A Lyophilizable Nanoparticle Anthrax Vaccine Targeting the Loop-Neutralizing Determinant in Protective Antigen from Bacillus anthracis
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction, Purification and Characterization of Recombinant WHcAg LND-VLPs
2.2. Animals and Vaccinations
2.3. Enzyme-Linked Immunosorbent Assay
2.4. Toxin Neutralization Assay
2.5. Aerosol Spore Challenge
2.6. Statistical Analysis
3. Results
3.1. Molecular Construction and Immunogenicity of VLPs Displaying the LND
3.2. Immunogenicity of the LND-VLP in Rabbits
3.3. Efficacy of the LND-VLP-Specific Rabbit Antisera for Passive Protection of Mice from Anthrax Spore Inhalation Challenge
3.4. Optimization of Immunization in Rabbits with the LND-VLP
3.5. Immunogenicity of the Lyophilized LND-VLP in Rabbits
3.6. Performance of a Rabbit Pre-Aerosol Challenge Immunization Regimen
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VLP | Virus-like particle |
TNA | Toxin neutralization assay |
LND | Loop-neutralizing determinant |
MAP | Multiple antigenic peptide |
LeTx | Lethal toxin |
WHcAg | Woodchuck hepatitis core antigen |
References
- Head, B.M.; Rubinstein, E.; Meyers, A.F. Alternative pre-approved and novel therapies for the treatment of anthrax. BMC Infect. Dis. 2016, 16, 621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Georgopoulos, A.P.; James, L.M. Anthrax Vaccines in the 21st Century. Vaccines 2024, 12, 159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Collier, R.J.; Young, J.A. Anthrax toxin. Annu. Rev. Cell Dev. Biol. 2003, 19, 45–70. [Google Scholar] [CrossRef] [PubMed]
- Duesbery, N.S.; Webb, C.P.; Leppla, S.H.; Gordon, V.M.; Klimpel, K.R.; Copeland, T.D.; Ahn, N.G.; Oskarsson, M.K.; Fukasawa, K.; Paull, K.D.; et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 1998, 280, 734–737. [Google Scholar] [CrossRef] [PubMed]
- Leppla, S.H. Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. USA 1982, 79, 3162–3166. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Little, S.F.; Ivins, B.E.; Fellows, P.F.; Friedlander, A.M. Passive protection by polyclonal antibodies against Bacillus anthracis infection in guinea pigs. Infect. Immun. 1997, 65, 5171–5175. [Google Scholar] [CrossRef] [PubMed]
- Little, S.F.; Ivins, B.E.; Fellows, P.F.; Pitt, M.L.; Norris, S.L.; Andrews, G.P. Defining a serological correlate of protection in rabbits for a recombinant anthrax vaccine. Vaccine 2004, 22, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Pitt, M.L.; Little, S.F.; Ivins, B.E.; Fellows, P.; Barth, J.; Hewetson, J.; Gibbs, P.; Dertzbaugh, M.; Friedlander, A. In vitro correlate of immunity in a rabbit model of inhalational anthrax. Vaccine 2001, 19, 4768–4773. [Google Scholar] [CrossRef] [PubMed]
- Reuveny, S.; White, M.D.; Adar, Y.Y.; Kafri, Y.; Altboum, Z.; Gozes, Y.; Kobiler, D.; Shafferman, A.; Velan, B. Search for correlates of protective immunity conferred by anthrax vaccine. Infect Immun. 2001, 69, 2888–2893. [Google Scholar] [CrossRef] [PubMed]
- Pitt, M.L.; Little, S.; Ivins, B.E.; Fellows, P.; Boles, J.; Barth, J.; Hewetson, J.; Friedlander, A.M. In vitro correlate of immunity in an animal model of inhalational anthrax. J. Appl. Microbiol. 1999, 87, 304. [Google Scholar] [CrossRef] [PubMed]
- Ivins, B.E.; Pitt, M.L.; Fellows, P.F.; Farchaus, J.W.; Benner, G.E.; Waag, D.M.; Little, S.; Anderson, G.; Gibbs, P.; Friedlander, A. Comparative efficacy of experimental anthrax vaccine candidates against inhalation anthrax in rhesus macaques. Vaccine 1998, 16, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Fay, M.P.; Follmann, D.A.; Lynn, F.; Schiffer, J.M.; Stark, G.V.; Kohberger, R.; Quinn, C.P.; Nuzum, E.O. Anthrax vaccine-induced antibodies provide cross-species prediction of survival to aerosol challenge. Sci. Transl. Med. 2012, 4, 151ra126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Quinn, C.P.; Sabourin, C.L.; Niemuth, N.A.; Li, H.; Semenova, V.A.; Rudge, T.L.; Mayfield, H.J.; Schiffer, J.; Mittler, R.S.; Ibegbu, C.C.; et al. A three-dose intramuscular injection schedule of anthrax vaccine adsorbed generates sustained humoral and cellular immune responses to protective antigen and provides long-term protection against inhalation anthrax in rhesus macaques. Clin. Vaccine Immunol. 2012, 19, 1730–1745. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ionin, B.; Hopkins, R.J.; Pleune, B.; Sivko, G.S.; Reid, F.M.; Clement, K.H.; Rudge, T.L.; Stark, G.V.; Innes, A.; Sari, S.; et al. Evaluation of immunogenicity and efficacy of anthrax vaccine adsorbed for postexposure prophylaxis. Clin. Vaccine Immunol. 2013, 20, 1016–1026. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Autumn Smiley, M.; Sanford, D.C.; Triplett, C.A.; Callahan, D.; Frolov, V.; Look, J.; Ruiz, C.; Reece, J.J.; Miles, A.; Ruiz, E.; et al. Comparative immunogenicity and efficacy of thermostable (lyophilized) and liquid formulation of anthrax vaccine candidate AV7909. Vaccine 2019, 37, 6356–6361. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rhie, G.E.; Roehrl, M.H.; Mourez, M.; Collier, R.J.; Mekalanos, J.J.; Wang, J.Y. A dually active anthrax vaccine that confers protection against both bacilli and toxins. Proc. Natl. Acad. Sci. USA 2003, 100, 10925–10930. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, T.H.; Oscherwitz, J.; Schnepp, B.; Jacobs, J.; Yu, F.; Cease, K.B.; Johnson, P.R. Genetic vaccines for anthrax based on recombinant adeno-associated virus vectors. Mol. Ther. 2009, 17, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Galloway, D.; Liner, A.; Legutki, J.; Mateczun, A.; Barnewall, R.; Estep, J. Genetic immunization against anthrax. Vaccine 2004, 22, 1604–1608. [Google Scholar] [CrossRef] [PubMed]
- Migone, T.S.; Subramanian, G.M.; Zhong, J.; Healey, L.M.; Corey, A.; Devalaraja, M.; Lo, L.; Ullrich, S.; Zimmerman, J.; Chen, A.; et al. Raxibacumab for the treatment of inhalational anthrax. New Engl. J. Med. 2009, 361, 135–144. [Google Scholar] [CrossRef]
- Bower, W.A.; Schiffer, J.; Atmar, R.L.; Keitel, W.A.; Friedlander, A.M.; Liu, L.; Yu, Y.; Stephens, D.S.; Quinn, C.P.; Hendricks, K. Use of Anthrax Vaccine in the United States: Recommendations of the Advisory Committee on Immunization Practices, 2019. MMWR. Recomm. Rep. 2019, 68, 1–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Friedlander, A.M.; Little, S.F. Advances in the development of next-generation anthrax vaccines. Vaccine 2009, 27 (Suppl. S4), D28–D32. [Google Scholar] [CrossRef] [PubMed]
- Rynkiewicz, D.; Rathkopf, M.; Sim, I.; Waytes, A.T.; Hopkins, R.J.; Giri, L.; DeMuria, D.; Ransom, J.; Quinn, J.; Nabors, G.S.; et al. Marked enhancement of the immune response to BioThrax(R) (Anthrax Vaccine Adsorbed) by the TLR9 agonist CPG 7909 in healthy volunteers. Vaccine 2011, 29, 6313–6320. [Google Scholar] [CrossRef] [PubMed]
- Savransky, V.; Lacy, M.; Ionin, B.; Skiadopoulos, M.H.; Shearer, J. Repeat-Dose Toxicity Study of a Lyophilized Recombinant Protective Antigen-Based Anthrax Vaccine Adjuvanted With CpG 7909. Int. J. Toxicol. 2019, 38, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Burns, D.L. Improving the stability of recombinant anthrax protective antigen vaccine. Vaccine 2018, 36, 6379–6382. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Ngundi, M.M.; Burns, D.L. Mechanistic Analysis of the Effect of Deamidation on the Immunogenicity of Anthrax Protective Antigen. Clin. Vaccine Immunol. 2016, 23, 396–402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Powell, B.S.; Enama, J.T.; Ribot, W.J.; Webster, W.; Little, S.; Hoover, T.; Adamovicz, J.J.; Andrews, G.P. Multiple asparagine deamidation of Bacillus anthracis protective antigen causes charge isoforms whose complexity correlates with reduced biological activity. Proteins 2007, 68, 458–479. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, A.J.; Mar, K.D.; Huang, J.; Majumdar, S.; Ford, B.M.; Dyas, B.; Ulrich, R.G.; Sullivan, V.J. Rapid deamidation of recombinant protective antigen when adsorbed on aluminum hydroxide gel correlates with reduced potency of vaccine. J. Pharm. Sci. 2013, 102, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Oscherwitz, J.; Yu, F.; Jacobs, J.L.; Liu, T.H.; Johnson, P.R.; Cease, K.B. Synthetic peptide vaccine targeting a cryptic neutralizing epitope in domain 2 of Bacillus anthracis protective antigen. Infect. Immun. 2009, 77, 3380–3388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oscherwitz, J.; Yu, F.; Jacobs, J.L.; Cease, K.B. Recombinant vaccine displaying the loop-neutralizing determinant from protective antigen completely protects rabbits from experimental inhalation anthrax. Clin. Vaccine Immunol. 2013, 20, 341–349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oscherwitz, J.; Yu, F.; Cease, K.B. A synthetic peptide vaccine directed against the 2β2-2β3 loop of domain 2 of protective antigen protects rabbits from inhalation anthrax. J. Immunol. 2010, 185, 3661–3668. [Google Scholar] [CrossRef] [PubMed]
- Oscherwitz, J.; Feldman, D.; Yu, F.; Cease, K.B. Epitope-focused peptide immunogens in human use adjuvants protect rabbits from experimental inhalation anthrax. Vaccine 2015, 33, 430–436. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, Y.; Khanna, H.; Chopra, A.P.; Mehra, V. A dominant negative mutant of Bacillus anthracis protective antigen inhibits anthrax toxin action in vivo. J. Biol. Chem. 2001, 276, 22090–22094. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Klimpel, K.R.; Arora, N.; Sharma, M.; Leppla, S.H. The chymotrypsin-sensitive site, FFD315, in anthrax toxin protective antigen is required for translocation of lethal factor. J. Biol. Chem. 1994, 269, 29039–29046. [Google Scholar] [CrossRef] [PubMed]
- Rosovitz, M.J.; Schuck, P.; Varughese, M.; Chopra, A.P.; Mehra, V.; Singh, Y.; McGinnis, L.M.; Leppla, S.H. Alanine-scanning mutations in domain 4 of anthrax toxin protective antigen reveal residues important for binding to the cellular receptor and to a neutralizing monoclonal antibody. J. Biol. Chem. 2003, 278, 30936–30944. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.L.; Pyo, S.W.; Yi, H.; Kim, S.H.; Shin, H.; Yu, M.A.; Hwang, Y.-R.; Choi, S.-Y.; Jeon, J.H.; Jo, S.K.; et al. Immunogenicity and Protective Efficacy of Recombinant Protective Antigen Anthrax Vaccine (GC1109) in A/J Mice Model. Vaccine 2023, 41, 3106–3110. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.D.; Wilder, J.A.; Mega, W.M.; Hutt, J.A.; Kuehl, P.J.; Valderas, M.W.; Chew, L.L.; Liang, B.C.; Squires, C.H. Immunization with a Recombinant, Pseudomonas fluorescens-Expressed, Mutant Form of Bacillus anthracis-Derived Protective Antigen Protects Rabbits from Anthrax Infection. PLoS ONE 2015, 10, e0130952. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ryabchevskaya, E.M.; Granovskiy, D.L.; Evtushenko, E.A.; Ivanov, P.A.; Kondakova, O.A.; Nikitin, N.A.; Karpova, O.V. Designing Stable Bacillus anthracis Antigens with a View to Recombinant Anthrax Vaccine Development. Pharmaceutics 2022, 14, 806. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oscherwitz, J.; Quinn, C.P.; Cease, K.B. Anthrax vaccine recipients lack antibody against the loop neutralizing determinant: A protective neutralizing epitope from Bacillus anthracis protective antigen. Vaccine 2015, 33, 2342–2346. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schickli, J.H.; Whitacre, D.C.; Tang, R.S.; Kaur, J.; Lawlor, H.; Peters, C.J.; Jones, J.E.; Peterson, D.L.; McCarthy, M.P.; Van Nest, G.; et al. Palivizumab epitope-displaying virus-like particles protect rodents from RSV challenge. J. Clin. Investig. 2015, 125, 1637–1647. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Billaud, J.N.; Peterson, D.; Barr, M.; Chen, A.; Sallberg, M.; Garduno, F.; Goldstein, P.; McDowell, W.; Hughes, J.; Jones, J.; et al. Combinatorial approach to hepadnavirus-like particle vaccine design. J. Virol. 2005, 79, 13656–13666. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schodel, F.; Moriarty, A.M.; Peterson, D.L.; Zheng, J.A.; Hughes, J.L.; Will, H.; Leturcq, D.J.; McGee, J.S.; Milich, D.R. The position of heterologous epitopes inserted in hepatitis B virus core particles determines their immunogenicity. J. Virol. 1992, 66, 106–114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tello, D.; Rodriguez-Rodriguez, M.; Ortega, S.; Lombana, L.; Yelamos, B.; Gomez-Gutierrez, J.; Peterson, D.L.; Gavilanes, F. Fusogenic properties of the ectodomains of hepatitis C virus envelope proteins. FEBS J. 2014, 281, 2558–2569. [Google Scholar] [CrossRef] [PubMed]
- Oscherwitz, J.; Yu, F.; Cease, K.B. A heterologous helper T-cell epitope enhances the immunogenicity of a multiple-antigenic-peptide vaccine targeting the cryptic loop-neutralizing determinant of Bacillus anthracis protective antigen. Infect. Immun. 2009, 77, 5509–5518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hering, D.; Thompson, W.; Hewetson, J.; Little, S.; Norris, S.; Pace-Templeton, J. Validation of the anthrax lethal toxin neutralization assay. Biologicals 2004, 32, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Loving, C.L.; Kennett, M.; Lee, G.M.; Grippe, V.K.; Merkel, T.J. Murine aerosol challenge model of anthrax. Infect. Immun. 2007, 75, 2689–2698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whitacre, D.C.; Espinosa, D.A.; Peters, C.J.; Jones, J.E.; Tucker, A.E.; Peterson, D.L.; Zavala, F.P.; Milich, D.R. P. falciparum and P. vivax Epitope-Focused VLPs Elicit Sterile Immunity to Blood Stage Infections. PLoS ONE 2015, 10, e0124856. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Billaud, J.N.; Peterson, D.; Schodel, F.; Chen, A.; Sallberg, M.; Garduno, F.; Goldstein, P.; McDowell, W.; Hughes, J.; Jones, J.; et al. Comparative antigenicity and immunogenicity of hepadnavirus core proteins. J. Virol. 2005, 79, 13641–13655. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Modi, T.; Gervais, D.; Smith, S.; Miller, J.; Subramaniam, S.; Thalassinos, K.; Shepherd, A. Characterization of the UK anthrax vaccine and human immunogenicity. Human. Vaccines Immunother. 2021, 17, 747–758. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shearer, J.D.; Henning, L.; Sanford, D.C.; Li, N.; Skiadopoulos, M.H.; Reece, J.J.; Ionin, B.; Savransky, V. Efficacy of the AV7909 anthrax vaccine candidate in guinea pigs and nonhuman primates following two immunizations two weeks apart. Vaccine 2021, 39, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Fifis, T.; Gamvrellis, A.; Crimeen-Irwin, B.; Pietersz, G.A.; Li, J.; Mottram, P.L.; McKenzie, I.F.C.; Plebanski, M. Size-dependent immunogenicity: Therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 2004, 173, 3148–3154. [Google Scholar] [CrossRef] [PubMed]
- Grgacic, E.V.; Anderson, D.A. Virus-like particles: Passport to immune recognition. Methods 2006, 40, 60–65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Milich, D.R. Genetic and molecular basis for T- and B-cell recognition of hepatitis B viral antigens. Immunol. Rev. 1987, 99, 71–103. [Google Scholar] [CrossRef] [PubMed]
- Milich, D.R.; McLachlan, A.; Moriarty, A.; Thornton, G.B. Immune response to hepatitis B virus core antigen (HBcAg): Localization of T cell recognition sites within HBcAg/HBeAg. J. Immunol. 1987, 139, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oscherwitz, J.; Cease, K.; Milich, D.; Merkel, T.; Braun, T.; Yu, F.; Whitacre, D.C. A Lyophilizable Nanoparticle Anthrax Vaccine Targeting the Loop-Neutralizing Determinant in Protective Antigen from Bacillus anthracis. Microorganisms 2025, 13, 1878. https://doi.org/10.3390/microorganisms13081878
Oscherwitz J, Cease K, Milich D, Merkel T, Braun T, Yu F, Whitacre DC. A Lyophilizable Nanoparticle Anthrax Vaccine Targeting the Loop-Neutralizing Determinant in Protective Antigen from Bacillus anthracis. Microorganisms. 2025; 13(8):1878. https://doi.org/10.3390/microorganisms13081878
Chicago/Turabian StyleOscherwitz, Jon, Kemp Cease, David Milich, Tod Merkel, Thomas Braun, Fen Yu, and David C. Whitacre. 2025. "A Lyophilizable Nanoparticle Anthrax Vaccine Targeting the Loop-Neutralizing Determinant in Protective Antigen from Bacillus anthracis" Microorganisms 13, no. 8: 1878. https://doi.org/10.3390/microorganisms13081878
APA StyleOscherwitz, J., Cease, K., Milich, D., Merkel, T., Braun, T., Yu, F., & Whitacre, D. C. (2025). A Lyophilizable Nanoparticle Anthrax Vaccine Targeting the Loop-Neutralizing Determinant in Protective Antigen from Bacillus anthracis. Microorganisms, 13(8), 1878. https://doi.org/10.3390/microorganisms13081878