Genomic Characterization of Multidrug-Resistant and ESBL-Producing Klebsiella pneumoniae Isolated from Healthy Rabbits Intended for Human Consumption
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Bacterial Isolation
2.2. String Test
2.3. Antimicrobial Susceptibility Testing
2.4. Whole-Genome Sequencing
3. Results and Discussion
3.1. Prevalence and Phenotypic Resistance
3.2. Whole-Genome Sequencing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Ni, M. Regulation of biofilm formation in Klebsiella pneumoniae. Front. Microbiol. 2023, 14, 1238482. [Google Scholar] [CrossRef]
- Abbas, R.; Chakkour, M.; Zein El Dine, H.; Obaseki, E.F.; Obeid, S.T.; Jezzini, A.; Ghssein, G.; Ezzeddine, Z. General Overview of Klebsiella pneumonia: Epidemiology and the Role of Siderophores in Its Pathogenicity. Biology 2024, 13, 78. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Ding, L.; Shen, S.; Chen, J.; Tian, Z.; Shi, Q.; Han, R.; Guo, Y.; Hu, F. Klebsiella pneumoniae carbapenemase variants: The new threat to global public health. Clin. Microbiol. Rev. 2023, 36, e00008-23. [Google Scholar] [CrossRef]
- Araújo, S.; Silva, V.; Quintelas, M.; Martins, Â.; Igrejas, G.; Poeta, P. From soil to surface water: Exploring Klebsiella’s clonal lineages and antibiotic resistance odyssey in environmental health. BMC Microbiol. 2025, 25, 97. [Google Scholar] [CrossRef]
- Wareth, G.; Neubauer, H. The Animal-foods-environment interface of Klebsiella pneumoniae in Germany: An observational study on pathogenicity, resistance development and the current situation. Vet. Res. 2021, 52, 16. [Google Scholar] [CrossRef]
- Guerra, M.E.S.; Destro, G.; Vieira, B.; Lima, A.S.; Ferraz, L.F.C.; Hakansson, A.P.; Darrieux, M.; Converso, T.R. Klebsiella pneumoniae biofilms and their role in disease pathogenesis. Front. Cell. Infect. Microbiol. 2022, 12, 877995. [Google Scholar] [CrossRef]
- Davis, G.S.; Price, L.B. Recent research examining links among Klebsiella pneumoniae from food, food animals, and human extraintestinal infections. Curr. Environ. Health Rep. 2016, 3, 128–135. [Google Scholar] [CrossRef]
- Klaper, K.; Hammerl, J.A.; Rau, J.; Pfeifer, Y.; Werner, G. Genome-Based Analysis of Klebsiella spp. Isolates from Animals and Food Products in Germany, 2013–2017. Pathogens 2021, 10, 573. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.T.; Sobur, M.A.; Islam, M.S.; Ievy, S.; Hossain, M.J.; El Zowalaty, M.E.; Rahman, A.T.; Ashour, H.M. Zoonotic diseases: Etiology, impact, and control. Microorganisms 2020, 8, 1405. [Google Scholar] [CrossRef]
- Leangapichart, T.; Lunha, K.; Jiwakanon, J.; Angkititrakul, S.; Järhult, J.D.; Magnusson, U.; Sunde, M. Characterization of Klebsiella pneumoniae complex isolates from pigs and humans in farms in Thailand: Population genomic structure, antibiotic resistance and virulence genes. J. Antimicrob. Chemother. 2021, 76, 2012–2016. [Google Scholar] [CrossRef]
- Manges, A.R. Editorial commentary: Genomic epidemiology: Revealing hidden reservoirs for Klebsiella pneumoniae. Clin. Infect. Dis. 2015, 61, 900–902. [Google Scholar] [CrossRef]
- Arcari, G.; Carattoli, A. Global spread and evolutionary convergence of multidrug-resistant and hypervirulent Klebsiella pneumoniae high-risk clones. Pathog. Glob. Health 2023, 117, 328–341. [Google Scholar] [CrossRef]
- Beig, M.; Majidzadeh, N.; Asforooshani, M.K.; Rezaie, N.; Abed, S.; Khiavi, E.H.G.; Sholeh, M.; Aghamohammad, S. Antibiotic resistance rates in hypervirulent Klebsiella pneumoniae strains: A systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 2024, 38, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Kopotsa, K.; Osei Sekyere, J.; Mbelle, N.M. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: A review. Ann. N. Y. Acad. Sci. 2019, 1457, 61–91. [Google Scholar] [CrossRef]
- Kimani, R. A review of Carbapenems Resistance in the Current World. J. Med. Biomed. Lab. Sci. Res. 2024, 4, 1–11. [Google Scholar]
- da Silva, Y.; Ferrari, R.; Marin, V.A.; Junior, C.A.C. A global overview of β-lactam resistance genes in Klebsiella pneumoniae. Open Infect. Dis. J. 2019, 11, 22–34. [Google Scholar] [CrossRef]
- Li, Y.; Kumar, S.; Zhang, L. Mechanisms of antibiotic resistance and developments in therapeutic strategies to combat Klebsiella pneumoniae infection. Infect. Drug Resist. 2024, 17, 1107–1119. [Google Scholar] [CrossRef]
- Karami-Zarandi, M.; Rahdar, H.A.; Esmaeili, H.; Ranjbar, R. Klebsiella pneumoniae: An update on antibiotic resistance mechanisms. Future Microbiol. 2023, 18, 65–81. [Google Scholar] [CrossRef]
- Li, X.; Rensing, C.; Vestergaard, G.; Arumugam, M.; Nesme, J.; Gupta, S.; Brejnrod, A.D.; Sørensen, S.J. Metagenomic evidence for co-occurrence of antibiotic, biocide and metal resistance genes in pigs. Environ. Int. 2022, 158, 106899. [Google Scholar] [CrossRef]
- Crovato, S.; Menegon, F.; Mascarello, G.; Pinto, A.; Nadin, A.; Piovan, G.; Ricaldi, G.; Di Martino, G.; Pozza, G. Development of a training strategy aimed at increasing veterinarians’ awareness of the proper use of antibiotics on rabbit farms. Animals 2023, 13, 2411. [Google Scholar] [CrossRef]
- Wu, L. Rabbit meat trade of major countries: Regional pattern and driving forces. World Rabbit Sci. 2022, 30, 69–82. [Google Scholar] [CrossRef]
- Gonçalves, C.; Silva-Santos, T.; Ferreira, L.; Santos, I.; Silva, M.; Nunes, P.; Teixeira, J.; Monteiro, D.; Pinheiro, V. Effect of three cooking methods on cooking loss and edible weight of rabbit meat. Acta Port. Nutr. 2024, 39, 38–43. [Google Scholar] [CrossRef]
- Antunes, P.; Novais, C.; Peixe, L. Food-to-Humans Bacterial Transmission. In Microbial Transmission; John Wiley and Sons: Hoboken, NJ, USA, 2019; pp. 161–193. [Google Scholar]
- Zahrychuk, O.; Zahrychuk, O.; Bilyk, Y.; Fedoniuk, L. Spread of antibiotic-resistant microorganisms and mechanisms of their transmission from animal to human. Bull. Med. Biol. Res. 2023, 5, 67–77. [Google Scholar] [CrossRef]
- Lee, H.; Chuang, Y.; Yu, W.; Lee, N.; Chang, C.; Ko, N.; Wang, L.; Ko, W. Clinical implications of hypermucoviscosity phenotype in Klebsiella pneumoniae isolates: Association with invasive syndrome in patients with community-acquired bacteraemia. J. Intern. Med. 2006, 259, 606–614. [Google Scholar] [CrossRef]
- EUCAST European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 8.0. EUCAST: 2018. Available online: http://www.eucast.org (accessed on 30 January 2025).
- González-Azcona, C.; Jiménez-Ruiz, S.; Santos, N.; Del Campo-Fernández, I.; Rojas-Tigasi, K.; Álvarez-Gómez, T.; Marañón-Clemente, I.; Eguizábal, P.; Abdullahi, I.N.; Alonso, C.A.; et al. Culturomics Profiling of Nasal Cavities of European Wild Rabbits on the Iberian Peninsula: Antimicrobial Resistance and Detection of Microorganisms of Public Health Interest. Pathogens 2025, 14, 317. [Google Scholar] [CrossRef]
- Agnoletti, F.; Brunetta, R.; Bano, L.; Drigo, I.; Mazzolini, E. Longitudinal study on antimicrobial consumption and resistance in rabbit farming. Int. J. Antimicrob. Agents 2018, 51, 197–205. [Google Scholar] [CrossRef]
- Silva, A.; Silva, V.; Tavares, T.; López, M.; Rojo-Bezares, B.; Pereira, J.E.; Falco, V.; Valentão, P.; Igrejas, G.; Sáenz, Y.; et al. Rabbits as a Reservoir of Multidrug-Resistant Escherichia coli: Clonal Lineages and Public Health Impact. Antibiotics 2024, 13, 376. [Google Scholar] [CrossRef]
- Kylie, J.; McEwen, S.A.; Boerlin, P.; Reid-Smith, R.J.; Weese, J.S.; Turner, P. V Prevalence of antimicrobial resistance in fecal Escherichia coli and Salmonella enterica in Canadian commercial meat, companion, laboratory, and shelter rabbits (Oryctolagus cuniculus) and its association with routine antimicrobial use in commercial meat. Prev. Vet. Med. 2017, 147, 53–57. [Google Scholar] [CrossRef]
- Sun, C.; Wang, Z.; Li, Y.; Huang, J. Antibiotic resistance spectrums of Escherichia coli and Enterococcus spp. strains against commonly used antimicrobials from commercial meat-rabbit farms in Chengdu City, Southwest China. Front. Vet. Sci. 2024, 11, 1369655. [Google Scholar] [CrossRef]
- Lazareva, I.V.; Ageevets, V.A.; Ershova, T.A.; Zueva, L.P.; Goncharov, A.E.; Darina, M.G.; Svetlichnaya, Y.S.; Uskov, A.N.; Sidorenko, S.V. Prevalence and Antibiotic Resistance of Carbapenemase-Producing Gram-Negative Bacteria in Saint Petersburg and Some Other Regions of the Russian Federation. Antibiot. i Khimioterapiia = Antibiot. Chemoterapy [SIC] 2016, 61, 28–38. [Google Scholar]
- Dropa, M.; Lincopan, N.; Balsalobre, L.C.; Oliveira, D.E.; Moura, R.A.; Fernandes, M.R.; Da Silva, Q.M.; Matté, G.R.; Sato, M.I.Z.; Matté, M.H. Genetic background of novel sequence types of CTX-M-8-and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae from public wastewater treatment plants in São Paulo, Brazil. Environ. Sci. Pollut. Res. 2016, 23, 4953–4958. [Google Scholar] [CrossRef]
- Harada, K.; Shimizu, T.; Mukai, Y.; Kuwajima, K.; Sato, T.; Usui, M.; Tamura, Y.; Kimura, Y.; Miyamoto, T.; Tsuyuki, Y. Phenotypic and molecular characterization of antimicrobial resistance in Klebsiella spp. isolates from companion animals in Japan: Clonal dissemination of multidrug-resistant extended-spectrum β-lactamase-producing Klebsiella pneumoniae. Front. Microbiol. 2016, 7, 1021. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Hawkey, J.; Hetland, M.A.K.; Fostervold, A.; Wick, R.R.; Judd, L.M.; Hamidian, M.; Howden, B.P.; Löhr, I.H.; Holt, K.E. Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. J. Antimicrob. Chemother. 2019, 74, 577–581. [Google Scholar] [CrossRef]
- Villa, L.; Feudi, C.; Fortini, D.; Brisse, S.; Passet, V.; Bonura, C.; Endimiani, A.; Mammina, C.; Ocampo, A.M.; Jimenez, J.N. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb. Genom. 2017, 3, e000110. [Google Scholar] [CrossRef] [PubMed]
- Pulss, S.; Stolle, I.; Stamm, I.; Leidner, U.; Heydel, C.; Semmler, T.; Prenger-Berninghoff, E.; Ewers, C. Multispecies and clonal dissemination of OXA-48 carbapenemase in Enterobacteriaceae from companion animals in Germany, 2009—2016. Front. Microbiol. 2018, 9, 1265. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.; Garcias, B.; Duran, I.; Molina-López, R.A.; Darwich, L. Current Situation of Bacterial Infections and Antimicrobial Resistance Profiles in Pet Rabbits in Spain. Vet. Sci. 2023, 10, 352. [Google Scholar] [CrossRef]
- Wahl, A.; Fischer, M.A.; Klaper, K.; Müller, A.; Borgmann, S.; Friesen, J.; Hunfeld, K.-P.; Ilmberger, A.; Kolbe-Busch, S.; Kresken, M. Presence of hypervirulence-associated determinants in Klebsiella pneumoniae from hospitalised patients in Germany. Int. J. Med. Microbiol. 2024, 314, 151601. [Google Scholar] [CrossRef]
- Mshana, S.E.; Fritzenwanker, M.; Falgenhauer, L.; Domann, E.; Hain, T.; Chakraborty, T.; Imirzalioglu, C. Molecular epidemiology and characterization of an outbreak causing Klebsiella pneumoniae clone carrying chromosomally located bla CTX-M-15 at a German University-Hospital. BMC Microbiol. 2015, 15, 122. [Google Scholar] [CrossRef]
- Boutin, S.; Welker, S.; Gerigk, M.; Miethke, T.; Heeg, K.; Nurjadi, D. Molecular surveillance of carbapenem-resistant Enterobacterales in two nearby tertiary hospitals to identify regional spread of high-risk clones in Germany, 2019–2020. J. Hosp. Infect. 2024, 149, 126–134. [Google Scholar] [CrossRef]
- Mendes, A.C.; Novais, Â.; Campos, J.; Rodrigues, C.; Santos, C.; Antunes, P.; Ramos, H.; Peixe, L. mcr-1 in carbapenemase-producing Klebsiella pneumoniae with hospitalized patients, Portugal, 2016–2017. Emerg. Infect. Dis. 2018, 24, 762. [Google Scholar] [CrossRef]
- Xu, Y.; Ni, L.; Guan, H.; Chen, D.; Qin, S.; Chen, L. First Report of Potentially Pathogenic Klebsiella pneumoniae from Serotype K2 in Mollusk Tegillarca granosa and Genetic Diversity of Klebsiella pneumoniae in 14 Species of Edible Aquatic Animals. Foods 2022, 11, 4058. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L.; Holt, K.E. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef]
- Li, G.; Shi, J.; Zhao, Y.; Xie, Y.; Tang, Y.; Jiang, X.; Lu, Y. Identification of hypervirulent Klebsiella pneumoniae isolates using the string test in combination with Galleria mellonella infectivity. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1673–1679. [Google Scholar] [CrossRef]
- Shropshire, W.C.; Aitken, S.L.; Pifer, R.; Kim, J.; Bhatti, M.M.; Li, X.; Kalia, A.; Galloway-Pena, J.; Sahasrabhojane, P.; Arias, C.A. IS 26-mediated amplification of bla OXA-1 and bla CTX-M-15 with concurrent outer membrane porin disruption associated with de novo carbapenem resistance in a recurrent bacteraemia cohort. J. Antimicrob. Chemother. 2021, 76, 385–395. [Google Scholar] [CrossRef]
- Meng, L.; Liu, Z.; Liu, C.; Li, C.; Shen, H.; Cao, X. The distribution characteristics of global blaOXA-carrying Klebsiella pneumoniae. BMC Infect. Dis. 2023, 23, 182. [Google Scholar] [CrossRef]
- Zeng, L.; Zhang, J.; Li, C.; Fu, Y.; Zhao, Y.; Wang, Y.; Zhao, J.; Guo, Y.; Zhang, X. The determination of gyrA and parC mutations and the prevalence of plasmid-mediated quinolone resistance genes in carbapenem resistant Klebsiella pneumonia ST11 and ST76 strains isolated from patients in Heilongjiang Province, China. Infect. Genet. Evol. 2020, 82, 104319. [Google Scholar] [CrossRef]
- Han, Y.; Huang, L.; Liu, C.; Huang, X.; Zheng, R.; Lu, Y.; Xia, W.; Ni, F.; Mei, Y.; Liu, G. Characterization of carbapenem-resistant Klebsiella pneumoniae st15 clone coproducing kpc-2, ctx-m-15 and shv-28 spread in an intensive care unit of a tertiary hospital. Infect. Drug Resist. 2021, 14, 767–773. [Google Scholar] [CrossRef]
- Ejaz, H. Analysis of diverse β-lactamases presenting high-level resistance in association with OmpK35 and OmpK36 porins in ESBL-producing Klebsiella pneumoniae. Saudi J. Biol. Sci. 2022, 29, 3440–3447. [Google Scholar] [CrossRef]
- Carvalho, I.; Chenouf, N.S.; Carvalho, J.A.; Castro, A.P.; Silva, V.; Capita, R.; Alonso-Calleja, C.; Nunes Enes Dapkevicius, M.L.; Igrejas, G.; Torres, C.; et al. Multidrug-resistant Klebsiella pneumoniae harboring extended spectrum β-lactamase encoding genes isolated from human septicemias. PLoS ONE 2021, 16, e0250525. [Google Scholar] [CrossRef]
- Liao, J.; Qi, Q.; Kuang, L.; Zhou, Y.; Xiao, Q.; Liu, T.; Wang, X.; Guo, L.; Jiang, Y. Chloramphenicol Binding Sites of Acinetobacter baumannii Chloramphenicol Acetyltransferase CatB8. ACS Infect. Dis. 2024, 10, 870–878. [Google Scholar] [CrossRef]
- Giuliano, A.; Almendros, A. Retrospective Evaluation of a Combination of Carboplatin and Bleomycin for the Treatment of Canine Carcinomas. Animals 2022, 12, 2340. [Google Scholar] [CrossRef]
- Roberts, M.C. Tetracyclines: Mode of action and their bacterial mechanisms of resistance. In Bacterial Resistance to Antibiotics–From Molecules to Man; John Wiley and Sons: Hoboken, NJ, USA, 2019; pp. 101–124. [Google Scholar]
- Wu, X.; Liu, J.; Feng, J.; Shabbir, M.A.B.; Feng, Y.; Guo, R.; Zhou, M.; Hou, S.; Wang, G.; Hao, H. Epidemiology, environmental risks, virulence, and resistance determinants of Klebsiella pneumoniae from dairy cows in Hubei, China. Front. Microbiol. 2022, 13, 858799. [Google Scholar] [CrossRef]
- Ying, Y.; Wu, F.; Wu, C.; Jiang, Y.; Yin, M.; Zhou, W.; Zhu, X.; Cheng, C.; Zhu, L.; Li, K. Florfenicol Resistance in Enterobacteriaceae and Whole-Genome Sequence Analysis of Florfenicol-Resistant Leclercia adecarboxylata Strain R25. Int. J. Genom. 2019, 2019, 9828504. [Google Scholar] [CrossRef]
- Gavilán, R.E.; Nebot, C.; Patyra, E.; Vazquez, B.; Miranda, J.M.; Cepeda, A. Determination of Florfenicol, Thiamfenicol and Chloramfenicol at Trace Levels in Animal Feed by HPLC–MS/MS. Antibiotics 2019, 8, 59. [Google Scholar] [CrossRef]
- Caméléna, F.; Liberge, M.; Rezzoug, I.; Merimèche, M.; Naas, T.; Berçot, B. In vitro activity of apramycin against 16S-RMTase-producing Gram-negative isolates. J. Glob. Antimicrob. Resist. 2023, 33, 21–25. [Google Scholar] [CrossRef]
- Tang, M.; Li, J.; Liu, Z.; Xia, F.; Min, C.; Hu, Y.; Wang, H.; Zou, M. Clonal transmission of polymyxin B-resistant hypervirulent Klebsiella pneumoniae isolates coharboring bla NDM-1 and bla KPC-2 in a tertiary hospital in China. BMC Microbiol. 2023, 23, 64. [Google Scholar] [CrossRef] [PubMed]
- Sano, E.; Fontana, H.; Esposito, F.; Cardoso, B.; Fuga, B.; Costa, G.C.V.; Bosqueiro, T.C.M.; Sinhorini, J.A.; Orico, L.D.; de Masi, E.; et al. Genomic analysis of fluoroquinolone-resistant Leclercia adecarboxylata carrying the ISKpn19-orf-qnrS1-ΔIS3-blaLAP-2 module in a synanthropic pigeon, Brazil. J. Glob. Antimicrob. Resist. 2023, 33, 256–259. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.; Tian, Y.-Q.; Qin, Y.-Y.; Jiao, X.; Pan, Z.-M. Detection of cfr in Klebsiella pneumoniae from pig feed in China. J. Antimicrob. Chemother. 2023, 78, 2774–2776. [Google Scholar] [CrossRef]
- Liakopoulos, A.; Mevius, D.; Ceccarelli, D. A review of SHV extended-spectrum β-lactamases: Neglected yet ubiquitous. Front. Microbiol. 2016, 7, 1374. [Google Scholar] [CrossRef]
- Hao, Y.; Jiang, Y.; Ishaq, H.M.; Liu, W.; Liao, W.; Chen, P.; Yang, F. Molecular Characterization of Klebsiella pneumoniae Isolated from Sputum. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Cuicapuza, D.; Alvarado, L.; Tocasca, N.; Aguilar, D.; Gómez-De-la-Torre, J.C.; Salvatierra, G.; Tsukayama, P.; Tamariz, J. First report of OXA-181-producing Enterobacterales isolates in Latin America. Microbiol. Spectr. 2023, 11, e04584-22. [Google Scholar] [CrossRef]
- Turton, J.F.; Perry, C.; Claxton, A. Do plasmids containing heavy metal resistance genes play a role in neonatal sepsis and invasive disease caused by Klebsiella pneumoniae and Klebsiella variicola? J. Med. Microbiol. 2022, 71, 1486. [Google Scholar] [CrossRef]
- Aguilar-Ancori, E.G.; Marin-Carrasco, M.; Campo-Pfuyo, L.I.; Muñiz-Duran, J.G.; Espinoza-Culupú, A. Identification of pandemic ST147, ESBL-type β-lactamases, carbapenemases, and virulence factors in Klebsiella pneumoniae isolated from southern Peru. Sci. Rep. 2025, 15, 14870. [Google Scholar] [CrossRef]
- Maunders, E.A.; Ganio, K.; Hayes, A.J.; Neville, S.L.; Davies, M.R.; Strugnell, R.A.; McDevitt, C.A.; Tan, A. The role of ZntA in Klebsiella pneumoniae zinc homeostasis. Microbiol. Spectr. 2022, 10, e01773-21. [Google Scholar] [CrossRef] [PubMed]
- Engin, A.B.; Engin, E.D.; Engin, A. Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors. Environ. Toxicol. Pharmacol. 2023, 98, 104081. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.K.; Sodhi, K.K.; Shree, P.; Nitin, V. Heavy Metals as Catalysts in the Evolution of Antimicrobial Resistance and the Mechanisms Underpinning Co-selection. Curr. Microbiol. 2024, 81, 148. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.M.; Hayes, A.; Snape, J.; Kasprzyk-Hordern, B.; Gaze, W.H.; Murray, A.K. Co-selection for antibiotic resistance by environmental contaminants. npj Antimicrob. Resist. 2024, 2, 9. [Google Scholar] [CrossRef]
- Rensing, C.; Moodley, A.; Cavaco, L.M.; McDevitt, S.F. Resistance to metals used in agricultural production. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; John Wiley and Sons: Hoboken, NJ, USA, 2018; pp. 83–107. [Google Scholar]
- Håkonsholm, F.; Hetland, M.A.K.; Löhr, I.H.; Lunestad, B.T.; Marathe, N.P. Co-localization of clinically relevant antibiotic- and heavy metal resistance genes on plasmids in Klebsiella pneumoniae from marine bivalves. MicrobiologyOpen 2023, 12, e1368. [Google Scholar] [CrossRef]
- Zhai, Y.; He, Z.; Kang, Y.; Yu, H.; Wang, J.; Du, P.; Zhang, Z.; Hu, S.; Gao, Z. Complete nucleotide sequence of pH11, an IncHI2 plasmid conferring multi-antibiotic resistance and multi-heavy metal resistance genes in a clinical Klebsiella pneumoniae isolate. Plasmid 2016, 86, 26–31. [Google Scholar] [CrossRef]
- López-Gálvez, G.; López-Alonso, M.; Pechova, A.; Mayo, B.; Dierick, N.; Gropp, J. Alternatives to antibiotics and trace elements (copper and zinc) to improve gut health and zootechnical parameters in piglets: A review. Anim. Feed Sci. Technol. 2021, 271, 114727. [Google Scholar] [CrossRef]
- Ribeiro-Almeida, M.; Mourão, J.; Rodrigues, I.C.; de Carvalho, A.P.; da Costa, P.M.; Peixe, L.; Antunes, P. Persistence of mcr-1-carrying E. coli in rabbit meat production: Challenges beyond long-term colistin withdrawal. Int. J. Food Microbiol. 2025, 439, 111248. [Google Scholar] [CrossRef] [PubMed]
- Tamm, L.; Thuerig, B.; Apostolov, S.; Blogg, H.; Borgo, E.; Corneo, P.E.; Fittje, S.; de Palma, M.; Donko, A.; Experton, C. Use of copper-based fungicides in organic agriculture in twelve European countries. Agronomy 2022, 12, 673. [Google Scholar] [CrossRef]
- Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Bastos, M.d.L.; Christensen, H.; Dusemund, B.; Durjava, M.; Kouba, M.; López-Alonso, M.; López Puente, S. Safety and efficacy of a feed additive consisting of copper (II)-betaine complex for all animal species (Biochem Zusatzstoffe Handels-und Produktionsges. mbH). EFSA J. 2023, 21, e07817. [Google Scholar]
- Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Revision of the currently authorised maximum copper content in complete feed. EFSA J. 2016, 14, e04563. [Google Scholar] [CrossRef]
- Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Safety and efficacy of dicopper oxide as feed additive for all animal species. EFSA J. 2016, 14, e04509. [Google Scholar] [CrossRef]
- Landecker, H. Arsenic-based drugs were widely used in meat production in twentieth. Risk Table Food Prod. Health Environ. 2021, 21, 187. [Google Scholar]
- Giannenas, I.; Bonos, E.; Filliousis, G.; Stylianaki, I.; Kumar, P.; Lazari, D.; Christaki, E.; Florou-Paneri, P. Effect of a polyherbal or an arsenic-containing feed additive on growth performance of broiler chickens, intestinal microbiota, intestinal morphology, and lipid oxidation of breast and thigh meat. J. Appl. Poult. Res. 2019, 28, 164–175. [Google Scholar] [CrossRef]
- Gillieatt, B.F.; Coleman, N. V Unravelling the mechanisms of antibiotic and heavy metal resistance co-selection in environmental bacteria. FEMS Microbiol. Rev. 2024, 48, fuae017. [Google Scholar] [CrossRef]
- Bazzi, W.; Abou Fayad, A.G.; Nasser, A.; Haraoui, L.-P.; Dewachi, O.; Abou-Sitta, G.; Nguyen, V.-K.; Abara, A.; Karah, N.; Landecker, H. Heavy metal toxicity in armed conflicts potentiates AMR in A. baumannii by selecting for antibiotic and heavy metal co-resistance mechanisms. Front. Microbiol. 2020, 11, 68. [Google Scholar] [CrossRef]
- Zhao, Y.; Cocerva, T.; Cox, S.; Tardif, S.; Su, J.-Q.; Zhu, Y.-G.; Brandt, K.K. Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Sci. Total Environ. 2019, 656, 512–520. [Google Scholar] [CrossRef]
- Chatzidimitriou, M.; Tsolakidou, P.; Kyriazidi, M.A.; Varlamis, S.; Frydas, I.S.; Mavridou, M.; Mitka, S. Report of High-Risk Carbapenem-Resistant K. pneumoniae ST307 Clone Producing KPC-2, SHV-106, CTX-M-15, and VEB-1 in Greece. Antibiotics 2025, 14, 567. [Google Scholar] [CrossRef]
- Guzman-Otazo, J.; Joffré, E.; Agramont, J.; Mamani, N.; Jutkina, J.; Boulund, F.; Hu, Y.O.O.; Jumilla-Lorenz, D.; Farewell, A.; Larsson, D.G.J. Conjugative transfer of multi-drug resistance IncN plasmids from environmental waterborne bacteria to Escherichia coli. Front. Microbiol. 2022, 13, 997849. [Google Scholar] [CrossRef]
- Accogli, M.; Fortini, D.; Giufrè, M.; Graziani, C.; Dolejska, M.; Carattoli, A.; Cerquetti, M. IncI1 plasmids associated with the spread of CMY-2, CTX-M-1 and SHV-12 in Escherichia coli of animal and human origin. Clin. Microbiol. Infect. 2013, 19, E238–E240. [Google Scholar] [CrossRef]
- Puangseree, J.; Prathan, R.; Srisanga, S.; Angkittitrakul, S.; Chuanchuen, R. Plasmid profile analysis of Escherichia coli and Salmonella enterica isolated from pigs, pork and humans. Epidemiol. Infect. 2022, 150, e110. [Google Scholar] [CrossRef]
Isolate | fieF | silE | silS | silR | silC | silF | silB | silA | silP | pcoA | pcoB | pcoC | pcoD | pcoR | pcoS | pcoE | arsC | arsB | arsA | arsD | arsR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VS3367 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
VS3368 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
VS3369 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | − | + | + | + | + | + |
VS3370 | + | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
VS3371 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | − | + | + | + | + | + |
VS3372 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, V.; Caniça, M.; Rivière, R.; Silva, A.; Poeta, P.; Igrejas, G. Genomic Characterization of Multidrug-Resistant and ESBL-Producing Klebsiella pneumoniae Isolated from Healthy Rabbits Intended for Human Consumption. Microorganisms 2025, 13, 1931. https://doi.org/10.3390/microorganisms13081931
Silva V, Caniça M, Rivière R, Silva A, Poeta P, Igrejas G. Genomic Characterization of Multidrug-Resistant and ESBL-Producing Klebsiella pneumoniae Isolated from Healthy Rabbits Intended for Human Consumption. Microorganisms. 2025; 13(8):1931. https://doi.org/10.3390/microorganisms13081931
Chicago/Turabian StyleSilva, Vanessa, Manuela Caniça, Rani Rivière, Adriana Silva, Patrícia Poeta, and Gilberto Igrejas. 2025. "Genomic Characterization of Multidrug-Resistant and ESBL-Producing Klebsiella pneumoniae Isolated from Healthy Rabbits Intended for Human Consumption" Microorganisms 13, no. 8: 1931. https://doi.org/10.3390/microorganisms13081931
APA StyleSilva, V., Caniça, M., Rivière, R., Silva, A., Poeta, P., & Igrejas, G. (2025). Genomic Characterization of Multidrug-Resistant and ESBL-Producing Klebsiella pneumoniae Isolated from Healthy Rabbits Intended for Human Consumption. Microorganisms, 13(8), 1931. https://doi.org/10.3390/microorganisms13081931