Altered Gut Microbiota and Predicted Immune Dysregulation in Early Childhood SARS-CoV-2 Infection
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Stool DNA Extraction, PCR Amplification, 16S rRNA Gene Sequencing, and Bioinformatics Analysis
2.3. Statistical Analysis
2.4. Ethics Statements
3. Results
3.1. Participant Characteristics
3.2. Gut Microbiome Composition Analysis
3.3. Functional Profile Analysis of the Gut Microbiome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease 2019 (COVID-19); Situation Report-51; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf (accessed on 12 March 2020).
- Han, M.S.; Choi, E.H.; Chang, S.H.; Jin, B.L.; Lee, E.J.; Kim, B.N.; Kim, M.K.; Doo, K.; Seo, J.H.; Kim, Y.J.; et al. Clinical characteristics and viral RNA detection in children with coronavirus disease 2019 in the Republic of Korea. JAMA Pediatr. 2021, 175, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Al-Beltagi, M.; Saeed, N.K.; Bediwy, A.S.; El-Sawaf, Y. Paediatric gastrointestinal disorders in SARS-CoV-2 infection: Epidemiological and clinical implications. World J. Gastroenterol. 2021, 27, 1716–1727. [Google Scholar] [CrossRef] [PubMed]
- Pegoraro, F.; Trapani, S.; Indolfi, G. Gastrointestinal, hepatic and pancreatic manifestations of COVID-19 in children. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101818. [Google Scholar] [CrossRef]
- Yeoh, Y.K.; Zuo, T.; Lui, G.C.; Zhang, F.; Liu, Q.; Li, A.Y.; Chung, A.C.; Cheung, C.P.; Tso, E.Y.; Fung, K.S.; et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021, 70, 698–706. [Google Scholar] [CrossRef]
- Kim, H.N.; Joo, E.J.; Lee, C.W.; Ahn, K.S.; Kim, H.L.; Park, D.I.; Park, S.K. Reversion of gut microbiota during the recovery phase in patients with asymptomatic or mild COVID-19: Longitudinal study. Microorganisms 2021, 9, 1237. [Google Scholar] [CrossRef]
- Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 2020, 159, 944–955. [Google Scholar] [CrossRef]
- Gu, S.; Chen, Y.; Wu, Z.; Chen, Y.; Gao, H.; Lv, L.; Guo, F.; Zhang, X.; Luo, R.; Huang, C.; et al. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin. Infect. Dis. 2020, 71, 2669–2678. [Google Scholar] [CrossRef]
- Sun, Z.; Song, Z.G.; Liu, C.; Tan, S.; Lin, S.; Zhu, J.; Dai, F.H.; Gao, J.; She, J.L.; Mei, Z.; et al. Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients. BMC Med. 2022, 20, 24. [Google Scholar] [CrossRef]
- Xu, R.; Liu, P.; Zhang, T.; Wu, Q.; Zeng, M.; Ma, Y.; Jin, X.; Xu, J.; Zhang, Z.; Zhang, C. Progressive deterioration of the upper respiratory tract and the gut microbiomes in children during the early infection stages of COVID-19. J. Genet. Genom. 2021, 48, 803–814. [Google Scholar] [CrossRef]
- Nashed, L.; Mani, J.; Hazrati, S.; Stern, D.B.; Subramanian, P.; Mattei, L.; Bittinger, K.; Hu, W.; Levy, S.; Maxwell, G.L.; et al. Gut microbiota changes are detected in asymptomatic very young children with SARS-CoV-2 infection. Gut 2022, 71, 2371–2373. [Google Scholar] [CrossRef]
- Suskun, C.; Kilic, O.; Yilmaz Ciftdogan, D.; Guven, S.; Karbuz, A.; Ozkaya Parlakay, A.; Kara, Y.; Kacmaz, E.; Sahin, A.; Boga, A.; et al. Intestinal microbiota composition of children with infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and multisystem inflammatory syndrome (MIS-C). Eur. J. Pediatr. 2022, 181, 3175–3191. [Google Scholar] [CrossRef] [PubMed]
- Romani, L.; Del Chierico, F.; Macari, G.; Pane, S.; Ristori, M.V.; Guarrasi, V.; Gardini, S.; Pascucci, G.R.; Cotugno, N.; Perno, C.F.; et al. The relationship between pediatric gut microbiota and SARS-CoV-2 infection. Front. Cell. Infect. Microbiol. 2022, 12, 908492. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zhou, J.G.; Lu, Y.M.; Hu, H.; Xiao, F.F.; Ge, T.; Wang, X.; Zheng, L.; Yu, L.H.; Le, J.; et al. Altered gut microbiota composition in children and their caregivers infected with the SARS-CoV-2 Omicron variant. World J. Pediatr. 2023, 19, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Gensollen, T.; Iyer, S.S.; Kasper, D.L.; Blumberg, R.S. How colonization by microbiota in early life shapes the immune system. Science 2016, 352, 539–544. [Google Scholar] [CrossRef]
- Yang, J.; Park, J.; Park, S.; Baek, I.; Chun, J. Introducing murine microbiome database (MMDB): A curated database with taxonomic profiling of the healthy mouse gastrointestinal microbiome. Microorganisms 2019, 7, 480. [Google Scholar] [CrossRef]
- Bacorn, M.; Romero-Soto, H.N.; Levy, S.; Chen, Q.; Hourigan, S.K. The gut microbiome of children during the COVID-19 pandemic. Microorganisms 2022, 10, 2460. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [PubMed]
- Puoti, M.G.; Rybak, A.; Kiparissi, F.; Gaynor, E.; Borrelli, O. SARS-CoV-2 and the gastrointestinal tract in children. Front. Pediatr. 2021, 9, 617980. [Google Scholar] [CrossRef]
- Rodrigues, T.S.; de Sá, K.S.G.; Ishimoto, A.Y.; Becerra, A.; Oliveira, S.; Almeida, L.; Gonçalves, A.V.; Perucello, D.B.; Andrade, W.A.; Castro, R.; et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 2021, 218, e20201707. [Google Scholar] [CrossRef]
- Wu, D.; Yang, X.O. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor fedratinib. J. Microbiol. Immunol. Infect. 2020, 53, 368–370. [Google Scholar] [CrossRef]
- Bournazos, S.; Gupta, A.; Ravetch, J.V. The role of IgG Fc receptors in antibody-dependent enhancement. Nat. Rev. Immunol. 2020, 20, 633–643. [Google Scholar] [CrossRef]
- Martonik, D.; Parfieniuk-Kowerda, A.; Rogalska, M.; Flisiak, R. The role of Th17 response in COVID-19. Cells 2021, 10, 1550. [Google Scholar] [CrossRef] [PubMed]
- Klatt, N.R.; Funderburg, N.T.; Brenchley, J.M. Microbial translocation, immune activation, and HIV disease. Trends. Microbiol. 2013, 21, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Khanmohammadi, S.; Rezaei, N. Role of Toll-like receptors in the pathogenesis of COVID-19. J. Med. Virol. 2021, 93, 2735–2739. [Google Scholar] [CrossRef]
- Liu, Z.M.; Yang, M.H.; Yu, K.; Lian, Z.X.; Deng, S.L. Toll-like receptor (TLRs) agonists and antagonists for COVID-19 treatments. Front. Pharmacol. 2022, 13, 989664. [Google Scholar] [CrossRef] [PubMed]
- Yonker, L.M.; Gilboa, T.; Ogata, A.F.; Senussi, Y.; Lazarovits, R.; Boribong, B.P.; Bartsch, Y.C.; Loiselle, M.; Rivas, M.N.; Porritt, R.A.; et al. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J. Clin. Investig. 2021, 131, e149633. [Google Scholar] [CrossRef] [PubMed]
- Querdasi, F.R.; Vogel, S.C.; Thomason, M.E.; Callaghan, B.L.; Brito, N.H. A comparison of the infant gut microbiome before versus after the start of the COVID-19 pandemic. Sci. Rep. 2023, 13, 13289. [Google Scholar] [CrossRef]
Children with COVID-19 (N = 18) | Healthy Children (N = 7) | |
---|---|---|
Age (months), median (min–max) | 4.5 (0.8–16) | 30 (3–76) |
Male, N (%) | 10 (55.6) | 5 (71.4) |
Gestational age (weeks) | 39 | 38 |
Birth weight (kg) | 3.3 | 3.0 |
Mode of delivery, N (%) | ||
Vaginal delivery | 5 (27.8) | 1 (14.3) |
Cesarean section | 4 (22.2) | 5 (71.4) |
Unknown | 9 (50.0) | 1 (14.3) |
Diet, N (%) | ||
Infant formula | 14 (77.8) | 2 (28.6) |
Weaning | 3 (16.7) | 1 (14.3) |
Regular diet | 1 (5.5) | 4 (57.1) |
Duration between symptom onset and specimen collection, median (min–max) | 3 (0–9) | - |
Symptoms at admission, N (%) | - | |
Fever | 15 (83.3) | - |
Respiratory symptoms | 10 (55.6) | - |
Cough | 8 (80.0) | - |
Sputum | 3 (30.0) | - |
Nasal obstruction | 3 (30.0) | - |
Rhinorrhea | 2 (20.0) | - |
Gastrointestinal symptoms | 0 (0.0) | - |
Laboratory results, median | - | |
WBC (103/μL) | 6710 | - |
ESR (mg/dL) | 11 | - |
CRP (mg/dL) | 0.13 | - |
Procalcitonin (ng/mL) | 0.12 | - |
AST (IU/L) | 40.5 | - |
ALT (IU/L) | 19.5 | - |
LDH | 285 | - |
IL-6 | 11.6 | - |
Radiological findings | - | |
Suggestive of pneumonia, N (%) | 12 (66.7) | - |
Coinfection, N (%) | 5 (27.7) | - |
hCoV 229E | 1 (5.5) | - |
Rhinovirus | 3 (16.7) | - |
RSV B | 1 (5.5) | - |
Antibiotic use, N (%) | 5 (27.8) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.H.; Kwak, B.O.; Cho, K.Y. Altered Gut Microbiota and Predicted Immune Dysregulation in Early Childhood SARS-CoV-2 Infection. Microorganisms 2025, 13, 1879. https://doi.org/10.3390/microorganisms13081879
Kim DH, Kwak BO, Cho KY. Altered Gut Microbiota and Predicted Immune Dysregulation in Early Childhood SARS-CoV-2 Infection. Microorganisms. 2025; 13(8):1879. https://doi.org/10.3390/microorganisms13081879
Chicago/Turabian StyleKim, Dong Hyun, Byung Ok Kwak, and Ky Young Cho. 2025. "Altered Gut Microbiota and Predicted Immune Dysregulation in Early Childhood SARS-CoV-2 Infection" Microorganisms 13, no. 8: 1879. https://doi.org/10.3390/microorganisms13081879
APA StyleKim, D. H., Kwak, B. O., & Cho, K. Y. (2025). Altered Gut Microbiota and Predicted Immune Dysregulation in Early Childhood SARS-CoV-2 Infection. Microorganisms, 13(8), 1879. https://doi.org/10.3390/microorganisms13081879