Sustainable Formulation of Chewing Candies Using Liver Hydrolysates with Antioxidant and Antimicrobial Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Production of Hydrolysates from Porcine Liver
2.2. Composition of Raw Materials for Gummy Candy Preparation
2.3. Analysis of Color Characteristics, Texture, pH, and Overall Acceptability of Gummy Candies with Hydrolysates
2.4. Assessment of Free Radical Scavenging Activity Using DPPH• Assay
2.5. Assessment of Free Radical Scavenging Activity Using ATBS•+ Assay
2.6. Determination of Antimicrobial Activity of Gelatin-Based Gummy Agar
2.7. Determination of Antimicrobial Activity of Agar-Based Gummies
2.8. Microstructural Evaluation of GC with Hydrolysates Using SEM
2.9. Microbiological Profile
3. Statistical Analysis
4. Results and Discussion
4.1. Antioxidant Activity (ABTS•+, µmol/g, and DPPH•,%) of Gummy Candies That Contain Liver Hydrolysates and Various Gelling Agents
4.2. Antimicrobial Activity of Gummy Candies That Contain Liver Hydrolysates and Various Gelling Agents
4.3. Texture, Color Parameters, Overall Acceptability, and Microstructure of Gummy Candies Containing Liver Hydrolysates and Different Gelling Agents
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Putnik, P.; Kovačević, D.B. Sustainable Functional Food Processing. Foods 2021, 10, 1438. [Google Scholar] [CrossRef] [PubMed]
- Hartel, R.W.; Von Elbe, J.H.; Hofberger, R. Confectionery Science and Technology; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-61740-4. [Google Scholar]
- Nabeshima, E.H.; Tavares, P.E.d.R.; Lemos, A.L.d.S.C.; de Moura, S.C.S.R. Emerging Ingredients for Clean Label Products and Food Safety. Braz. J. Food Technol. 2024, 27, e2023160. [Google Scholar] [CrossRef]
- Saguer, E.; Abril, B.; Pateiro, M.; Bermúdez, R.; Domínguez-Valencia, R.; Bou, R. Strategies for Porcine Liver Valorization as a Source of Food Ingredients. Curr. Food Sci. Technol. Rep. 2024, 2, 241–253. [Google Scholar] [CrossRef]
- Zinina, O.; Vishnyakova, E.; Neverova, O.; Aleksandrina, E.; Kanev, P. Effects of Protein-in-Oil Emulsion on the Physicochemical and Sensory Properties of the Pâté. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 949, p. 012029. [Google Scholar]
- Ospina-Maldonado, S.; Martin-Gómez, H.; Cardoso-Ugarte, G.A. From Waste to Wellness: A Review on the Harness of Food Industry by-Products for Sustainable Functional Food Production. Int. J. Food Sci. Technol. 2024, 59, 8680–8692. [Google Scholar] [CrossRef]
- Zou, Z.; Wei, M.; Fang, J.; Dai, W.; Sun, T.; Liu, Q.; Gong, G.; Liu, Y.; Song, S.; Ma, F.; et al. Preparation of Chondroitin Sulfates with Different Molecular Weights from Bovine Nasal Cartilage and Their Antioxidant Activities. Int. J. Biol. Macromol. 2020, 152, 1047–1055. [Google Scholar] [CrossRef]
- Pesticides, Heavy Metals and Plasticizers: Contamination and Risk Assessment of Drinking-Water Quality. Available online: https://www.mdpi.com/2071-1050/15/17/13263?utm_source=chatgpt.com (accessed on 24 July 2025).
- Donato, M.M.; Cardoso, O.; Assis, G.; Henriques, S.C.; Freitas, A.; Ramos, F. Copper and Antimicrobial Residues in the Liver and Kidney—Antimicrobial Resistance and Cu Tolerance Unrelated in Escherichia Coli from Piglets’ Faeces. Microorganisms 2024, 12, 2553. [Google Scholar] [CrossRef]
- Chakka, A.K.; Elias, M.; Jini, R.; Sakhare, P.Z.; Bhaskar, N. In-Vitro Antioxidant and Antibacterial Properties of Fermentatively and Enzymatically Prepared Chicken Liver Protein Hydrolysates. J. Food Sci. Technol. 2015, 52, 8059–8067. [Google Scholar] [CrossRef]
- Najafian, L.; Babji, A.S. A Review of Fish-Derived Antioxidant and Antimicrobial Peptides: Their Production, Assessment, and Applications. Peptides 2012, 33, 178–185. [Google Scholar] [CrossRef]
- Verma, A.K.; Chatli, M.K.; Kumar, P.; Mehta, N. In-vitro assessment of antioxidant and antimicrobial activity of whole porcine liver hydrolysates and its fractions. Anim. Prod. Sci. 2018, 59, 641–646. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Borrajo, P.; Pateiro, M.; Lorenzo, J.M.; Franco, D. Antioxidant Activity and Peptidomic Analysis of Porcine Liver Hydrolysates Using Alcalase, Bromelain, Flavourzyme and Papain Enzymes. Food Res. Int. 2020, 137, 109389. [Google Scholar] [CrossRef]
- Aspevik, T.; Oterhals, Å.; Rønning, S.B.; Altintzoglou, T.; Wubshet, S.G.; Gildberg, A.; Afseth, N.K.; Whitaker, R.D.; Lindberg, D. Valorization of Proteins from Co- and By-Products from the Fish and Meat Industry. In Chemistry and Chemical Technologies in Waste Valorization; Topics in Current Chemistry Collections; Lin, C.S.K., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 123–150. ISBN 978-3-319-90652-2. [Google Scholar]
- Toldrá, F.; Aristoy, M.C.; Mora, L.; Reig, M. Innovations in value-addition of edible meat by-products. Meat Sci. 2012, 92, 290–296. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, J.; Chandrapala, J.; Majzoobi, M.; Brennan, C.; Zeng, X.A.; Sun, B. Recent progress of food-derived bioactive peptides: Extraction, purification, function, and encapsulation. Food Front. 2024, 5, 1240–1264. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Pérez-Santaescolástica, C.; Franco, D.; Carballo, J.; Zapata, C.; Lorenzo, J.M. Molecular Insight into Taste and Aroma of Sliced Dry-Cured Ham Induced by Protein Degradation Undergone High-Pressure Conditions. Food Res. Int. 2019, 122, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, N.; Chen, F.; Zhang, J.; Sun, X.; Xu, L.; Fang, F. Review on the release mechanism and debittering technology of bitter peptides from protein hydrolysates. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5153–5170. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Chen, J.; Bak, K.H.; Lametsch, R. Valorisation of protein hydrolysates from animal by-products: Perspectives on bitter taste and debittering methods: A review. Int. J. Food Sci. Technol. 2019, 54, 978–986. [Google Scholar] [CrossRef]
- González-Osuna, M.F.; Bernal-Mercado, A.T.; Wong-Corral, F.J.; Ezquerra-Brauer, J.M.; Soto-Valdez, H.; Castillo, A.; Del-Toro-Sánchez, C.L. Bioactive peptides and protein hydrolysates used in meat and meat products’ preservation A review. ACS Food Sci. Technol. 2024, 4, 1003–1016. [Google Scholar] [CrossRef]
- Saulo, A.A. Common Food Additives in Candy. Food Saf. Technol. 2002, 9, 1–2. [Google Scholar]
- Verma, A.K.; Chatli, M.K.; Mehta, N.; Kumar, P. Antimicrobial and Antioxidant Potential of Papain Liver Hydrolysate in Meat Emulsion Model at Chilling Storage under Aerobic Packaging Condition. Waste Biomass Valoriz. 2022, 13, 417–429. [Google Scholar] [CrossRef]
- ISO 2917:2002; Meat and Meat Products—Measurement of pH. Reference Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2022.
- ISO 8586-1:1993; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 6887-1: 2017; Microbiology of the Food Chain—Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination—Part 1: General Rules for the Preparation of the Initial Suspension and Decimal Dilutions. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 6887 4:2017; Microbiology of the Food Chain—Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination—Part 4: Specific Rules for the Preparation of Miscellaneous Products. ISO: Geneva, Switzerland, 2017.
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 21528-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. ISO International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org (accessed on 14 March 2025).
- ISO 21527-1:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95. ISO: Geneva, Switzerland, 2008.
- Shahidi, F.; Zhong, Y. Bioactive Peptides. J. AOAC Int. 2008, 91, 914–931. [Google Scholar] [CrossRef]
- Liu, R.; Xing, L.; Fu, Q.; Zhou, G.; Zhang, W. A Review of Antioxidant Peptides Derived from Meat Muscle and By-Products. Antioxidants 2016, 5, 32. [Google Scholar] [CrossRef]
- Duan, Y.; Deng, D.; Yang, X.; Zhang, L.; Ma, X.; He, L.; Ma, G.; Li, S.; Li, H. Bovine Liver Hydrolysates Based on Six Proteases: Physicochemical Properties, Emulsification Characteristics, Antioxidant Capacity Assessment, and Peptide Identification. LWT 2024, 208, 116718. [Google Scholar] [CrossRef]
- Li, B.; Chen, F.; Wang, X.; Ji, B.; Wu, Y. Isolation and Identification of Antioxidative Peptides from Porcine Collagen Hydrolysate by Consecutive Chromatography and Electrospray Ionization–Mass Spectrometry. Food Chem. 2007, 102, 1135–1143. [Google Scholar] [CrossRef]
- Hidalgo, M.E.; Daroit, D.J.; Folmer Corrêa, A.P.; Pieniz, S.; Brandelli, A.; Risso, P.H. Physicochemical and Antioxidant Properties of Bovine Caseinate Hydrolysates Obtained through Microbial Protease Treatment. Int. J. Dairy. Technol. 2012, 65, 342–352. [Google Scholar] [CrossRef]
- Verma, A.K.; Chatli, M.K.; Kumar, P.; Mehta, N. Antioxidant and Antimicrobial Activity of Protein Hydrolysate Extracted from Porcine Liver. Indian J. Anim. Sci. 2017, 87, 711–717. [Google Scholar] [CrossRef]
- Foh, M.B.K.; Amadou, I.; Foh, B.M.; Kamara, M.T.; Xia, W. Functionality and Antioxidant Properties of Tilapia (Oreochromis Niloticus) as Influenced by the Degree of Hydrolysis. Int. J. Mol. Sci. 2010, 11, 1851–1869. [Google Scholar] [CrossRef] [PubMed]
- Ee, K.-Y.; Khoo, L.-Y.; Ng, W.-J.; Wong, F.-C.; Chai, T.-T. Effects of Bromelain and Trypsin Hydrolysis on the Phytochemical Content, Antioxidant Activity, and Antibacterial Activity of Roasted Butterfly Pea Seeds. Processes 2019, 7, 534. [Google Scholar] [CrossRef]
- Schmidt, N.W.; Wong, G.C. Antimicrobial Peptides and Induced Membrane Curvature: Geometry, Coordination Chemistry, and Molecular Engineering. Curr. Opin. Solid. State Mater. Sci. 2013, 17, 151–163. [Google Scholar] [CrossRef]
- Kim, S.-K.; Wijesekara, I. Development and Biological Activities of Marine-Derived Bioactive Peptides: A Review. J. Funct. Foods 2010, 2, 1–9. [Google Scholar] [CrossRef]
- Giuliani, A.; Pirri, G.; Nicoletto, S. Antimicrobial Peptides: An Overview of a Promising Class of Therapeutics. Open Life Sci. 2007, 2, 1–33. [Google Scholar] [CrossRef]
- Zasloff, M. Antimicrobial Peptides of Multicellular Organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef]
- Borrajo, P.; López-Pedrouso, M.; Franco, D.; Pateiro, M.; Lorenzo, J.M. Antioxidant and Antimicrobial Activity of Porcine Liver Hydrolysates Using Flavourzyme. Appl. Sci. 2020, 10, 3950. [Google Scholar] [CrossRef]
- Kumkong, N.; Banjongsinsiri, P.; Laohakunjit, N.; Vatanyoopaisarn, S.; Thumthanaruk, B. Influence of Natural Colour Blends of Freeze-Dried Gac Aril and Pulp on the Quality of Whey Protein-Mixed Gelatin-Based Chewables. Heliyon 2020, 6, e05817. [Google Scholar] [CrossRef]
- Affes, S.; Nasri, R.; Li, S.; Thami, T.; van Der Lee, A.; Nasri, M.; Maalej, H. Effect of Glucose-Induced Maillard Reaction on Physical, Structural and Antioxidant Properties of Chitosan Derivatives-Based Films. Carbohydr. Polym. 2021, 255, 117341. [Google Scholar] [CrossRef] [PubMed]
- Wongwiwat, P.; Wattanachant, S. Color Characteristics and Maillard Reactions of Chicken Meat Jerky with Different Sweeteners during Storage. Walailak J. Sci. Technol. WJST 2016, 13, 141–155. [Google Scholar]
- Zheng, L.; Regenstein, J.M.; Zhou, L.; Mokhtar, S.M.; Wang, Z. Gel Properties and Structural Characteristics of Composite Gels of Soy Protein Isolate and Silver Carp Protein. Gels 2023, 9, 420. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Que, F.; Li, X.; Shi, L.; Deng, W.; Fu, X.; Xiong, G.; Sun, J.; Wang, L.; Xiong, S. Effects of Enzymatic Konjac Glucomannan Hydrolysates on Textural Properties, Microstructure, and Water Distribution of Grass Carp Surimi Gels. Foods 2022, 11, 750. [Google Scholar] [CrossRef]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M.; Hrynkiewicz, M. Food Protein-Originating Peptides as Tastants-Physiological, Technological, Sensory, and Bioinformatic Approaches. Food Res. Int. 2016, 89, 27–38. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhang, Z.; Sun, H.; Zhu, Y.; Zhao, J.; Tang, M.; Wu, X.; Cao, Y. Contributions of Temperature and L-Cysteine on the Physicochemical Properties and Sensory Characteristics of Rapeseed Flavor Enhancer Obtained from the Rapeseed Peptide and d-Xylose Maillard Reaction System. Ind. Crops Prod. 2019, 128, 455–463. [Google Scholar] [CrossRef]
- Bertelsen, A.S.; Laursen, A.; Knudsen, T.A.; Møller, S.; Kidmose, U. Bitter Taste Masking of Enzyme-treated Soy Protein in Water and Bread. J. Sci. Food Agric. 2018, 98, 3860–3869. [Google Scholar] [CrossRef]
- Mahat, M.M.; Sabere, A.S.M.; Nawawi, M.A.; Hamzah, H.H.; Jamil, M.A.F.M.; Roslan, N.C.; Halim, M.I.A.; Safian, M.F. The Sensory Evaluation and Mechanical Properties of Functional Gummy in the Malaysian Market. arXiv 2020, arXiv:202010.0213. [Google Scholar]
- Suebsaen, K.; Suksatit, B.; Kanha, N.; Laokuldilok, T. Instrumental Characterization of Banana Dessert Gels for the Elderly with Dysphagia. Food Biosci. 2019, 32, 100477. [Google Scholar] [CrossRef]
- Rahbani, J.; Behzad, A.R.; Khashab, N.M.; Al-Ghoul, M. Characterization of Internal Structure of Hydrated Agar and Gelatin Matrices by cryo-SEM. Electrophoresis 2013, 34, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Maaloum, M.; Pernodet, N.; Tinland, B. Agarose Gel Structure Using Atomic Force Microscopy: Gel Concentration and Ionic Strength Effects. Electrophoresis 1998, 19, 1606–1610. [Google Scholar] [CrossRef] [PubMed]
- Teixeira-Lemos, E.; Almeida, A.R.; Vouga, B.; Morais, C.; Correia, I.; Pereira, P.; Guiné, R.P.F. Development and Characterization of Healthy Gummy Jellies Containing Natural Fruits. Open Agric. 2021, 6, 466–478. [Google Scholar] [CrossRef]
- Kaewpetch, K.; Yolsuriyan, S.; Disayathanoowat, T.; Phokasem, P.; Jannu, T.; Renaldi, G.; Samakradhamrongthai, R.S. Influence of Gelatin and Propolis Extract on Honey Gummy Jelly Properties: Optimization Using d-Optimal Mixture Design. Gels 2024, 10, 282. [Google Scholar] [CrossRef]
- Vojvodić Cebin, A.; Bunić, M.; Mandura Jarić, A.; Šeremet, D.; Komes, D. Physicochemical and Sensory Stability Evaluation of Gummy Candies Fortified with Mountain Germander Extract and Prebiotics. Polymers 2024, 16, 259. [Google Scholar] [CrossRef]
Gummies Formula | GI, g | Ag, g | Water, mL | Citric Acid, g | Ascorbic Acid, g | Xylitol, g | Glucose, g | Extract Lime, mL | Hydrolysate, g |
---|---|---|---|---|---|---|---|---|---|
GC | 10 | 100 | 1 | 1 | 10 | 0.1 | |||
GC5Pa3Ag | 10 | 100 | 1 | 10 | 0.1 | 5 | |||
GC5Pa6Ag | 10 | 100 | 1 | 10 | 0.1 | 5 | |||
GC5Pa24Ag | 10 | 100 | 1 | 10 | 0.1 | 5 | |||
GC2Pe3GI | 10 | 100 | 1 | 10 | 0.1 | 2 | |||
GC2Pe6GI | 10 | 100 | 1 | 10 | 0.1 | 2 | |||
GC2Pe24GI | 10 | 100 | 1 | 10 | 0.1 | 2 |
Material | pH | ATBS•+ Scavenging Activity | DPPH• Scavenging Activity |
---|---|---|---|
GC | 3.00 ± 0.02 a | 8.52 ± 0.58 a | 8.62 ± 0.16 a |
GC5Pa3Ag | 3.66 ± 0.02 a | 24.6 ± 0.93 b | 11.93 ± 0.68 b |
GC5Pa6Ag | 3.70 ± 0.03 a | 52.67 ± 0.51 c | 33.29 ± 1.07 c |
GC5Pa24Ag | 3.65 ± 0.03 a | 67.6 ± 0.98 c | 49.14 ± 1.0 c |
GC2Pe3Gl | 4.90 ± 0.04 b | 8.91 ± 0.25 a | 11.26 ± 0.21 b |
GC2Pe6Gl | 5.05 ± 0.03 b | 12.72 ± 0.31 b | 19.22 ± 0.11 b |
GC2Pe24Gl | 5.19 ± 0.03 b | 18.31 ± 0.59 b | 22.0 ± 1.17 b |
Material | Diameter of Inhibition Zones, mm | ||||
---|---|---|---|---|---|
E. coli ATCC 25922 | S. aureus subsp. aureus ATCC 25923 | L. monocytogenes ATCC 13932 | S. enterica subsp. enterica serovar Typhimurium ATCC 14028 | B.cereus ATCC 11778 | |
GC | 11.0 ± 0.1 a | 10.0 ± 0.1 a | 11.0 ± 0.1 a | 11.0 ± 0.1 a | 10.0 ± 0 b |
GC2Pe3Gl | 14.5 ± 0.3 b | 10.0 ± 0 a | 15.5 ± 0.3 b | 16.5 ± 0.3 b | nd |
GC2Pe6Gl | 15.5 ± 0.3 b | 13.0 ± 0.1 b | 15.6 ± 0.2 b | 16.0 ± 0.0 b | 10.0 ± 0 b |
GC2Pe24Gl | 14.5 ± 0.3 b | 17.5 ± 0.3 c | 13.5 ± 0.2 c | 15.5 ± 0.3 b | nd |
Material | Diameter of Inhibition Zones, mm | ||||
---|---|---|---|---|---|
E. coli ATCC 25922 | S. aureus subsp. aureus ATCC 25923 | L. monocytogenes ATCC 13932 | S. enterica subsp. enterica serovar Typhimurium ATCC 14028 | B. cereus ATCC 11778 | |
GC | 12.0 ± 0.1 a | 11.0 ± 0.1 a | 11.0 ± 0.1 a | 16.0 ± 0.1 a | 15.0 ± 0 a |
GC5Pa3Ag | 16.0 ± 0.1 b | 11.0 ± 0 a | 21.0 ± 0.1 b | 16.0 ± 0.1 a | 15.0 ± 0.1 a |
GC5Pa6Ag | 29.0 ± 0.2 c | 27.0 ± 0.1 b | 30.0 ± 0.2 b | 19.0 ± 0.1 b | 30.0 ± 0.3 b |
GC5Pa24Ag | 29.0 ± 0.2 c | 28.0 ± 0.1 b | 30.5 ± 0.2 b | 22.0 ± 0.2 b | 25.0 ± 0.2 b |
Samples | Color Coordinates, NBS | Texture Hardness | Overall Acceptability | ||||
---|---|---|---|---|---|---|---|
L* | a* | b* | c* | h | mJ | ||
GC | 39.83 ± 0.72 a | −0.02 ± 0.54c | −3.03 ± 0.47 c | 3.06 ± 0.49 c | 262.23 ± 1.74 a | 3.33 ±0.06 b | 7.5 ± 0.5 a |
GC5Pa3Ag | 35.26 ± 0.42 b | 0.63 ± 0.06 b | 6.09 ± 0.04 b | 6.11 ± 0.06 b | 84.11 ± 0.62 b | 3.73 ±0.15 b | 7.0 ± 0.8 a |
GC5Pa6Ag | 32.77 ± 0.76 b | 0.43 ± 0.1 b | 5.01 ± 0.05 b | 5.03 ± 0.04 b | 85.33 ± 0.86 b | 3.63 ±0.06 b | 7.0 ± 0.3 a |
GC5Pa24Ag | 36.01 ± 1.49 b | 0.30 ± 0.02 b | 3.74 ± 0.12 b | 3.73 ± 0.14 b | 92.76 ± 0.57 b | 4.63 ±0.15 a | 7.0 ± 0.5 a |
GC2Pe3Gl | 35.06 ± 2.73 b | 2.94 ± 0.06 a | 17.79 ± 0.15 a | 18.02 ± 0.33 a | 82.24 ± 2.69 b | 0.56 ±0.06 c | 8.5 ± 0.5 b |
GC2Pe6Gl | 38.34 ± 0.58 a | 1.35 ± 0.05 b | 15.16 ± 0.48 a | 15.22 ± 0.48 a | 84.93 ± 0.26 b | 0.66 ±0.06 c | 8.0 ± 0.3 b |
GC2Pe24Gl | 36.9 ± 0.23 b | 4.62 ± 0.33 a | 18.08 ± 0.16 a | 18.59 ± 0.08 a | 75.77 ± 0.96 c | 0.60 ±0.10 c | 8.0± 0.5 b |
Total Viable Count (log10 CFU/g) | |||
---|---|---|---|
Samples | Day 1 | Day 7 | Day 21 |
GC | <1.0 | <1.0 | 2.55 |
GC5Pa3Ag | <1.0 | <1.0 | <1.0 |
GC5Pa6Ag | <1.0 | <1.0 | <1.0 |
GC5Pa24Ag | <1.0 | <1.0 | <1.0 |
GC2Pe3Gl | <1.0 | 1.70 | 2.86 |
GC2Pe6Gl | <1.0 | <1.0 | 2.19 |
GC2Pe24Gl | <1.0 | <1.0 | 2.07 |
Molds and Yeasts (log10 CFU/g) | |||
GC | <1.0 | <1.0 | <1.0 |
GC5Pa3Ag | <1.0 | <1.0 | <1.0 |
GC5Pa6Ag | <1.0 | <1.0 | <1.0 |
GC5Pa24Ag | <1.0 | <1.0 | <1.0 |
GC2Pe3Gl | <1.0 | <1.0 | 1.80 |
GC2Pe6Gl | <1.0 | <1.0 | 1.66 |
GC2Pe24Gl | <1.0 | <1.0 | 1.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juknienė, I.; Jonnagiri, N.P.K.R.; Mačionienė, I.; Zakarienė, G.; Stankevičienė, J.; Sinkevičienė, I.; Radenkovs, V.; Andrulevičiūtė, V.; Zaborskienė, G. Sustainable Formulation of Chewing Candies Using Liver Hydrolysates with Antioxidant and Antimicrobial Properties. Microorganisms 2025, 13, 1882. https://doi.org/10.3390/microorganisms13081882
Juknienė I, Jonnagiri NPKR, Mačionienė I, Zakarienė G, Stankevičienė J, Sinkevičienė I, Radenkovs V, Andrulevičiūtė V, Zaborskienė G. Sustainable Formulation of Chewing Candies Using Liver Hydrolysates with Antioxidant and Antimicrobial Properties. Microorganisms. 2025; 13(8):1882. https://doi.org/10.3390/microorganisms13081882
Chicago/Turabian StyleJuknienė, Ignė, Naga Pavan Kumar Reddy Jonnagiri, Irena Mačionienė, Gintarė Zakarienė, Jūratė Stankevičienė, Ingrida Sinkevičienė, Vitalijs Radenkovs, Vaida Andrulevičiūtė, and Gintarė Zaborskienė. 2025. "Sustainable Formulation of Chewing Candies Using Liver Hydrolysates with Antioxidant and Antimicrobial Properties" Microorganisms 13, no. 8: 1882. https://doi.org/10.3390/microorganisms13081882
APA StyleJuknienė, I., Jonnagiri, N. P. K. R., Mačionienė, I., Zakarienė, G., Stankevičienė, J., Sinkevičienė, I., Radenkovs, V., Andrulevičiūtė, V., & Zaborskienė, G. (2025). Sustainable Formulation of Chewing Candies Using Liver Hydrolysates with Antioxidant and Antimicrobial Properties. Microorganisms, 13(8), 1882. https://doi.org/10.3390/microorganisms13081882