DNA adenine methylase and PapI activate the pap epigenetic switch. Mol. Cell 2003, 12, 947–957. [Google Scholar] [CrossRef]
- Lugering, A.; Benz, I.; Knochenhauer, S.; Ruffing, M.; Schmidt, M.A. The Pix pilus adhesin of the uropathogenic Escherichia coli strain X2194 (O2: K−:H6) is related to Pap pili but exhibits a truncated regulatory region. Microbiology 2003, 149, 1387–1397. [Google Scholar] [CrossRef]
- Ott, M.; Hoschützky, H.; Jann, K.; Van Die, I.; Hacker, J. Gene clusters for S fimbrial adhesin (sfa) and F1C fimbriae (foc) of Escherichia coli: Comparative aspects of structure and function. J. Bacteriol. 1988, 170, 3983–3990. [Google Scholar] [CrossRef]
- Bäumler, A.J.; Tsolis, R.M.; Bowe, F.A.; Kusters, J.G.; Hoffmann, S.; Heffron, F. The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect. Immun. 1996, 64, 61–68. [Google Scholar] [CrossRef]
- Totsika, M.; Beatson, S.A.; Holden, N.; Gally, D.L. Regulatory interplay between pap operons in uropathogenic Escherichia coli. Mol. Microbiol. 2008, 67, 996–1011. [Google Scholar] [CrossRef]
- Båga, M.; Göransson, M.; Normark, S.; Uhlin, B. Transcriptional activation of a pap pilus virulence operon from uropathogenic Escherichia coli. EMBO J. 1985, 4, 3887–3893. [Google Scholar] [CrossRef] [PubMed]
- Blyn, L.B.; Braaten, B.A.; White-Ziegler, C.A.; Rolfson, D.H.; Low, D.A. Phase-variation of pyelonephritis-associated pili in Escherichia coli: Evidence for transcriptional regulation. EMBO J. 1989, 8, 613–620. [Google Scholar] [CrossRef]
- White-Ziegler, C.A.; Black, A.M.; Eliades, S.H.; Young, S.; Porter, K. The N-acetyltransferase RimJ responds to environmental stimuli to repress pap fimbrial transcription in Escherichia coli. J. Bacteriol. 2002, 184, 4334–4342. [Google Scholar] [CrossRef]
- Graveline, R.; Mourez, M.; Hancock, M.A.; Martin, C.; Boisclair, S.; Harel, J. Lrp–DNA complex stability determines the level of ON cells in type P fimbriae phase variation. Mol. Microbiol. 2011, 81, 1286–1299. [Google Scholar] [CrossRef]
- Khandige, S.; Kronborg, T.; Uhlin, B.E.; Møller-Jensen, J. sRNA-mediated regulation of P-fimbriae phase variation in uropathogenic Escherichia coli. PLoS Pathog. 2015, 11, e1005109. [Google Scholar] [CrossRef]
- Zamora, M.; Ziegler, C.A.; Freddolino, P.L.; Wolfe, A.J. A thermosensitive, phase-variable epigenetic switch: Pap revisited. Microbiol. Mol. Biol. Rev. 2020, 84, e00030-17. [Google Scholar] [CrossRef] [PubMed]
- Hernday, A.D.; Braaten, B.A.; Broitman-Maduro, G.; Engelberts, P.; Low, D.A. Regulation of the pap epigenetic switch by CpxAR: Phosphorylated CpxR inhibits transition to the phase ON state by competition with Lrp. Mol. Cell 2004, 16, 537–547. [Google Scholar] [CrossRef]
- White-Ziegler, C.A.; Villapakkam, A.; Ronaszeki, K.; Young, S. H-NS controls pap and daa fimbrial transcription in Escherichia coli in response to multiple environmental cues. J. Bacteriol. 2000, 182, 6391–6400. [Google Scholar] [CrossRef]
- Braaten, B.A.; Nou, X.; Kaltenbach, L.S.; Low, D.A. Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell 1994, 76, 577–588. [Google Scholar] [CrossRef]
- Xia, Y.; Forsman, K.; Jass, J.; Uhlin, B.E. Oligomeric interaction of the PapB transcriptional regulator with the upstream activating region of pili adhesin gene promoters in Escherichia coli. Mol. Microbiol. 1998, 30, 513–523. [Google Scholar] [CrossRef]
- Xia, Y.; Uhlin, B.E. Mutational Analysis of the PapB Transcriptional Regulator in Escherichia coli: Regions important for DNA binding and oligomerization. J. Biol. Chem. 1999, 274, 19723–19730. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrowicz, A.; Khan, M.M.; Sidorczuk, K.; Noszka, M.; Kolenda, R. Whatever makes them stick–Adhesins of avian pathogenic Escherichia coli. Vet. Microbiol. 2021, 257, 109095. [Google Scholar] [CrossRef]
- Bakker, A.; Smith, D. Methylation of GATC sites is required for precise timing between rounds of DNA replication in Escherichia coli. J. Bacteriol. 1989, 171, 5738–5742. [Google Scholar] [CrossRef] [PubMed]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.-F.; Guindon, S.; Lefort, V.; Lescot, M. Phylogeny. fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36, W465–W469. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Khan, A.S.; Kniep, B.; Oelschlaeger, T.A.; Van Die, I.; Korhonen, T.; Hacker, J.r. Receptor structure for F1C fimbriae of uropathogenic Escherichia coli. Infect. Immun. 2000, 68, 3541–3547. [Google Scholar] [CrossRef]
- Hultdin, U.W.; Lindberg, S.; Grundström, C.; Huang, S.; Uhlin, B.E.; Sauer-Eriksson, A.E. Structure of FocB–a member of a family of transcription factors regulating fimbrial adhesin expression in uropathogenic Escherichia coli. FEBS J. 2010, 277, 3368–3381. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, T.K.; Valtonen, M.V.; Parkkinen, J.; Väisänen-Rhen, V.; Finne, J.; Orskov, F.; Orskov, I.; Svenson, S.B.; Mäkelä, P.H. Serotypes, hemolysin production, and receptor recognition of Escherichia coli strains associated with neonatal sepsis and meningitis. Med. Microbiol. Immunol. 1985, 48, 486–491. [Google Scholar] [CrossRef]
- Ott, M.; Hacker, J.; Schmoll, T.; Jarchau, T.; Korhonen, T.; Goebel, W. Analysis of the genetic determinants coding for the S-fimbrial adhesin (sfa) in different Escherichia coli strains causing meningitis or urinary tract infections. Infect. Immun. 1986, 54, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre, C.; Morschhäuser, J.; Jass, J.; Hacker, J.; Uhlin, B.E. Transcriptional analysis of the sfa determinant revealing multiple mRNA processing events in the biogenesis of S fimbriae in pathogenic Escherichia coli. J. Bacteriol. 2003, 185, 620–629. [Google Scholar] [CrossRef]
- Morschhäuser, J.; Uhlin, B.-E.; Hacker, J. Transcriptional analysis and regulation of the sfa determinant coding for S fimbriae of pathogenic Escherichia coli strains. Mol. Gen. Genet. MGG 1993, 238, 97–105. [Google Scholar] [CrossRef]
- Korhonen, T.; Uhlin, B.E.; Hacker, J. Regulation and Binding Properdes of S Fimbriae Cloned from E. coli Strains Causing Urinary Tract Infection and Meningitis. Zentralbl. Bakteriol. 1993, 278, 165–176. [Google Scholar] [CrossRef]
- Van der Woude, M.; Low, D. Leucine-responsive regulatory protein and deoxyadenosine methylase control the phase variation and expression of the sfa and daa pili operons in Escherichia coli. Mol. Microbiol. 1994, 11, 605–618. [Google Scholar] [CrossRef]
- Monárrez, R.; Okeke, I.N. A plasmid-encoded papB paralogue modulates autoaggregation of Escherichia coli transconjugants. BMC Res. Notes 2020, 13, 565. [Google Scholar] [CrossRef]
- Woodward, M.J.; Allen-Vercoe, E.; Redstone, J. Distribution, gene sequence and expression in vivo of the plasmid encoded fimbrial antigen of Salmonella serotype Enteritidis. Epidemiol. Infect. 1996, 117, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Escobar, G.A.; Grépinet, O.; Raymond, P.; Abed, N.; Velge, P.; Virlogeux-Payant, I. H-NS is the major repressor of Salmonella Typhimurium Pef fimbriae expression. Virulence 2019, 10, 849–867. [Google Scholar] [CrossRef]
- Nicholson, B.; Low, D. DNA methylation-dependent regulation of pef expression in Salmonella typhimurium. Mol. Microbiol. 2000, 35, 728–742. [Google Scholar] [CrossRef]
- Luterbach, C.L.; Forsyth, V.S.; Engstrom, M.D.; Mobley, H.L. TosR-mediated regulation of adhesins and biofilm formation in uropathogenic Escherichia coli. Msphere 2018, 3, e00222-18. [Google Scholar] [CrossRef]
- Holden, N.J.; Uhlin, B.E.; Gally, D.L. PapB paralogues and their effect on the phase variation of type 1 fimbriae in Escherichia coli. Mol. Microbiol. 2001, 42, 319–330. [Google Scholar] [CrossRef]
- Loomis, W.P.; Koo, J.T.; Cheung, T.P.; Moseley, S.L. A tripeptide sequence within the nascent DaaP protein is required for mRNA processing of a fimbrial operon in Escherichia coli. Mol. Microbiol. 2001, 39, 693–707. [Google Scholar] [CrossRef]
- Koo, J.T. Identification of Factors Involved in Processing of mRNA in a Fimbrial Operon of Escherichia coli. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2004. [Google Scholar]
- Martin, C. The clp (CS31A) operon is negatively controlled by Lrp, ClpB, and L-alanine at the transcriptional level. Mol. Microbiol. 1996, 21, 281–292. [Google Scholar] [CrossRef]
- Braaten, B.A.; Platko, J.V.; van der Woude, M.W.; Simons, B.H.; de Graaf, F.K.; Calvo, J.M.; Low, D.A. Leucine-responsive regulatory protein controls the expression of both the pap and fan pili operons in Escherichia coli. Proc. Natl. Acad. Sci. USA 1992, 89, 4250–4254. [Google Scholar] [CrossRef]
- Roosendaal, E.; Boots, M.; de Graaf, F.K. Two novel genes, fanA and fanB, involved in the biogenesis of K99 fimbriae. Nucleic Acids Res. 1987, 15, 5973–5984. [Google Scholar] [CrossRef]
- Alvarez-Fraga, L.; Phan, M.-D.; Goh, K.G.; Nhu, N.T.K.; Hancock, S.J.; Allsopp, L.P.; Peters, K.M.; Forde, B.M.; Roberts, L.W.; Sullivan, M.J. Differential Afa/Dr fimbriae expression in the multidrug-resistant Escherichia coli ST131 clone. mBio 2022, 13, e03519-21. [Google Scholar] [CrossRef] [PubMed]
- Nowicki, B.; Selvarangan, R.; Nowicki, S. Family of Escherichia coli Dr adhesins: Decay-accelerating factor receptor recognition and invasiveness. J. Infect. Dis. 2001, 183 (Suppl. 1), S24–S27. [Google Scholar] [CrossRef]
- Le Bouguenec, C.; Archambaud, M.; Labigne, A. Rapid and specific detection of the pap, afa, and sfa adhesin-encoding operons in uropathogenic Escherichia coli strains by polymerase chain reaction. J. Clin. Microbiol. 1992, 30, 1189–1193. [Google Scholar] [CrossRef]
- Lalioui, L.; Le Bouguénec, C. afa-8 Gene cluster is carried by a pathogenicity island inserted into the tRNA(Phe) of human and bovine pathogenic Escherichia coli isolates. Infect. Immun. 2001, 69, 937–948. [Google Scholar] [CrossRef]
- Xia, Y.; Gally, D.; Forsman-Semb, K.; Uhlin, B.E. Regulatory cross-talk between adhesin operons in Escherichia coli: Inhibition of type 1 fimbriae expression by the PapB protein. EMBO J. 2000, 19, 1450–1457. [Google Scholar] [CrossRef]
- Boisen, N.; Struve, C.; Scheutz, F.; Krogfelt, K.A.; Nataro, J.P. New adhesin of enteroaggregative Escherichia coli related to the Afa/Dr/AAF family. Infect. Immun. 2008, 76, 3281–3292. [Google Scholar] [CrossRef]
- Klemm, P. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J. 1986, 5, 1389–1393. [Google Scholar] [CrossRef]
- Eisenstein, B.I. Type 1 fimbriae of Escherichia coli: Genetic regulation, morphogenesis, and role in pathogenesis. Rev. Infect. Dis. 1988, 10 (Suppl. 2), S341–S344. [Google Scholar] [CrossRef]
- Behzadi, P. Classical chaperone-usher (CU) adhesive fimbriome: Uropathogenic Escherichia coli (UPEC) and urinary tract infections (UTIs). Folia Microbiol. 2020, 65, 45–65. [Google Scholar] [CrossRef]
- Elpers, L.; Hensel, M. Expression and functional characterization of various chaperon-usher fimbriae, curli fimbriae, and type 4 pili of enterohemorrhagic Escherichia coli O157: H7 Sakai. Front. Microbiol. 2020, 11, 378. [Google Scholar] [CrossRef]
- Engstrom, M.D.; Mobley, H.L. Regulation of expression of uropathogenic Escherichia coli nonfimbrial adhesin TosA by PapB homolog TosR in conjunction with H-NS and Lrp. Infect. Immun. 2016, 84, 811–821. [Google Scholar] [CrossRef]
- Bessaiah, H.; Anamalé, C.; Sung, J.; Dozois, C.M. What flips the switch? Signals and stress regulating extraintestinal pathogenic Escherichia coli type 1 fimbriae (pili). Microorganisms 2021, 10, 5. [Google Scholar] [CrossRef]
- Göransson, M.; Forsman, K.; Uhlin, B.E. Functional and structural homology among regulatory cistrons of pili-adhesin determinants in Escherichia coli. Mol. Gen. Genet. MGG 1988, 212, 412–417. [Google Scholar] [CrossRef]
- Isidro-Coxca, M.I.; Ortiz-Jiménez, S.; Puente, J.L. Type 1 fimbria and P pili: Regulatory mechanisms of the prototypical members of the chaperone-usher fimbrial family. Arch. Microbiol. 2024, 206, 373. [Google Scholar] [CrossRef]
- Hirakawa, H.; Shimokawa, M.; Noguchi, K.; Tago, M.; Matsuda, H.; Takita, A.; Suzue, K.; Tajima, H.; Kawagishi, I.; Tomita, H. The PapB/FocB family protein TosR acts as a positive regulator of flagellar expression and is required for optimal virulence of uropathogenic Escherichia coli. Front. Microbiol. 2023, 14, 1185804. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akrami, F.; Jamali, H.; Kodori, M.; Dozois, C.M. PapB Family Regulators as Master Switches of Fimbrial Expression. Microorganisms 2025, 13, 1939. https://doi.org/10.3390/microorganisms13081939
Akrami F, Jamali H, Kodori M, Dozois CM. PapB Family Regulators as Master Switches of Fimbrial Expression. Microorganisms. 2025; 13(8):1939. https://doi.org/10.3390/microorganisms13081939
Chicago/Turabian StyleAkrami, Fariba, Hossein Jamali, Mansoor Kodori, and Charles M. Dozois. 2025. "PapB Family Regulators as Master Switches of Fimbrial Expression" Microorganisms 13, no. 8: 1939. https://doi.org/10.3390/microorganisms13081939
APA StyleAkrami, F., Jamali, H., Kodori, M., & Dozois, C. M. (2025). PapB Family Regulators as Master Switches of Fimbrial Expression. Microorganisms, 13(8), 1939. https://doi.org/10.3390/microorganisms13081939