Subsoiling-Induced Shifts in Nitrogen Dynamics and Microbial Community Structure in Semi-Arid Rainfed Maize Agroecosystems
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design
2.3. Soil Sampling and Chemical Analysis
2.4. DNA Extraction Illumina Sequencing
2.5. Functional Gene Quantification
2.6. Statistical Analysis
3. Results
3.1. Effects of Subsoiling on Soil Nitrate-N (NO3−-N) Dynamics
3.2. Impacts of Subsoiling on Soil Ammonium-N (NH4+-N) Content
3.3. Subsoiling-Induced Changes in Dissolved Organic Carbon (DOC)
3.4. Yield Response to Subsoiling Treatments
3.5. Microbial Richness and Diversity Indices
3.6. Microbial Community Shifts at Phylum and Genus Level
3.7. β-Diversity and Community Assembly Patterns
3.8. Subsoiling-Induced Changes in Microbial Strain, Phenotypic Traits, and Co-Occurrence Network Structure
3.9. Nitrogen-Cycling Gene Dynamics Under Subsoiling Treatments
4. Discussion
4.1. Effects of Subsoiling on Soil Carbon and Nitrogen Fractions
4.2. Effects of Subsoiling on Bacterial Diversity
4.3. Effects of Subsoiling on Functional Gene Abundance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ning, T.; Liu, Z.; Hu, H.; Li, G.; Kuzyakov, Y. Physical, chemical and biological subsoiling for sustainable agriculture. Soil Tillage Res. 2022, 223, 105490. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, W.; Qi, B.; Wang, Y.; Ding, Y.; Zhang, H. Research Progress and Prospects of Intelligent Measurement and Control Technology for Tillage Depth in Subsoiling Operations. Sensors 2025, 25, 3821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, S.; Xu, Y.; Wang, Y.; Liu, X.; Peng, C.; Wang, J. Residue incorporation enhances the effect of subsoiling on soil structure and increases SOC accumulation. J. Soils Sediments 2020, 20, 3537–3547. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, H.; Wang, S.; Zhou, H.; Ji, J. Methods for reducing the tillage force of subsoiling tools: A review. Soil Tillage Res. 2023, 229, 105676. [Google Scholar] [CrossRef]
- Sun, B.; Jia, S.; Zhang, S.; McLaughlin, N.B.; Zhang, X.; Liang, A.; Chen, X.; Wei, S.; Liu, S. Tillage, seasonal and depths effects on soil microbial properties in black soil of Northeast China. Soil Tillage Res. 2016, 155, 421–428. [Google Scholar] [CrossRef]
- Firmiano, K.R.; Castro, D.M.P.; Linares, M.S.; Callisto, M. Functional responses of aquatic invertebrates to anthropogenic stressors in riparian zones of Neotropical savanna streams. Sci. Total Environ. 2021, 753, 141865. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tu, C.; Cheng, L.; Li, C.; Gentry, L.F.; Hoyt, G.D.; Zhang, X.; Hu, S. Long-term impact of farming practices on soil organic carbon and nitrogen pools and microbial biomass and activity. Soil Tillage Res. 2011, 117, 8–16. [Google Scholar] [CrossRef]
- Santos-Clotas, E.; Cabrera-Codony, A.; Boada, E.; Gich, F.; Muñoz, R.; Martín, M.J. Efficient removal of siloxanes and volatile organic compounds from sewage biogas by an anoxic biotrickling filter supplemented with activated carbon. Bioresour. Technol. 2019, 294, 122136. [Google Scholar] [CrossRef]
- Liu, X.; Peng, C.; Zhang, W.; Li, S.; An, T.; Xu, Y.; Ge, Z.; Xie, N.; Wang, J. Subsoiling tillage with straw incorporation improves soil microbial community characteristics in the whole cultivated layers: A one-year study. Soil Tillage Res. 2022, 215, 105188. [Google Scholar] [CrossRef]
- Minoshima, H.; Jackson, L.E.; Cavagnaro, T.R.; Sánchez-Moreno, S.; Ferris, H.; Temple, S.R.; Goyal, S.; Mitchell, J.P. Soil Food Webs and Carbon Dynamics in Response to Conservation Tillage in California. Soil Sci. Soc. Am. J. 2007, 71, 952–963. [Google Scholar] [CrossRef]
- Feng, F.X.; Huang, G.B.; Chai, Q.; Yu, A.Z. Tillage and Straw Management Impacts on Soil Properties, Root Growth, and Grain Yield of Winter Wheat in Northwestern China. Crop Sci. 2010, 50, 1465–1473. [Google Scholar] [CrossRef]
- Huang, L.; Levintal, E.; Erikson, C.B.; Coyotl, A.; Horwath, W.R.; Dahlke, H.E.; Mazza Rodrigues, J.L. Molecular and Dual-Isotopic Profiling of the Microbial Controls on Nitrogen Leaching in Agricultural Soils under Managed Aquifer Recharge. Environ. Sci. Technol. 2023, 57, 11084–11095. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Li, Z.; Fu, Y.; Zhang, J.; Zhao, Y.; Wang, Y.; Liang, E.; Rossi, S. Drought limits vegetation carbon sequestration by affecting photosynthetic capacity of semi-arid ecosystems on the Loess Plateau. Sci. Total Environ. 2024, 912, 168778. [Google Scholar] [CrossRef] [PubMed]
- Cong, Z.; Gu, J.; Li, C.; Li, F.; Li, F. Enhancing Soil Conditions and Maize Yield Efficiency through Rational Conservation Tillage in Aeolian Semi-Arid Regions: A TOPSIS Analysis. Water 2024, 16, 2228. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.; Wu, J.; Pan, X.; Gao, C.; Tang, D.W.S. Impact of Combining Long-Term Subsoiling and Organic Fertilizer on Soil Microbial Biomass Carbon and Nitrogen, Soil Enzyme Activity, and Water Use of Winter Wheat. Front. Plant Sci. 2022, 12, 2021. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.J.; Policht, K.; Grancharova, T.; Hundal, L.S. Distinct responses in ammonia-oxidizing archaea and bacteria after addition of biosolids to an agricultural soil. Appl. Environ. Microbiol. 2011, 77, 6551–6558. [Google Scholar] [CrossRef]
- Evans, S.D.; Lindstrom, M.J.; Voorhees, W.B.; Moncrief, J.F.; Nelson, G.A. Effect of subsoiling and subsequent tillage on soil bulk density, soil moisture, and corn yield. Soil Tillage Res. 1996, 38, 35–46. [Google Scholar] [CrossRef]
- Busa, T.; Duressa, B.; Regasa, T.; Bohnett, E.; Mammo, S. Impacts of Soil and Water Conservation Structures on Selected Soil Physicochemical Parameters in Wali Micro-Watershed Ambo District, Central Ethiopia. Scientifica 2025, 2025, 1465657. [Google Scholar] [CrossRef]
- Zsolnay, Á. Dissolved organic matter: Artefacts, definitions, and functions. Geoderma 2003, 113, 187–209. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen—Total. In Methods of Soil Analysis; Agricultural Sciences: Beijing, China, 1982; pp. 595–624. [Google Scholar]
- Li, S.; Cui, Y.; Xia, Z.; Zhang, X.; Zhou, C.; An, S.; Zhu, M.; Gao, Y.; Yu, W.; Ma, Q. Microbial nutrient limitations limit carbon sequestration but promote nitrogen and phosphorus cycling: A case study in an agroecosystem with long-term straw return. Sci. Total Environ. 2023, 870, 161865. [Google Scholar] [CrossRef]
- Zheng, B.; Zhu, Y.; Sardans, J.; Peñuelas, J.; Su, J. QMEC: A tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci. China Life Sci. 2018, 61, 1451–1462. [Google Scholar] [CrossRef]
- Liu, C.; Cui, Y.; Li, X.; Yao, M. microeco: An R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 2020, 97, fiaa255. [Google Scholar] [CrossRef]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Kersters, K.; De Vos, P.; Gillis, M.; Swings, J.; Vandamme, P.; Stackebrandt, E. Introduction to the Proteobacteria. In The Prokaryotes: Proteobacteria: Alpha and Beta Subclasses; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; Volume 5, pp. 3–37. [Google Scholar]
- Coombs, J.T.; Franco, C.M. Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol. 2003, 69, 5603–5608. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Zhu, S.; Shi, Y.; Shu, S.; Li, A.; Fan, B. Study on Soil Leaching Risk of Reuse of Reclaimed Fertilizer from Micro-Flush Sanitary Wastewater. Water 2022, 14, 2823. [Google Scholar] [CrossRef]
- Beylich, A.; Oberholzer, H.-R.; Schrader, S.; Höper, H.; Wilke, B.-M. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Tillage Res. 2010, 109, 133–143. [Google Scholar] [CrossRef]
- Horn, R.; Fleige, H. Risk assessment of subsoil compaction for arable soils in Northwest Germany at farm scale. Soil Tillage Res. 2009, 102, 201–208. [Google Scholar] [CrossRef]
- Roxburgh, S.H.; Shea, K.; Wilson, J.B. The intermediate disturbance hypothesis: Patch dynamics and mechanisms of species coexistence. Ecology 2004, 85, 359–371. [Google Scholar] [CrossRef]
- Arat, S.; Bullerjahn, G.S.; Laubenbacher, R. A network biology approach to denitrification in Pseudomonas aeruginosa. PLoS ONE 2015, 10, e0118235. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Xu, M.; Huang, Q.; Xie, L.; Yang, F.; Zhang, C.; Sha, G.; Cao, H. Response of Soil Bacteria to Short-Term Nitrogen Addition in Nutrient-Poor Areas. Microorganisms 2025, 13, 56. [Google Scholar] [CrossRef]
- DICKMAN, C.R. Niche compression: Two tests of an hypothesis using narrowly sympatric predator species. Aust. J. Ecol. 1986, 11, 121–134. [Google Scholar] [CrossRef]
- Wang, F.; Chen, S.; Wang, Y.; Zhang, Y.; Hu, C.; Liu, B. Long-Term Nitrogen Fertilization Elevates the Activity and Abundance of Nitrifying and Denitrifying Microbial Communities in an Upland Soil: Implications for Nitrogen Loss From Intensive Agricultural Systems. Front. Microbiol. 2018, 9, 2424. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, S.; Porporato, A. Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biol. Biochem. 2009, 41, 1355–1379. [Google Scholar] [CrossRef]
- Xu, L.; Chen, H.; Zhou, Y.; Zhang, J.; Nadeem, M.Y.; Miao, C.; You, J.; Li, W.; Jiang, Y.; Ding, Y.; et al. Long-term straw returning improved soil nitrogen sequestration by accelerating the accumulation of amino acid nitrogen. Agric. Ecosyst. Environ. 2024, 362, 108846. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, J.; Sun, H.; Zhou, X.; Liu, Y.; Zhou, M.; Ma, N.; Yin, G.; Sun, S. Subsoiling-Induced Shifts in Nitrogen Dynamics and Microbial Community Structure in Semi-Arid Rainfed Maize Agroecosystems. Microorganisms 2025, 13, 1897. https://doi.org/10.3390/microorganisms13081897
Gu J, Sun H, Zhou X, Liu Y, Zhou M, Ma N, Yin G, Sun S. Subsoiling-Induced Shifts in Nitrogen Dynamics and Microbial Community Structure in Semi-Arid Rainfed Maize Agroecosystems. Microorganisms. 2025; 13(8):1897. https://doi.org/10.3390/microorganisms13081897
Chicago/Turabian StyleGu, Jian, Hao Sun, Xu Zhou, Yongqi Liu, Mingwei Zhou, Ningning Ma, Guanghua Yin, and Shijun Sun. 2025. "Subsoiling-Induced Shifts in Nitrogen Dynamics and Microbial Community Structure in Semi-Arid Rainfed Maize Agroecosystems" Microorganisms 13, no. 8: 1897. https://doi.org/10.3390/microorganisms13081897
APA StyleGu, J., Sun, H., Zhou, X., Liu, Y., Zhou, M., Ma, N., Yin, G., & Sun, S. (2025). Subsoiling-Induced Shifts in Nitrogen Dynamics and Microbial Community Structure in Semi-Arid Rainfed Maize Agroecosystems. Microorganisms, 13(8), 1897. https://doi.org/10.3390/microorganisms13081897