The Potential Role of Helicobacter pylori-Related Mast Cell Activation in the Progression from Gastroesophageal Reflux to Barrett’s Esophagus and Esophageal Adenocarcinoma
Abstract
1. Introduction
2. Hp and MCs Activation
3. Hp, GERD, and MCs
- Induction of mediators, cytokines, and nitric oxide that may impair LES function;
- Direct injury to the esophageal mucosa via bacterial products;
- Increased prostaglandin release that sensitizes afferent nerves and reduces LES pressure;
- Enhanced gastric acidity due to Hp-induced gastrin stimulation, exacerbating reflux [5].
4. Hp, ΒΕ, and MCs
5. Hp, EAC, and MCs
6. Hp-Mediated MC Activation and Epithelial–Mesenchymal Transition
7. Therapeutic Implications of Hp-Driven MC Activation in the GERD–BE–EAC Sequence: Targeting the MC–EMT–Microbiome Axis
Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, M.-M.; Yang, S.-S.; Huang, Q.-Y.; Cui, G.-H.; Jia, X.-F.; Yang, Y.; Shi, Z.-M.; Ye, H.; Zhang, X.-Z. Effect and Mechanism of Qingre Huashi Decoction on Drug-Resistant Helicobacter pylori. World J. Gastroenterol. 2024, 30, 3086–3105. [Google Scholar] [CrossRef]
- Bahmanyar, S.; Zendehdel, K.; Nyrén, O.; Ye, W. Risk of Oesophageal Cancer by Histology among Patients Hospitalised for Gastroduodenal Ulcers. Gut 2007, 56, 457–459. [Google Scholar] [CrossRef] [PubMed]
- Aghayeva, S.; Mara, K.C.; Katzka, D.A. The impact of Helicobacter pylori on the presence of Barrett’s esophagus in Azerbaijan, a high-prevalence area of infection. Dis. Esophagus 2019, 32, doz053. [Google Scholar] [CrossRef] [PubMed]
- Schwizer, W.; Thumshirn, M.; Dent, J.; Guldenschuh, I.; Menne, D.; Cathomas, G.; Fried, M. Helicobacter pylori and Symptomatic Relapse of Gastro-Oesophageal Reflux Disease: A Randomised Controlled Trial. Lancet 2001, 357, 1738–1742. [Google Scholar] [CrossRef] [PubMed]
- Kountouras, J.; Zavos, C.; Chatzopoulos, D.; Katsinelos, P. Helicobacter pylori and gastro-oesophageal reflux disease. Lancet 2006, 368, 986. [Google Scholar] [CrossRef]
- Bonavina, L.; Bona, D.; Aiolfi, A.; Shabat, G.; Annese, V.; Galassi, L. Fundoplication: Old Concept for Novel Challenges? Visc. Med. 2024, 40, 236–241. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Zeglinas, C.; Artemaki, F.; Doulberis, M.; Kazakos, E.; Katsinelos, P.; Kountouras, J. Helicobacter pylori infection and esophageal adenocarcinoma: A review and a personal view. Ann. Gastroenterol. 2018, 31, 8–13. [Google Scholar] [CrossRef]
- Kountouras, J.; Doulberis, M.; Papaefthymiou, A.; Polyzos, S.A.; Vardaka, E.; Tzivras, D.; Dardiotis, E.; Deretzi, G.; Giartza-Taxidou, E.; Grigoriadis, S.; et al. A perspective on risk factors for esophageal adenocarcinoma: Emphasis on Helicobacter pylori infection. Ann. N. Y. Acad. Sci. 2019, 1452, 12–17. [Google Scholar] [CrossRef]
- Kountouras, J.; Polyzos, S.A.; Doulberis, M.; Zeglinas, C.; Artemaki, F.; Vardaka, E.; Deretzi, G.; Giartza-Taxidou, E.; Tzivras, D.; Vlachaki, E.; et al. Potential impact of Helicobacter pylori-related metabolic syndrome on upper and lower gastrointestinal tract oncogenesis. Metabolism 2018, 87, 18–24. [Google Scholar] [CrossRef]
- Doulberis, M.; Kountouras, J.; Polyzos, S.A.; Tzivras, D.; Vardaka, E.; Kountouras, C.; Tzilves, D.; Kotronis, G.; Boutsikou, E.; Gialamprinou, D.; et al. Impact of Helicobacter pylori and/or Helicobacter pylori-related metabolic syndrome on gastroesophageal reflux disease—Barrett’s esophagus—Esophageal adenocarcinoma sequence. Helicobacter 2018, 23, e12534. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Megraud, F.; Rokkas, T.; Gisbert, J.P.; Liou, J.M.; Schulz, C.; Gasbarrini, A.; Hunt, R.H.; Leja, M.; O’Morain, C.; et al. European Helicobacter and Microbiota Study group. Management of Helicobacter pylori infection: The Maastricht VI/Florence consensus report. Gut 2022, 71, 1724–1762. [Google Scholar] [CrossRef]
- Parsons, B.N.; Ijaz, U.Z.; D’Amore, R.; Burkitt, M.D.; Eccles, R.; Lenzi, L.; Duckworth, C.A.; Moore, A.R.; Tiszlavicz, L.; Varro, A.; et al. Comparison of the Human Gastric Microbiota in Hypochlorhydric States Arising as a Result of Helicobacter pylori-Induced Atrophic Gastritis, Autoimmune Atrophic Gastritis and Proton Pump Inhibitor Use. PLoS Pathog. 2017, 13, e1006653. [Google Scholar] [CrossRef] [PubMed]
- Namin, B.M.; Dallal, M.M.S.; Daryani, N.E. The Effect of Campylobacter Concisus on Expression of IL-18, TNF-α and P53 in Barrett’s Cell Lines. Jundishapur J. Microbiol. 2015, 8, e26393. [Google Scholar] [CrossRef]
- Blackett, K.L.; Siddhi, S.S.; Cleary, S.; Steed, H.; Miller, M.H.; MacFarlane, S.; MacFarlane, G.T.; Dillon, J.F. Oesophageal Bacterial Biofilm Changes in Gastro-Oesophageal Reflux Disease, Barrett’s and Oesophageal Carcinoma: Association or Causality? Aliment. Pharmacol. Ther. 2013, 37, 1084–1092. [Google Scholar] [CrossRef]
- Yang, L.; Chaudhary, N.; Baghdadi, J.; Pei, Z. Microbiome in reflux disorders and esophageal adenocarcinoma. Cancer J. 2014, 20, 207–210. [Google Scholar] [CrossRef]
- Kountouras, J.; Boziki, M.; Kazakos, E.; Theotokis, P.; Kesidou, E.; Nella, M.; Bakirtzis, C.; Karafoulidou, E.; Vardaka, E.; Mouratidou, M.C.; et al. Impact of Helicobacter pylori and Metabolic Syndrome on Mast Cell Activation-Related Pathophysiology and Neurodegeneration. Neurochem. Int. 2024, 175, 105724. [Google Scholar] [CrossRef]
- Weinstock, L.B.; Rezaie, A.; Afrin, L.B. The Significance of Mast Cell Activation in the Era of Precision Medicine. Am. J. Gastroenterol. 2018, 113, 1725–1726. [Google Scholar] [CrossRef]
- Reyes, V.E. Helicobacter pylori and Its Role in Gastric Cancer. Microorganisms 2023, 11, 1312. [Google Scholar] [CrossRef]
- Fitzgerald, R.C.; Onwuegbusi, B.A.; Bajaj-Elliott, M.; Saeed, I.T.; Burnham, W.R.; Farthing, M.J. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: Immunological determinants. Gut 2002, 50, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Tang, X. Untangling Immune Cell Contributions in the Progression from GERD to Barrett’s Esophagus and Esophageal Cancer: Insights from Genetic Causal Analysis. Int. Immunopharmacol. 2025, 150, 114271. [Google Scholar] [CrossRef]
- Sammarco, G.; Varricchi, G.; Ferraro, V.; Ammendola, M.; De Fazio, M.; Altomare, D.F.; Luposella, M.; Maltese, L.; Currò, G.; Marone, G.; et al. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Int. J. Mol. Sci. 2019, 20, 2106. [Google Scholar] [CrossRef]
- Cao, M.; Gao, Y. Mast Cell Stabilizers: From Pathogenic Roles to Targeting Therapies. Front. Immunol. 2024, 15, 1418897. [Google Scholar] [CrossRef] [PubMed]
- Khoury, P.; Wechsler, J.B. Role of Mast Cells in Eosinophilic Gastrointestinal Diseases. Immunol. Allergy Clin. North Am. 2024, 44, 311–327. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.S.; Cao, M.D.; Wang, A.; Liu, Q.M.; Zhu, D.X.; Zou, Y.; Ma, L.L.; Luo, M.; Shao, Y.; Xu, D.D.; et al. Nano-Silica Particles Synergistically IgE-Mediated Mast Cell Activation Exacerbating Allergic Inflammation in Mice. Front. Immunol. 2022, 13, 911300. [Google Scholar] [CrossRef] [PubMed]
- Houghton, J.; Stoicov, C.; Nomura, S.; Rogers, A.B.; Carlson, J.; Li, H.; Cai, X.; Fox, J.G.; Goldenring, J.R.; Wang, T.C. Gastric cancer originating from bone marrow-derived cells. Science 2004, 306, 1568–1571. [Google Scholar] [CrossRef]
- Kountouras, J.; Zavos, C.; Chatzopoulos, D.; Katsinelos, P. New Aspects of Helicobacter pylori Infection Involvement in Gastric Oncogenesis. J. Surg. Res. 2008, 146, 149–158. [Google Scholar] [CrossRef]
- Ismael, A.T.; Abdulhameed, R.A.; Hamdi, B.A.; Tawfeeq, R.D.; Ommar, A. C-Kit Immunohistochemical Expression as a Complementary Method to Assess Mast Cell Density in Helicobacter pylori-Mediated Gastritis. Digestion 2024, 106, 23–29. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, G.P. Mast cells and metabolic syndrome. Biochim. Biophys. Acta 2012, 1822, 14–20. [Google Scholar] [CrossRef]
- Chivu, R.F.; Bobirca, F.; Melesteu, I.; Patrascu, T. The Role of Helicobacter pylori Infection in the Development of Gastric Cancer —Review of the Literature. Chirurgia 2024, 119, 1–10. [Google Scholar] [CrossRef]
- Ito, N.; Tsujimoto, H.; Ueno, H.; Xie, Q.; Shinomiya, N. Helicobacter pylori-Mediated Immunity and Signaling Transduction in Gastric Cancer. J. Clin. Med. 2020, 9, 3699. [Google Scholar] [CrossRef]
- Eslami, M.; Yousefi, B.; Kokhaei, P.; Arabkari, V.; Ghasemian, A. Current Information on the Association of Helicobacter pylori with Autophagy and Gastric Cancer. J. Cell. Physiol. 2019, 234, 14800–14811. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Latif, M.M.M.; Kelleher, D.; Reynolds, J.V. Molecular Mechanisms of Constitutive and Inducible NF-KappaB Activation in Oesophageal Adenocarcinoma. Eur. J. Cancer 2015, 51, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Tzitiridou-Chatzopoulou, M.; Kazakos, E.; Orovou, E.; Andronikidi, P.E.; Kyrailidi, F.; Mouratidou, M.C.; Iatrakis, G.; Kountouras, J. The Role of Helicobacter pylori and Metabolic Syndrome-Related Mast Cell Activation Pathologies and Their Potential Impact on Pregnancy and Neonatal Outcomes. J. Clin. Med. 2024, 13, 2360. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Li, Y.; Wu, H.; Zhang, J.; Xia, T.; Li, B.; Wu, C. HIF-1α-Induced GPR171 Expression Mediates CCL2 Secretion by Mast Cells to Promote Gastric Inflammation During Helicobacter pylori Infection. Helicobacter 2025, 30, e70042. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Kuo, T.-Y.; Hong, Z.-W.; Yeh, Y.-C.; Shih, K.-S.; Du, S.-Y.; Fu, H.-W. Helicobacter pylori Neutrophil-Activating Protein Induces Release of Histamine and Interleukin-6 through G Protein-Mediated MAPKs and PI3K/Akt Pathways in HMC-1 Cells. Virulence 2015, 6, 755–765. [Google Scholar] [CrossRef]
- Ren, X.; Feng, C.; Wang, Y.; Chen, P.; Wang, S.; Wang, J.; Cao, H.; Li, Y.; Ji, M.; Hou, P. SLC39A10 Promotes Malignant Phenotypes of Gastric Cancer Cells by Activating the CK2-Mediated MAPK/ERK and PI3K/AKT Pathways. Exp. Mol. Med. 2023, 55, 1757–1769. [Google Scholar] [CrossRef]
- Myers, A.L.; Lin, L.; Nancarrow, D.J.; Wang, Z.; Ferrer-Torres, D.; Thomas, D.G.; Orringer, M.B.; Lin, J.; Reddy, R.M.; Beer, D.G.; et al. IGFBP2 modulates the chemoresistant phenotype in esophageal adenocarcinoma. Oncotarget 2015, 6, 25897–25916. [Google Scholar] [CrossRef]
- Shahi, H.; Reiisi, S.; Bahreini, R.; Bagheri, N.; Salimzadeh, L.; Shirzad, H. Association between Helicobacter pylori cagA, babA2 Virulence Factors and Gastric Mucosal Interleukin-33 mRNA Expression and Clinical Outcomes in Dyspeptic Patients. Int. J. Mol. Cell Med. 2015, 4, 227–234. [Google Scholar]
- Fairweather, D.L.; Cihakova, D. Alternatively Activated Macrophages in Infection and Autoimmunity. J. Autoimmun. 2009, 33, 222–230. [Google Scholar] [CrossRef]
- Kannen, V.; Grant, D.M.; Matthews, J. The Mast Cell-T Lymphocyte Axis Impacts Cancer: Friend or Foe? Cancer Lett. 2024, 588, 216805. [Google Scholar] [CrossRef]
- Lv, Y.; Tian, W.; Teng, Y.; Wang, P.; Zhao, Y.; Li, Z.; Tang, S.; Chen, W.; Xie, R.; Lü, M.; et al. Tumor-Infiltrating Mast Cells Stimulate ICOS+ Regulatory T Cells through an IL-33 and IL-2 Axis to Promote Gastric Cancer Progression. J. Adv. Res. 2024, 57, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.P.; Teng, Y.S.; Mao, F.Y.; Peng, L.S.; Zhang, J.Y.; Cheng, P.; Liu, Y.G.; Kong, H.; Wang, T.T.; Wu, X.L.; et al. Helicobacter pylori-Induced IL-33 Modulates Mast Cell Responses, Benefits Bacterial Growth, and Contributes to Gastritis. Cell Death Dis. 2018, 9, 457. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Janson, V.; Dong, Z.; Liu, H. Role and mechanism of IL-33 in bacterial infection related gastric cancer continuum: From inflammation to tumor progression. Biochim. Biophys. Acta Rev. Cancer 2025, 1880, 189296. [Google Scholar] [CrossRef]
- Liu, J.; Liu, L.; Su, Y.; Wang, Y.; Zhu, Y.; Sun, X.; Guo, Y.; Shan, J. IL-33 Participates in the Development of Esophageal Adenocarcinoma. Pathol. Oncol. Res. 2022, 28, 1610474. [Google Scholar] [CrossRef]
- Farinati, F.; Cardin, R.; Cassaro, M.; Bortolami, M.; Nitti, D.; Tieppo, C.; Zaninotto, G.; Rugge, M. Helicobacter pylori, inflammation, oxidative damage and gastric cancer: A morphological, biological and molecular pathway. Eur. J. Cancer Prev. 2008, 17, 195–200. [Google Scholar] [CrossRef]
- Hofman, V.; Lassalle, S.; Selva, E.; Kalem, K.; Steff, A.; Hébuterne, X.; Sicard, D.; Auberger, P.; Hofman, P. Involvement of Mast Cells in Gastritis Caused by Helicobacter pylori: A Potential Role in Epithelial Cell Apoptosis. J. Clin. Pathol. 2007, 60, 600–607. [Google Scholar] [CrossRef]
- Mao, L.; Kitani, A.; Strober, W.; Fuss, I.J. The Role of NLRP3 and IL-1β in the Pathogenesis of Inflammatory Bowel Disease. Front. Immunol. 2018, 9, 2566. [Google Scholar] [CrossRef]
- Zhong, B.; Li, Y.; Liu, X.; Wang, D. Association of Mast Cell Infiltration with Gastric Cancer Progression. Oncol. Lett. 2018, 15, 755–764. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, N.; Chai, N.; Liu, X.; Jiang, H.; Wu, Q.; Li, Q. Helicobacter pylori Promotes Angiogenesis Depending on Wnt/Beta-Catenin-Mediated Vascular Endothelial Growth Factor via the Cyclooxygenase-2 Pathway in Gastric Cancer. BMC Cancer 2016, 16, 321. [Google Scholar] [CrossRef]
- Ražov Radas, M. Expression of Muc2 Glycoprotein Antibody and Vascular Endothelial Growth Factor in Barrett’s Mucosa. Acta Clin. Croat. 2019, 58, 23–28. [Google Scholar] [CrossRef]
- Eletto, D.; Mentucci, F.; Voli, A.; Petrella, A.; Porta, A.; Tosco, A. Helicobacter pylori Pathogen-Associated Molecular Patterns: Friends or Foes? Int. J. Mol. Sci. 2022, 23, 3531. [Google Scholar] [CrossRef]
- Boziki, M.; Theotokis, P.; Kesidou, E.; Nella, M.; Bakirtzis, C.; Karafoulidou, E.; Tzitiridou-Chatzopoulou, M.; Doulberis, M.; Kazakos, E.; Deretzi, G.; et al. Impact of Mast Cell Activation on Neurodegeneration: A Potential Role for Gut–Brain Axis and Helicobacter pylori Infection. Neurol. Int. 2024, 16, 1750–1778. [Google Scholar] [CrossRef]
- Yao, X.; Smolka, A.J. Gastric Parietal Cell Physiology and Helicobacter pylori-Induced Disease. Gastroenterology 2019, 156, 2158–2173. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, H.J. Forty Years of Helicobacter pylori Infection and Changes in Findings at Esophagogastroduodenoscopy. Helicobacter 2023, 28, e13026. [Google Scholar] [CrossRef] [PubMed]
- Kountouras, J.; Boziki, M.; Polyzos, S.A.; Katsinelos, P.; Gavalas, E.; Zeglinas, C.; Tzivras, D.; Romiopoulos, I.; Giorgakis, N.; Anastasiadou, K.; et al. The Emerging Role of Helicobacter pylori-Induced Metabolic Gastrointestinal Dysmotility and Neurodegeneration. Curr. Mol. Med. 2017, 17, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Kountouras, J.; Polyzos, S.A.; Deretzi, G. Multiple Bidirectionality Brain–Gut Interactions in Patients with Inflammatory Bowel Disease. Gastroenterology 2018, 155, 1651–1652. [Google Scholar] [CrossRef]
- Doulberis, M.; Kountouras, J.; Rogler, G. Reconsidering the “Protective” Hypothesis of Helicobacter pylori Infection in Eosinophilic Esophagitis. Ann. N. Y. Acad. Sci. 2020, 1481, 59–71. [Google Scholar] [CrossRef]
- Ustaoglu, A.; Daudali, F.A.; D’afflitto, M.; Murtough, S.; Lee, C.; Moreno, E.; Blaydon, D.C.; Kelsell, D.P.; Sifrim, D.; Woodland, P.; et al. Identification of Novel Immune Cell Signature in Gastroesophageal Reflux Disease: Altered Mucosal Mast Cells and Dendritic Cell Profile. Front. Immunol. 2023, 14, 1282577. [Google Scholar] [CrossRef]
- Mascaretti, F.; Haider, S.; Amoroso, C.; Caprioli, F.; Ramai, D.; Ghidini, M. Role of the Microbiome in the Diagnosis and Management of Gastroesophageal Cancers. J. Gastrointest. Cancer 2024, 55, 662–678. [Google Scholar] [CrossRef]
- Fu, H.-W.; Lai, Y.-C. The Role of Helicobacter pylori Neutrophil-Activating Protein in the Pathogenesis of H. Pylori and Beyond: From a Virulence Factor to Therapeutic Targets and Therapeutic Agents. Int. J. Mol. Sci. 2022, 24, 91. [Google Scholar] [CrossRef]
- Song, X.; Xin, N.; Wang, W.; Zhao, C. Wnt/β-Catenin, an Oncogenic Pathway Targeted by H. Pylori in Gastric Carcinogenesis. Oncotarget 2015, 6, 35579–35588. [Google Scholar] [CrossRef]
- Alotaiq, N.; Khalifa, A.S.; Youssef, A.; El-Nagar, E.G.; Elwali, N.E.; Habib, H.M.; AlZaim, I.; Eid, A.H.; Bakkar, N.Z.; El-Yazbi, A.F. Targeting GSK-3β for adipose dysfunction and cardiovascular complications of metabolic disease: An entangled WNT/β-catenin question. FASEB J. 2024, 38, e70273. [Google Scholar] [CrossRef]
- Lyros, O.; Rafiee, P.; Nie, L.; Medda, R.; Jovanovic, N.; Otterson, M.F.; Behmaram, B.; Gockel, I.; Mackinnon, A.; Shaker, R. Wnt/β-Catenin Signaling Activation beyond Robust Nuclear β-Catenin Accumulation in Nondysplastic Barrett’s Esophagus: Regulation via Dickkopf-1. Neoplasia 2015, 17, 598–611. [Google Scholar] [CrossRef]
- Tomaszewska, A.; Gonciarz, W.; Rechcinski, T.; Chmiela, M.; Kurdowska, A.K.; Krupa, A. Helicobacter pylori Components Increase the Severity of Metabolic Syndrome and Its Hepatic Manifestations Induced by a High Fat Diet. Sci. Rep. 2024, 14, 5764. [Google Scholar] [CrossRef]
- Vanoli, A.; Parente, P.; Fassan, M.; Mastracci, L.; Grillo, F. Gut Inflammation and Tumorigenesis: Every Site Has a Different Tale to Tell. Intern. Emerg. Med. 2023, 18, 2169–2179. [Google Scholar] [CrossRef]
- Moons, L.M.G.; Kusters, J.G.; Bultman, E.; Kuipers, E.J.; van Dekken, H.; Tra, W.M.W.; Kleinjan, A.; Kwekkeboom, J.; van Vliet, A.H.M.; Siersema, P.D. Barrett’s Oesophagus Is Characterized by a Predominantly Humoral Inflammatory Response. J. Pathol. 2005, 207, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Cheng, H.; Zhang, N.; Cai, Y.; Zhang, Q.; Jiang, X.; Wang, A.; Zeng, H.; Jia, B. The Role of the Esophageal and Intestinal Microbiome in Gastroesophageal Reflux Disease: Past, Present, and Future. Front. Immunol. 2025, 16, 1558414. [Google Scholar] [CrossRef] [PubMed]
- Kuribayashi, S.; Kusano, M.; Kawamura, O.; Shimoyama, Y.; Maeda, M.; Hisada, T.; Ishizuka, T.; Dobashi, K.; Mori, M. Mechanism of Gastroesophageal Reflux in Patients with Obstructive Sleep Apnea Syndrome. Neurogastroenterol. Motil. 2010, 22, 611. [Google Scholar] [CrossRef] [PubMed]
- Leggett, C.L.; Gorospe, E.C.; Calvin, A.D.; Harmsen, W.S.; Zinsmeister, A.R.; Caples, S.; Somers, V.K.; Dunagan, K.; Lutzke, L.; Wang, K.K.; et al. Obstructive Sleep Apnea Is a Risk Factor for Barrett’s Esophagus. Clin. Gastroenterol. Hepatol. 2014, 12, 583–588.e1. [Google Scholar] [CrossRef]
- Cummings, L.C.; Shah, N.; Maimone, S.; Salah, W.; Khiani, V.; Chak, A. Barrett’s Esophagus and the Risk of Obstructive Sleep Apnea: A Case-Control Study. BMC Gastroenterol. 2013, 13, 82. [Google Scholar] [CrossRef]
- Lindam, A.; Kendall, B.J.; Thrift, A.P.; Macdonald, G.A.; O’Brien, S.; Lagergren, J.; Whiteman, D.C. Symptoms of Obstructive Sleep Apnea, Gastroesophageal Reflux and the Risk of Barrett’s Esophagus in a Population-Based Case-Control Study. PLoS ONE 2015, 10, e0129836. [Google Scholar] [CrossRef] [PubMed]
- Kountouras, J.; Stergiopoulos, C.; Zavos, C. Obstructive Sleep Apnea and Environmental Contributors for Barrett’s Esophagus. Clin. Gastroenterol. Hepatol. 2014, 12, 1055–1056. [Google Scholar] [CrossRef] [PubMed]
- Prokudina, E.S.; Maslov, L.N.; Ivanov, V.V.; Bespalova, I.D.; Pismennyi, D.S.; Voronkov, N.S. The Role of Reactive Oxygen Species in the Pathogenesis of Adipocyte Dysfunction in Metabolic Syndrome. Prospects of Pharmacological Correction. Vestn. Ross. Akad. Med. Nauk. 2017, 72, 11–16. (In Russian) [Google Scholar] [CrossRef]
- Ye, X.W.; Xiao, J.; Qiu, T.; Tang, Y.J.; Feng, Y.L.; Wang, K.; Ou, X.M. Helicobacter pylori Seroprevalence in Patients with Obstructive Sleep Apnea Syndrome among a Chinese Population. Saudi Med. J. 2009, 30, 693–697. [Google Scholar] [PubMed]
- Bai, H.; Sha, B.; Xu, X.; Yu, L. Gender Difference in Chronic Cough: Are Women More Likely to Cough? Front. Physiol. 2021, 12, 654797. [Google Scholar] [CrossRef]
- Mace, E.L.; Zhao, S.; Lipscomb, B.; Wootten, C.T.; Belcher, R.H. Clinical Significance of Mast Cells in the Supraglottic Larynx of Children with Aerodigestive Disease. Otolaryngol. Head Neck Surg. 2022, 167, 375–381. [Google Scholar] [CrossRef]
- Zhou, E.; Zhou, T.; Wang, X.; Zhang, J.; Guan, J.; Yin, S.; Huang, W.; Yi, H.; Zou, J. Identifying and Validating Immunological Biomarkers in Obstructive Sleep Apnea through Bioinformatics Analysis. Sci. Rep. 2025, 15, 9746. [Google Scholar] [CrossRef]
- Dos Santos Cunha, A.C.; Simon, A.G.; Zander, T.; Buettner, R.; Bruns, C.J.; Schroeder, W.; Gebauer, F.; Quaas, A. Dissecting the Inflammatory Tumor Microenvironment of Esophageal Adenocarcinoma: Mast Cells and Natural Killer Cells Are Favorable Prognostic Factors and Associated with Less Extensive Disease. J. Cancer Res. Clin. Oncol. 2023, 149, 6917–6929. [Google Scholar] [CrossRef]
- Wiklund, A.-K.; Santoni, G.; Yan, J.; Radkiewicz, C.; Xie, S.; Birgisson, H.; Ness-Jensen, E.; von Euler-Chelpin, M.; Kauppila, J.H.; Lagergren, J. Risk of Esophageal Adenocarcinoma After Helicobacter pylori Eradication Treatment in a Population-Based Multinational Cohort Study. Gastroenterology 2024, 167, 485–492.e3. [Google Scholar] [CrossRef]
- Xie, Y.; Li, J.; Tao, Q.; Zeng, C.; Chen, Y. Identification of a Diagnosis and Therapeutic Inflammatory Response-Related Gene Signature Associated with Esophageal Adenocarcinoma. Crit. Rev. Eukaryot. Gene Expr. 2023, 33, 65–80. [Google Scholar] [CrossRef]
- Yang, C.; Cao, F.; He, Y. An Immune-Related Gene Signature for Predicting Survival and Immunotherapy Efficacy in Esophageal Adenocarcinoma. Med. Sci. Monit. 2023, 29, e940157. [Google Scholar] [CrossRef]
- Shu, F.; Yu, J.; Liu, Y.; Wang, F.; Gou, G.; Wen, M.; Luo, C.; Lu, X.; Hu, Y.; Du, Q.; et al. Mast Cells: Key Players in Digestive System Tumors and Their Interactions with Immune Cells. Cell Death Discov. 2025, 11, 8. [Google Scholar] [CrossRef]
- Ying, G.X.; Sheng, L.W.; Xia, Z.L.; Tao, W.H. CagA+ H. pylori Filtrate Induces Cytokine IL-8 Secretion by Esophageal Squamous Carcinoma EC 109 Cells via a P38 Pathway. Indian J. Pathol. Microbiol. 2014, 7, 13–18. [Google Scholar] [CrossRef]
- Li, W.S.; Tian, D.P.; Guan, X.Y.; Yun, H.; Wang, H.T.; Xiao, Y.; Bi, C.; Ying, S.; Su, M. Esophageal Intraepithelial Invasion of Helicobacter pylori Correlates with Atypical Hyperplasia. Int. J. Cancer 2014, 134, 2626–2632. [Google Scholar] [CrossRef]
- Liang, J.; Li, G.; Xu, J.; Wang, T.; Jia, Y.; Zhai, Q.; Qiao, L.; Chen, M.; Guo, Y.; Zhang, S. Hypertension Predicts a Poor Prognosis in Patients with Esophageal Squamous Cell Carcinoma. Oncotarget 2018, 9, 14068–14076. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-H.; Wang, Y.; Wang, H.; Zhong, M.; Qi, X.; Xie, S.-H. Metabolic Syndrome and Risk of Esophageal Cancer by Histological Type: Systematic Review and Meta-Analysis of Prospective Studies. Cancer Epidemiol. 2025, 97, 102849. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Tan, F.; Huai, Q.; Wang, Z.; Shao, F.; Zhang, G.; Yang, Z.; Li, R.; Xue, Q.; Gao, S.; et al. Comprehensive Analysis of PD-L1 Expression, Immune Infiltrates, and M6A RNA Methylation Regulators in Esophageal Squamous Cell Carcinoma. Front. Immunol. 2021, 12, 669750. [Google Scholar] [CrossRef] [PubMed]
- Azzi-Martin, L.; Touffait-Calvez, V.; Everaert, M.; Jia, R.; Sifré, E.; Seeneevassen, L.; Varon, C.; Dubus, P.; Ménard, A. Cytolethal Distending Toxin Modulates Cell Differentiation and Elicits Epithelial to Mesenchymal Transition. J. Infect. Dis. 2024, 229, 1688–1701. [Google Scholar] [CrossRef]
- DesHpande, N.P.; Riordan, S.M.; Gorman, C.J.; Nielsen, S.; Russell, T.L.; Correa-Ospina, C.; Fernando, B.S.M.; Waters, S.A.; Castaño-Rodríguez, N.; Man, S.M.; et al. Multi-Omics of the Esophageal Microenvironment Identifies Signatures Associated with Progression of Barrett’s Esophagus. Genome Med. 2021, 13, 133. [Google Scholar] [CrossRef]
- Valenzuela, M.A. Helicobacter pylori-Induced Inflammation and Epigenetic Changes during Gastric Carcinogenesis. World J. Gastroenterol. 2015, 21, 12742–12756. [Google Scholar] [CrossRef]
- Damiano, O.M.; Stevens, A.J.; Kenwright, D.N.; Seddon, A.R. Chronic Inflammation to Cancer: The Impact of Oxidative Stress on DNA Methylation. Front. Biosci. 2025, 30, 26142. [Google Scholar] [CrossRef]
- Kountouras, J.; Boziki, M.; Polyzos, S.A.; Katsinelos, P.; Gavalas, E.; Zeglinas, C.; Tzivras, D.; Romiopoulos, I.; Giorgakis, N.; Anastasiadou, K.; et al. Impact of Reactive Oxygen Species Generation on Helicobacter pylori-Related Extragastric Diseases: A Hypothesis. Free Radic. Res. 2017, 51, 73–79. [Google Scholar] [CrossRef]
- Han, D.; Zhang, C. The Oxidative Damage and Inflammation Mechanisms in GERD-Induced Barrett’s Esophagus. Front. Cell Dev. Biol. 2022, 10, 885537. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N. Inflammation and Oxidative Stress in Gastroesophageal Reflux Disease. J. Clin. Biochem. Nutr. 2007, 40, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Kountouras, J.; Boura, P.; Lygidakis, N.J. Omeprazole and Regulation of Cytokine Profile in Helicobacter pylori-Infected Patients with Duodenal Ulcer Disease. Hepatogastroenterology 2000, 47, 1301–1304. [Google Scholar] [PubMed]
- Kountouras, J.; Kazakos, E.; Polyzos, S.A.; Chatzopoulos, D.; Tzitiridou-Chatzopoulou, M.; Doulberis, M.; Papaefthymiou, A.; Vardaka, E. GM-CSF as a Potential Candidate of a Vaccine-Induced Reduction of Helicobacter pylori Infection. Helicobacter 2022, 27, e12884. [Google Scholar] [CrossRef]
- Ammendola, M.; Patruno, R.; Sacco, R.; Marech, I.; Sammarco, G.; Zuccalà, V.; Luposella, M.; Zizzo, N.; Gadaleta, C.; Porcelli, M.; et al. Mast Cells Positive to Tryptase and Tumour-Associated Macrophages Correlate with Angiogenesis in Locally Advanced Colorectal Cancer Patients Undergone to Surgery. Expert Opin. Ther. Targets 2016, 20, 533–540. [Google Scholar] [CrossRef]
- Kauppi, J.; Räsänen, J.; Sihvo, E.; Nieminen, U.; Arkkila, P.; Ahotupa, M.; Salo, J. Increased Oxidative Stress in the Proximal Stomach of Patients with Barrett’s Esophagus and Adenocarcinoma of the Esophagus and Esophagogastric Junction. Transl. Oncol. 2016, 9, 336–339. [Google Scholar] [CrossRef]
- Butcher, L.D.; den Hartog, G.; Ernst, P.B.; Crowe, S.E. Oxidative Stress Resulting from Helicobacter pylori Infection Contributes to Gastric Carcinogenesis. Cell Mol. Gastroenterol. Hepatol. 2017, 3, 316–322. [Google Scholar] [CrossRef]
- Tomita, M.; Matsuzaki, Y.; Edagawa, M.; Shimizu, T.; Hara, M.; Sekiya, R.; Onitsuka, T. Association of Mast Cells with Tumor Angiogenesis in Esophageal Squamous Cell Carcinoma. Dis. Esophagus 2001, 14, 135–138. [Google Scholar] [CrossRef]
- Forma, A.; Tyczyńska, M.; Kędzierawski, P.; Gietka, K.; Sitarz, M. Gastric Carcinogenesis: A Comprehensive Review of the Angiogenic Pathways. Clin. J. Gastroenterol. 2021, 14, 14–25. [Google Scholar] [CrossRef]
- Malespín-Bendaña, W.; Alpízar-Alpízar, W.; Figueroa-Protti, L.; Reyes, L.; Molina-Castro, S.; Une, C.; Ramírez-Mayorga, V. Helicobacter pylori Infection Induces Gastric Precancerous Lesions and Persistent Expression of Angpt2, Vegf-A and Tnf-A in a Mouse Model. Front. Oncol. 2023, 13, 1072802. [Google Scholar] [CrossRef] [PubMed]
- González, M.F.; Burgos-Ravanal, R.; Shao, B.; Heinecke, J.; Valenzuela-Valderrama, M.; Corvalán, A.H.; Quest, A.F.G. Extracellular Vesicles from Gastric Epithelial GES-1 Cells Infected with Helicobacter pylori Promote Changes in Recipient Cells Associated with Malignancy. Front. Oncol. 2022, 12, 962920. [Google Scholar] [CrossRef] [PubMed]
- Baj, J.; Brzozowska, K.; Forma, A.; Maani, A.; Sitarz, E.; Portincasa, P. Immunological Aspects of the Tumor Microenvironment and Epithelial-Mesenchymal Transition in Gastric Carcinogenesis. Int. J. Mol. Sci. 2020, 21, 2544. [Google Scholar] [CrossRef] [PubMed]
- Vergara, D.; Simeone, P.; Damato, M.; Maffia, M.; Lanuti, P.; Trerotola, M. The Cancer Microbiota: EMT and Inflammation as Shared Molecular Mechanisms Associated with Plasticity and Progression. J. Oncol. 2019, 2019, 1253727. [Google Scholar] [CrossRef]
- Lv, Y.; Zhao, Y.; Wang, X.; Chen, N.; Mao, F.; Teng, Y.; Wang, T.; Peng, L.; Zhang, J.; Cheng, P.; et al. Increased Intratumoral Mast Cells Foster Immune Suppression and Gastric Cancer Progression through TNF-α-PD-L1 Pathway. J. Immunother. Cancer 2019, 7, 54. [Google Scholar] [CrossRef]
- Dileepan, K.N.; Raveendran, V.V.; Sharma, R.; Abraham, H.; Barua, R.; Singh, V.; Sharma, R.; Sharma, M. Mast Cell-Mediated Immune Regulation in Health and Disease. Front. Med. 2023, 10, 1213320. [Google Scholar] [CrossRef]
- Gillespie, M.R.; Rai, V.; Agrawal, S.; Nandipati, K.C. The Role of Microbiota in the Pathogenesis of Esophageal Adenocarcinoma. Biology 2021, 10, 697. [Google Scholar] [CrossRef]
- Muszyński, D.; Kudra, A.; Sobocki, B.K.; Folwarski, M.; Vitale, E.; Filetti, V.; Dudzic, W.; Kaźmierczak-Siedlecka, K.; Połom, K. Esophageal Cancer and Bacterial Part of Gut Microbiota—A Multidisciplinary Point of View. Front. Cell Infect. Microbiol. 2022, 12, 1057668. [Google Scholar] [CrossRef]
- Niu, Q.; Zhu, J.; Yu, X.; Feng, T.; Ji, H.; Li, Y.; Zhang, W.; Hu, B. Immune Response in H. pylori-Associated Gastritis and Gastric Cancer. Gastroenterol. Res. Pract. 2020, 2020, 9342563. [Google Scholar] [CrossRef]
- Reyes, V.E.; Peniche, A.G. Helicobacter pylori Deregulates T and B Cell Signaling to Trigger Immune Evasion. Curr. Top. Microbiol. Immunol. 2019, 421, 229–265. [Google Scholar] [CrossRef]
- Larussa, T.; Leone, I.; Suraci, E.; Imeneo, M.; Luzza, F. Helicobacter pylori and T Helper Cells: Mechanisms of Immune Escape and Tolerance. J. Immunol. Res. 2015, 2015, 981328. [Google Scholar] [CrossRef]
- Magahis, P.T.; Maron, S.B.; Cowzer, D.; King, S.; Schattner, M.; Janjigian, Y.; Faleck, D.; Laszkowska, M. Impact of Helicobacter pylori Infection Status on Outcomes among Patients with Advanced Gastric Cancer Treated with Immune Checkpoint Inhibitors. J. Immunother. Cancer 2023, 11, e007699. [Google Scholar] [CrossRef]
- Ganguli, P.; Basanta, C.C.; Acha-Sagredo, A.; Misetic, H.; Armero, M.; Mendez, A.; Zahra, A.; Devonshire, G.; Kelly, G.; Freeman, A.; et al. Context-Dependent Effects of CDKN2A and Other 9p21 Gene Losses during the Evolution of Esophageal Cancer. Nat. Cancer 2025, 6, 158–174. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Osterheld, M.; Fontolliet, C.; Bosman, F.T.; Benhattar, J. P16 Inactivation by Methylation of the CDKN2A Promoter Occurs Early during Neoplastic Progression in Barrett’s Esophagus. Gastroenterology 2002, 122, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Sepulveda, J.L.; Komissarova, E.V.; Hills, C.; Seckar, T.D.; LeFevre, N.M.; Simonyan, H.; Young, C.; Su, G.; Del Portillo, A.; et al. CDKN2A-P16 Deletion and Activated KRASG12D Drive Barrett’s-Like Gland Hyperplasia-Metaplasia and Synergize in the Development of Dysplasia Precancer Lesions. Cell Mol. Gastroenterol. Hepatol. 2024, 17, 769–784. [Google Scholar] [CrossRef] [PubMed]
- Capellmann, S.; Sonntag, R.; Schüler, H.; Meurer, S.K.; Gan, L.; Kauffmann, M.; Horn, K.; Königs-Werner, H.; Weiskirchen, R.; Liedtke, C.; et al. Transformation of Primary Murine Peritoneal Mast Cells by Constitutive KIT Activation Is Accompanied by Loss of Cdkn2a/Arf Expression. Front. Immunol. 2023, 14, 1154416. [Google Scholar] [CrossRef]
- Das, D.; Karthik, N.; Taneja, R. Crosstalk Between Inflammatory Signaling and Methylation in Cancer. Front. Cell Dev. Biol. 2021, 9, 756458. [Google Scholar] [CrossRef]
- Yang, L.; Chen, X.; Lee, C.; Shi, J.; Lawrence, E.B.; Zhang, L.; Li, Y.; Gao, N.; Jung, S.Y.; Creighton, C.J.; et al. Functional Characterization of Age-Dependent P16 Epimutation Reveals Biological Drivers and Therapeutic Targets for Colorectal Cancer. J. Exp. Clin. Cancer Res. 2023, 42, 113. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The Basics of Epithelial-Mesenchymal Transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Z.; Zhou, C.; Liu, L.; Huang, C. Epithelial–Mesenchymal Transition: The History, Regulatory Mechanism, and Cancer Therapeutic Opportunities. MedComm 2022, 3, e144. [Google Scholar] [CrossRef] [PubMed]
- Rojas, A.; Araya, P.; Gonzalez, I.; Morales, E. Gastric Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1226, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Liu, H.; Peng, C.; Zou, Y.; Jia, J.; Li, H.; Feng, Z.; Zhang, G.; Yao, M. Helicobacter pylori Infection Facilitates Cell Migration and Potentially Impact Clinical Outcomes in Gastric Cancer. Heliyon 2024, 10, e37046. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.H.; Souza, R.F. Biology of Barrett’s Esophagus and Esophageal Adenocarcinoma. Gastrointest. Endosc. Clin. N. Am. 2011, 21, 25–38. [Google Scholar] [CrossRef]
- Quante, M.; Bhagat, G.; Abrams, J.A.; Marache, F.; Good, P.; Lee, M.D.; Lee, Y.; Friedman, R.; Asfaha, S.; Dubeykovskaya, Z.; et al. Bile Acid and Inflammation Activate Gastric Cardia Stem Cells in a Mouse Model of Barrett-Like Metaplasia. Cancer Cell 2012, 21, 36–51. [Google Scholar] [CrossRef]
- Tomizawa, Y.; Wu, T.T.; Wang, K.K. Epithelial mesenchymal transition and cancer stem cells in esophageal adenocarcinoma originating from Barrett’s esophagus. Oncol. Lett. 2012, 3, 1059–1063. [Google Scholar] [CrossRef]
- Tsubakihara, Y.; Moustakas, A. Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor β. Int. J. Mol. Sci. 2018, 19, 3672. [Google Scholar] [CrossRef]
- Lee, S.; Ju, M.; Jeon, H.; Lee, Y.; Kim, C.; Park, H.; Han, S.; Kang, H. Reactive Oxygen Species Induce Epithelial mesenchymal Transition, Glycolytic Switch, and Mitochondrial Repression through the Dlx 2/Snail Signaling Pathways in MCF 7 Cells. Mol. Med. Rep. 2019, 20, 2339–2346. [Google Scholar] [CrossRef]
- Wroblewski, M.; Bauer, R.; Cubas Córdova, M.; Udonta, F.; Ben-Batalla, I.; Legler, K.; Hauser, C.; Egberts, J.; Janning, M.; Velthaus, J.; et al. Mast Cells Decrease Efficacy of Anti-Angiogenic Therapy by Secreting Matrix-Degrading Granzyme B. Nat. Commun. 2017, 8, 269. [Google Scholar] [CrossRef]
- Niland, S.; Riscanevo, A.X.; Eble, J.A. Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int. J. Mol. Sci. 2021, 23, 146. [Google Scholar] [CrossRef]
- Nabavi-Rad, A.; Yadegar, A.; Sadeghi, A.; Aghdaei, H.A.; Zali, M.R.; Klionsky, D.J.; Yamaoka, Y. The Interaction between Autophagy, Helicobacter pylori, and Gut Microbiota in Gastric Carcinogenesis. Trends Microbiol. 2023, 31, 1024–1043. [Google Scholar] [CrossRef]
- Săsăran, M.O.; Meliț, L.E.; Dobru, E.D. MicroRNA Modulation of Host Immune Response and Inflammation Triggered by Helicobacter pylori. Int. J. Mol. Sci. 2021, 22, 1406. [Google Scholar] [CrossRef]
- Di Gregorio, J.; Robuffo, I.; Spalletta, S.; Giambuzzi, G.; De Iuliis, V.; Toniato, E.; Martinotti, S.; Conti, P.; Flati, V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front. Cell Dev. Biol. 2020, 8, 607483. [Google Scholar] [CrossRef]
- Wang, S.; Kuang, J.; Zhang, H.; Chen, W.; Zheng, X.; Wang, J.; Huang, F.; Ge, K.; Li, M.; Zhao, M.; et al. Bile Acid–Microbiome Interaction Promotes Gastric Carcinogenesis. Adv. Sci. 2022, 9, e2200263. [Google Scholar] [CrossRef]
- Chattopadhyay, I.; Gundamaraju, R.; Rajeev, A. Diversification and Deleterious Role of Microbiome in Gastric Cancer. Cancer Rep. 2023, 6, e1878. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Pereira, V.; Saxena, S.; Ghosh, T.S.; Anbumani, D.; Bag, S.; Das, B.; Nair, G.B.; Abraham, P.; Mande, S.S. Gastric Microbiome of Indian Patients with Helicobacter pylori Infection, and Their Interaction Networks. Sci. Rep. 2017, 7, 15438. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cao, X.-S.; Guo, G.-Y.; Zhou, M.-G.; Yu, B. Effect of Helicobacter pylori Eradication on Human Gastric Microbiota: A Systematic Review and Meta-Analysis. Front. Cell Infect. Microbiol. 2022, 12, 899248. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Chen, S.; Yi, X.; Zhang, F.; Zhou, X.; Zeng, M.; Song, H. Helicobacter pylori Infection Process: From the Molecular World to Clinical Treatment. Front. Microbiol. 2025, 16, 1541140. [Google Scholar] [CrossRef]
- Haurat, M.F.; Aduse-Opoku, J.; Rangarajan, M.; Dorobantu, L.; Gray, M.R.; Curtis, M.A.; Feldman, M.F. Selective Sorting of Cargo Proteins into Bacterial Membrane Vesicles. J. Biol. Chem. 2011, 286, 1269–1276. [Google Scholar] [CrossRef]
- Lekmeechai, S.; Su, Y.-C.; Brant, M.; Alvarado-Kristensson, M.; Vallström, A.; Obi, I.; Arnqvist, A.; Riesbeck, K. Helicobacter pylori Outer Membrane Vesicles Protect the Pathogen from Reactive Oxygen Species of the Respiratory Burst. Front. Microbiol. 2018, 9, 1837. [Google Scholar] [CrossRef]
- Parker, H.; Keenan, J.I. Composition and Function of Helicobacter pylori Outer Membrane Vesicles. Microbes Infect. 2012, 14, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.-T.; Wang, Y.-H.; Wu, J.-J.; Lei, H.-Y. Invasion and Multiplication of Helicobacter pylori in Gastric Epithelial Cells and Implications for Antibiotic Resistance. Infect. Immun. 2010, 78, 4157–4165. [Google Scholar] [CrossRef] [PubMed]
- Krzyżek, P. Helicobacter pylori Efflux Pumps: A Double-Edged Sword in Antibiotic Resistance and Biofilm Formation. Int. J. Mol. Sci. 2024, 25, 12222. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wu, D.; Cui, G.; Lee, K.H.; Yang, T.; Zhang, Z.; Liu, Q.; Zhang, J.; Chua, E.G.; Chen, Z. Association Between Biofilm Formation and Structure and Antibiotic Resistance in H. pylori. Infect. Drug Resist. 2024, 17, 2501–2512. [Google Scholar] [CrossRef]
- Choi, Y.J.; Kim, N.; Chang, H.; Lee, H.S.; Park, S.M.; Park, J.H.; Shin, C.M.; Kim, J.M.; Kim, J.S.; Lee, D.H.; et al. Helicobacter pylori-Induced Epithelial-Mesenchymal Transition, a Potential Role of Gastric Cancer Initiation and an Emergence of Stem Cells. Carcinogenesis 2015, 36, 553–563. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, W.; Wang, H.; Zhang, C.; Li, J.; Chen, W.; Xu, X.; Wang, L.; Ma, M.; Zhang, S.; et al. Helicobacter pylori Promotes Gastric Cancer Progression by Activating the TGF-β/Smad2/EMT Pathway through HKDC1. Cell Mol. Life Sci. 2024, 81, 453. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, Y.; Li, H.; Shao, S. Helicobacter pylori Promotes Gastric Cancer Progression through the Tumor Microenvironment. Appl. Microbiol. Biotechnol. 2022, 106, 4375–4385. [Google Scholar] [CrossRef]
- Tan, C.; Zhou, H.; Xiong, Q.; Xian, X.; Liu, Q.; Zhang, Z.; Xu, J.; Yao, H. Cromolyn Sodium Reduces LPS-Induced Pulmonary Fibrosis by Inhibiting the EMT Process Enhanced by MC-Derived IL-13. Respir. Res. 2025, 26, 3. [Google Scholar] [CrossRef]
- Keita, Å.V.; Söderholm, J.D. Mucosal Permeability and Mast Cells as Targets for Functional Gastrointestinal Disorders. Curr. Opin. Pharmacol. 2018, 43, 66–71. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Fujino, Y.; Fukushima, K.; Watanabe, M.; Nakagawa, T.; Ohno, K.; Sasaki, N.; Sugano, S.; Tsujimoto, H. Biological effect of tyrosine kinase inhibitors on three canine mast cell tumor cell lines with various KIT statuses. J. Vet. Pharmacol. Ther. 2012, 35, 97–104. [Google Scholar] [CrossRef]
- Baran, J.; Sobiepanek, A.; Mazurkiewicz-Pisarek, A.; Rogalska, M.; Gryciuk, A.; Kuryk, L.; Abraham, S.N.; Staniszewska, M. Mast Cells as a Target—A Comprehensive Review of Recent Therapeutic Approaches. Cells 2023, 12, 1187. [Google Scholar] [CrossRef]
- Poto, R.; Cristinziano, L.; Criscuolo, G.; Strisciuglio, C.; Palestra, F.; Lagnese, G.; Di Salvatore, A.; Marone, G.; Spadaro, G.; Loffredo, S.; et al. The JAK1/JAK2 Inhibitor Ruxolitinib Inhibits Mediator Release from Human Basophils and Mast Cells. Front. Immunol. 2024, 15, 1443704. [Google Scholar] [CrossRef]
- Worrall, W.P.M.; Reber, L.L. Current and Future Therapeutics Targeting Mast Cells in Disease. Pharmacol. Ther. 2025, 273, 108892. [Google Scholar] [CrossRef] [PubMed]
- Sheng, F.; Li, M.; Yu, J.-M.; Yang, S.-Y.; Zou, L.; Yang, G.-J.; Zhang, L.-L. IL-33/ST2 Axis in Diverse Diseases: Regulatory Mechanisms and Therapeutic Potential. Front. Immunol. 2025, 16, 1533335. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.-N.; Teng, Q.-X.; Tian, Q.; Chen, W.; Xie, Y.; Wu, K.; Zeng, Q.; Zeng, L.; Pan, Y.; Chen, Z.-S.; et al. Signaling Pathways and Therapeutic Interventions in Gastric Cancer. Signal Transduct. Target. Ther. 2022, 7, 358. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Chen, Z.; Sui, W.; Han, W. Recent Advances in the Mechanisms of PD-L1 Expression in Gastric Cancer: A Review. Biol. Res. 2025, 58, 16. [Google Scholar] [CrossRef]
- Yi, M.; Li, T.; Niu, M.; Zhang, H.; Wu, Y.; Wu, K.; Dai, Z. Targeting Cytokine and Chemokine Signaling Pathways for Cancer Therapy. Signal Transduct. Target. Ther. 2024, 9, 176. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Zhou, Y.; Xing, Y.; Wang, Y.; Jia, Y.; Liu, D. Targeting Hippo Pathway: A Novel Strategy for Helicobacter pylori-Induced Gastric Cancer Treatment. Biomed. Pharmacother. 2023, 161, 114549. [Google Scholar] [CrossRef]
- Joo, M.K.; Park, J.-J.; Chun, H.J. Proton Pump Inhibitor: The Dual Role in Gastric Cancer. World J. Gastroenterol. 2019, 25, 2058–2070. [Google Scholar] [CrossRef]
- Pang, L.; Li, J.; Su, L.; Zang, M.; Fan, Z.; Yu, B.; Wu, X.; Li, C.; Yan, M.; Zhu, Z.; et al. ALEX1, a Novel Tumor Suppressor Gene, Inhibits Gastric Cancer Metastasis via the PAR-1/Rho GTPase Signaling Pathway. J. Gastroenterol. 2018, 53, 71–83. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J.; Song, S.; Yue, X.; Li, Q. Protease-Activated Receptor-1 (PAR-1): A Promising Molecular Target for Cancer. Oncotarget 2017, 8, 107334–107345. [Google Scholar] [CrossRef]
- Jamal Eddin, T.M.; Nasr, S.M.O.; Gupta, I.; Zayed, H.; Al Moustafa, A.-E. Helicobacter pylori and Epithelial Mesenchymal Transition in Human Gastric Cancers: An Update of the Literature. Heliyon 2023, 9, e18945. [Google Scholar] [CrossRef]
- Santero, M.; Pérez-Bracchiglione, J.; Acosta-Dighero, R.; Meade, A.G.; Antequera, A.; Auladell-Rispau, A.; Quintana, M.J.; Requeijo, C.; Rodríguez-Grijalva, G.; Salas-Gama, K.; et al. Efficacy of Systemic Oncological Treatments in Patients with Advanced Esophageal or Gastric Cancers at High Risk of Dying in the Middle and Short Term: An Overview of Systematic Reviews. BMC Cancer 2021, 21, 712. [Google Scholar] [CrossRef]
- Piotin, A.; Oulehri, W.; Charles, A.-L.; Tacquard, C.; Collange, O.; Mertes, P.-M.; Geny, B. Oxidative Stress and Mitochondria Are Involved in Anaphylaxis and Mast Cell Degranulation: A Systematic Review. Antioxidants 2024, 13, 920. [Google Scholar] [CrossRef] [PubMed]
- Mansour, R.M.; El-Sayyad, G.S.; Abulsoud, A.I.; Hemdan, M.; Faraag, A.H.I.; Ali, M.A.; Elsakka, E.G.E.; Abdelmaksoud, N.M.; Abdallah, A.K.; Mahdy, A.; et al. The Role of MiRNAs in Pathogenesis, Diagnosis, and Therapy of Helicobacter pylori Infection, Gastric Cancer-Causing Bacteria: Special Highlights on Nanotechnology-Based Therapy. Microb. Pathog. 2025, 205, 107646. [Google Scholar] [CrossRef] [PubMed]
- Garreau, M.; Weidner, J.; Hamilton, R.; Kolosionek, E.; Toki, N.; Stavenhagen, K.; Paris, C.; Bonetti, A.; Czechtizky, W.; Gnerlich, F.; et al. Chemical Modification Patterns for MicroRNA Therapeutic Mimics: A Structure-Activity Relationship (SAR) Case-Study on MiR-200c. Nucleic Acids Res. 2024, 52, 2792–2807. [Google Scholar] [CrossRef] [PubMed]
- Abdi, E.; Latifi-Navid, S.; Abedi Sarvestani, F.; Esmailnejad, M.H. Emerging Therapeutic Targets for Gastric Cancer from a Host—Helicobacter pylori Interaction Perspective. Expert Opin. Ther. Targets 2021, 25, 685–699. [Google Scholar] [CrossRef]
- Aliabadi, A.; Haghshenas, M.R.; Kiani, R.; Panjehshahin, M.R.; Erfani, N. Promising Anticancer Activity of Cromolyn in Colon Cancer: In Vitro and in Vivo Analysis. J. Cancer Res. Clin. Oncol. 2024, 150, 207. [Google Scholar] [CrossRef]
- Holmgaard, R.B.; Schaer, D.A.; Li, Y.; Castaneda, S.P.; Murphy, M.Y.; Xu, X.; Inigo, I.; Dobkin, J.; Manro, J.R.; Iversen, P.; et al. Targeting the TGFβ Pathway with Galunisertib, a TGFβRI Small Molecule Inhibitor, Promotes Anti-Tumor Immunity Leading to Durable, Complete Responses, as Monotherapy and in Combination with Checkpoint Blockade. J. Immunother. Cancer 2018, 6, 47. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, E.; Yu, H.; Yuan, C.; Abbas, M.N.; Cui, H. Methylation across the Central Dogma in Health and Diseases: New Therapeutic Strategies. Signal Transduct. Target. Ther. 2023, 8, 310. [Google Scholar] [CrossRef]
- Dai, W.; Qiao, X.; Fang, Y.; Guo, R.; Bai, P.; Liu, S.; Li, T.; Jiang, Y.; Wei, S.; Na, Z.; et al. Epigenetics-Targeted Drugs: Current Paradigms and Future Challenges. Signal Transduct. Target. Ther. 2024, 9, 332. [Google Scholar] [CrossRef] [PubMed]
- Baker, K. Organoids Provide an Important Window on Inflammation in Cancer. Cancers 2018, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Song, Q.; Xiao, M.; Gao, J.; Cao, X.; Zheng, W. Organoids in Recapitulating Tumorigenesis Driven by Risk Factors: Current Trends and Future Perspectives. Int. J. Biol. Sci. 2022, 18, 2729–2743. [Google Scholar] [CrossRef] [PubMed]
- Bernard, J.N.; Chinnaiyan, V.; Almeda, J.; Catala-Valentin, A.; Andl, C.D. Lactobacillus Sp. Facilitate the Repair of DNA Damage Caused by Bile-Induced Reactive Oxygen Species in Experimental Models of Gastroesophageal Reflux Disease. Antioxidants 2023, 12, 1314. [Google Scholar] [CrossRef]
- Oksaharju, A. Probiotic Lactobacillus rhamnosus Downregulates FCER1 and HRH4 Expression in Human Mast Cells. World J. Gastroenterol. 2011, 17, 750–759. [Google Scholar] [CrossRef]
- Traina, G. Mast Cells in Gut and Brain and Their Potential Role as an Emerging Therapeutic Target for Neural Diseases. Front. Cell Neurosci. 2019, 13, 345. [Google Scholar] [CrossRef]
- Li, Y.-J.; Li, J.; Dai, C. The Role of Intestinal Microbiota and Mast Cell in a Rat Model of Visceral Hypersensitivity. J. Neurogastroenterol. Motil. 2020, 26, 529–538. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, X.; Huang, Y.; Liang, K.; Chen, L.; Zhong, C.; Chen, Y.; Chen, C.; Wang, Z.; He, F.; et al. Identification of KRAS Mutation-Associated Gut Microbiota in Colorectal Cancer and Construction of Predictive Machine Learning Model. Microbiol. Spectr. 2024, 12, e0272023. [Google Scholar] [CrossRef]
- Wang, J.; Ji, H.; Wang, S.; Liu, H.; Zhang, W.; Zhang, D.; Wang, Y. Probiotic Lactobacillus plantarum Promotes Intestinal Barrier Function by Strengthening the Epithelium and Modulating Gut Microbiota. Front. Microbiol. 2018, 9, 1953. [Google Scholar] [CrossRef]
- Rodríguez-Sojo, M.J.; Garcia-Garcia, J.; Ruiz-Malagón, A.J.; Diez-Echave, P.; Hidalgo-García, L.; Molina-Tijeras, J.A.; González-Lozano, E.; López-Escanez, L.; Rodríguez-Cabezas, M.E.; Rodríguez-Sánchez, M.J.; et al. Beneficial Effects of Limosilactobacillus fermentum in the DCA Experimental Model of Irritable Bowel Syndrome in Rats. Nutrients 2022, 15, 24. [Google Scholar] [CrossRef]
- Harata, G.; He, F.; Takahashi, K.; Hosono, A.; Miyazawa, K.; Yoda, K.; Hiramatsu, M.; Kaminogawa, S. Human Lactobacillus Strains from the Intestine Can Suppress IgE-Mediated Degranulation of Rat Basophilic Leukaemia (RBL-2H3) Cells. Microorganisms 2016, 4, 40. [Google Scholar] [CrossRef] [PubMed]
- Cassard, L.; Lalanne, A.I.; Garault, P.; Cotillard, A.; Chervaux, C.; Wels, M.; Smokvina, T.; Daëron, M.; Bourdet-Sicard, R. Individual Strains of Lactobacillus paracasei Differentially Inhibit Human Basophil and Mouse Mast Cell Activation. Immun. Inflamm. Dis. 2016, 4, 289–299. [Google Scholar] [CrossRef]
- Liu, X.; Li, B.; Liang, L.; Han, J.; Mai, S.; Liu, L. From Microbes to Medicine: Harnessing the Power of the Microbiome in Esophageal Cancer. Front. Immunol. 2024, 15, 1450927. [Google Scholar] [CrossRef]
- Hu, K.Y.; Tseng, P.H.; Liou, J.M.; Tu, C.H.; Chen, C.C.; Lee, Y.C.; Chiu, H.M.; Wu, M.S. Rebound of Reflux-Related Symptoms After Helicobacter pylori Eradication in Patients with Gastroesophageal Reflux Disease: A Prospective Randomized Study. Helicobacter 2025, 30, e70023. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qu, Y.; Lin, Y.; Liu, Z.; Lagergren, J.; Yuan, S.; Ness-Jensen, E.; Jiang, W.; Xie, S.H. Helicobacter pylori Infection and Eradication in Relation to Gastroesophageal Reflux Disease. J. Gastroenterol. Hepatol. 2025. [Google Scholar] [CrossRef] [PubMed]
Disease Stage | Key Immune Cells | Major Cytokines/Pathways | Key Outcomes |
---|---|---|---|
GERD | MCs, neutrophils, macrophages | IL-6, TNF-α, NF-κB | Chronic inflammation, epithelial damage |
BE | MCs, Th17-cells, macrophages | IL-17, TGF-β, Wnt/β-catenin | Metaplasia, oxidative stress |
EAC | MCs, TAMs, Tregs, MDSCs | VEGF, STAT3, PI3K/AKT, NF-κB | Angiogenesis, immune evasion, EMT |
Pathway | MC Role | Microbiome Contribution |
---|---|---|
TGF-β/Smad Pathway | Secretes TGF-β to initiate Smad-dependent EMT | Dysbiosis enhances MC activity through LPS |
STAT3 Pathway | IL-6 release activates STAT3 and EMT transcription | Loss of SCFAs removes STAT3 inhibition |
NF-κB Signaling | Drives chronic inflammation and oxidative stress | Microbial PAMPs activate NF-κB in MCs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazakos, E.I.; Petinaki, E.; Liatsos, C.; Papanikolaou, I.S.; Anastasiadou, K.; Kountouras, J. The Potential Role of Helicobacter pylori-Related Mast Cell Activation in the Progression from Gastroesophageal Reflux to Barrett’s Esophagus and Esophageal Adenocarcinoma. Microorganisms 2025, 13, 1883. https://doi.org/10.3390/microorganisms13081883
Kazakos EI, Petinaki E, Liatsos C, Papanikolaou IS, Anastasiadou K, Kountouras J. The Potential Role of Helicobacter pylori-Related Mast Cell Activation in the Progression from Gastroesophageal Reflux to Barrett’s Esophagus and Esophageal Adenocarcinoma. Microorganisms. 2025; 13(8):1883. https://doi.org/10.3390/microorganisms13081883
Chicago/Turabian StyleKazakos, Evangelos I., Efthymia Petinaki, Christos Liatsos, Ioannis S. Papanikolaou, Kyriaki Anastasiadou, and Jannis Kountouras. 2025. "The Potential Role of Helicobacter pylori-Related Mast Cell Activation in the Progression from Gastroesophageal Reflux to Barrett’s Esophagus and Esophageal Adenocarcinoma" Microorganisms 13, no. 8: 1883. https://doi.org/10.3390/microorganisms13081883
APA StyleKazakos, E. I., Petinaki, E., Liatsos, C., Papanikolaou, I. S., Anastasiadou, K., & Kountouras, J. (2025). The Potential Role of Helicobacter pylori-Related Mast Cell Activation in the Progression from Gastroesophageal Reflux to Barrett’s Esophagus and Esophageal Adenocarcinoma. Microorganisms, 13(8), 1883. https://doi.org/10.3390/microorganisms13081883