Serrapeptase Eliminates Escherichia coli Biofilms by Targeting Curli Fibers, Lipopolysaccharides, and Phosphate Metabolism
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Bacterial Strain
2.2. Evaluation of Bacterial Growth and Biofilm Formation
2.3. Determination of Planktonic Bacterial Viability by MTT Assay
2.4. Determination of Biofilm Bacterial Viability by Fluorescein Diacetate Assay
2.5. Estimation of Amyloid and Peptidoglycan Content of Bacterial Surface
2.6. Fluorescence Microscopy of E. coli Biofilm Amyloids
2.7. Determination of Intracellular and Extracellular Alkaline Phosphatase Activity
2.8. Lysis of Whole Bacterial Cells
2.9. Determination of DING Proteins, FliC, and LPSs by Dot Blot
2.10. Statistical Analyses
2.11. In Silico Analysis of the Interaction Between SPT and the Curli Subunits CsgA and CsgB
3. Results
3.1. SPT Inhibits the Biofilm Formation of E. coli
3.2. SPT Treatment Impairs the Growth and Viability/Metabolic Activity of E. coli
3.3. The SPT Treatment Reduces Functional Amyloid and Peptidoglycan Titers of the E. coli Cell Wall
3.4. SPT Treatment Alters the Phosphate Metabolism of E. coli
3.5. SPT Treatment Leads to a Reduction in Crucial Virulence Factors, Such as LPSs and FliC
3.6. SPT Is In Silico Predicted to Interact with Curli Subunits CsgA and CsgB
- CsgA–SPT
- CsgB–SPT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, G.; Sharma, S.; Sharma, P.; Chandola, D.; Dang, S.; Gupta, S.; Gabrani, R. Escherichia coli Biofilm: Development and Therapeutic Strategies. J. Appl. Microbiol. 2016, 121, 309–319. [Google Scholar] [CrossRef]
- Galié, S.; García-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front. Microbiol. 2018, 9, 898. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Hur, H.-G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T.; Ishii, S. Environmental Escherichia coli: Ecology and Public Health Implications—A Review. J. Appl. Microbiol. 2017, 123, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Reisner, A.; Maierl, M.; Jörger, M.; Krause, R.; Berger, D.; Haid, A.; Tesic, D.; Zechner, E.L. Type 1 Fimbriae Contribute to Catheter-Associated Urinary Tract Infections Caused by Escherichia coli. J. Bacteriol. 2014, 196, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Szmolka, A.; Nagy, B. Multidrug Resistant Commensal Escherichia coli in Animals and Its Impact for Public Health. Front. Microbiol. 2013, 4, 258. [Google Scholar] [CrossRef]
- Stoodley, P.; Sauer, K.; Davies, D.G.; Costerton, J.W. Biofilms as Complex Differentiated Communities. Annu. Rev. Microbiol. 2002, 56, 187–209. [Google Scholar] [CrossRef]
- Høiby, N.; Ciofu, O.; Bjarnsholt, T. Pseudomonas Aeruginosa Biofilms in Cystic Fibrosis. Future Microbiol. 2010, 5, 1663–1674. [Google Scholar] [CrossRef]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef]
- Qian, W.; Li, X.; Yang, M.; Liu, C.; Kong, Y.; Li, Y.; Wang, T.; Zhang, Q. Relationship Between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Escherichia coli Isolates from Ningbo, China. Infect. Drug Resist. 2022, 15, 2865–2878. [Google Scholar] [CrossRef]
- Mittal, S.; Sharma, M.; Chaudhary, U. Biofilm and Multidrug Resistance in Uropathogenic Escherichia coli. Pathog. Glob. Health 2015, 109, 26–29. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Yang, H.; Lin, K.-A.; Shao, T.; Hope, J. Biofilms Controlling in Industrial Cooling Water Systems: A Mini-Review of Strategies and Best Practices. ACS Appl. Bio Mater. 2023, 6, 3213–3220. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.-H.; Du, R.; Sun, D.-W. Regulating Bacterial Biofilms in Food and Biomedicine: Unraveling Mechanisms and Innovating Strategies. Crit. Rev. Food Sci. Nutr. 2025, 65, 1894–1910. [Google Scholar] [CrossRef] [PubMed]
- Van Gerven, N.; Van der Verren, S.E.; Reiter, D.M.; Remaut, H. The Role of Functional Amyloids in Bacterial Virulence. J. Mol. Biol. 2018, 430, 3657–3684. [Google Scholar] [CrossRef] [PubMed]
- Beloin, C.; Roux, A.; Ghigo, J.-M. Escherichia coli Biofilms. Curr. Top. Microbiol. Immunol. 2008, 322, 249–289. [Google Scholar]
- Eisenberg, D.; Jucker, M. The Amyloid State of Proteins in Human Diseases. Cell 2012, 148, 1188–1203. [Google Scholar] [CrossRef]
- Taglialegna, A.; Lasa, I.; Valle, J. Amyloid Structures as Biofilm Matrix Scaffolds. J. Bacteriol. 2016, 198, 2579–2588. [Google Scholar] [CrossRef]
- Reshamwala, S.M.S.; Noronha, S.B. Biofilm Formation in Escherichia coli Cra Mutants Is Impaired Due to Down-Regulation of Curli Biosynthesis. Arch. Microbiol. 2011, 193, 711–722. [Google Scholar] [CrossRef]
- Barnhart, M.M.; Chapman, M.R. Curli Biogenesis and Function. Annu. Rev. Microbiol. 2006, 60, 131–147. [Google Scholar] [CrossRef]
- Bandara, H.M.H.N.; Lam, O.L.T.; Watt, R.M.; Jin, L.J.; Samaranayake, L.P. Bacterial Lipopolysaccharides Variably Modulate In Vitro Biofilm Formation of Candida Species. J. Med. Microbiol. 2010, 59, 1225–1234. [Google Scholar] [CrossRef]
- Nakao, R.; Ramstedt, M.; Wai, S.N.; Uhlin, B.E. Enhanced Biofilm Formation by Escherichia coli LPS Mutants Defective in Hep Biosynthesis. PLoS ONE 2012, 7, e51241. [Google Scholar] [CrossRef]
- Wang, F.; Deng, L.; Huang, F.; Wang, Z.; Lu, Q.; Xu, C. Flagellar Motility Is Critical for Salmonella Enterica Serovar Typhimurium Biofilm Development. Front. Microbiol. 2020, 11, 1695. [Google Scholar] [CrossRef]
- Zhou, M.; Guo, Z.; Yang, Y.; Duan, Q.; Zhang, Q.; Yao, F.; Zhu, J.; Zhang, X.; Hardwidge, P.R.; Zhu, G. Flagellin and F4 Fimbriae Have Opposite Effects on Biofilm Formation and Quorum Sensing in F4ac+ Enterotoxigenic Escherichia coli. Vet. Microbiol. 2014, 168, 148–153. [Google Scholar] [CrossRef]
- Lian, S.; Luo, Y.; Chen, Z.; Wei, X.; Liu, J.; Zhu, G.; Xia, P. Deficiency of the Flagellin Subunit FliC Exacerbates the Pathogenicity of Extraintestinal Pathogenic Escherichia coli in BALB/c Mice by Inducing a More Intense Inflammation. Int. J. Biol. Macromol. 2025, 289, 138761. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.T.; Xu, K.D.; McFeters, G.A.; Stewart, P.S. Spatial Patterns of Alkaline Phosphatase Expression within Bacterial Colonies and Biofilms in Response to Phosphate Starvation. Appl. Environ. Microbiol. 1998, 64, 1526–1531. [Google Scholar] [CrossRef] [PubMed]
- Zorzetto, L.; Scoppola, E.; Raguin, E.; Blank, K.G.; Fratzl, P.; Bidan, C.M. Induced Mineralization of Hydroxyapatite in Escherichia coli Biofilms and the Potential Role of Bacterial Alkaline Phosphatase. Chem. Mater. 2023, 35, 2762–2772. [Google Scholar] [CrossRef]
- Katsipis, G.; Pantazaki, A.A. Serrapeptase Impairs Biofilm, Wall, and Phospho-Homeostasis of Resistant and Susceptible Staphylococcus aureus. Appl. Microbiol. Biotechnol. 2023, 107, 1373–1389. [Google Scholar] [CrossRef]
- Katsipis, G.; Tsalouxidou, V.; Halevas, E.; Geromichalou, E.; Geromichalos, G.; Pantazaki, A.A. In Vitro and In Silico Evaluation of the Inhibitory Effect of a Curcumin-Based Oxovanadium (IV) Complex on Alkaline Phosphatase Activity and Bacterial Biofilm Formation. Appl. Microbiol. Biotechnol. 2021, 105, 147–168. [Google Scholar] [CrossRef]
- Katsipis, G.; Avgoulas, D.I.; Geromichalos, G.D.; Petala, M.; Pantazaki, A.A. In Vitro and In Silico Evaluation of the Serrapeptase Effect on Biofilm and Amyloids of Pseudomonas Aeruginosa. Appl. Microbiol. Biotechnol. 2023, 107, 7269–7285. [Google Scholar] [CrossRef]
- Miyata, K.; Maejima, K.; Tomoda, K.; Isono, M. Serratia Protease Part I. Purification and General. Properties of the Enzyme. Agric. Biol. Chem. 1970, 34, 310–318. [Google Scholar] [CrossRef]
- Jadhav, S.B.; Shah, N.; Rathi, A.; Rathi, V.; Rathi, A. Serratiopeptidase: Insights into the Therapeutic Applications. Biotechnol. Rep. 2020, 28, e00544. [Google Scholar] [CrossRef]
- Selan, L.; Papa, R.; Ermocida, A.; Cellini, A.; Ettorre, E.; Vrenna, G.; Campoccia, D.; Montanaro, L.; Arciola, C.R.; Artini, M. Serratiopeptidase Reduces the Invasion of Osteoblasts by Staphylococcus aureus. Int. J. Immunopathol. Pharmacol. 2017, 30, 423–428. [Google Scholar] [CrossRef]
- Chopra, D.; Rehan, H.S.; Mehra, P.; Kakkar, A.K. A Randomized, Double-Blind, Placebo-Controlled Study Comparing the Efficacy and Safety of Paracetamol, Serratiopeptidase, Ibuprofen and Betamethasone Using the Dental Impaction Pain Model. Int. J. Oral Maxillofac. Surg. 2009, 38, 350–355. [Google Scholar] [CrossRef]
- Passariello, C.; Lucchese, A.; Pera, F.; Gigola, P. Clinical, Microbiological and Inflammatory Evidence of the Efficacy of Combination Therapy Including Serratiopeptidase in the Treatment of Periimplantitis. Eur. J. Inflamm. 2012, 10, 463–472. [Google Scholar] [CrossRef]
- Sannino, G.; Gigola, P.; Puttini, M.; Pera, F.; Passariello, C. Combination Therapy Including Serratiopeptidase Improves Outcomes of Mechanical-Antibiotic Treatment of Periimplantitis. Int. J. Immunopathol. Pharmacol. 2013, 26, 825–831. [Google Scholar] [CrossRef]
- Bearden, J.C. Quantitation of Submicrogram Quantities of Protein by an Improved Protein-Dye Binding Assay. Biochim. Biophys. Acta (BBA)-Protein Struct. 1978, 533, 525–529. [Google Scholar] [CrossRef]
- Zor, T.; Selinger, Z. Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies. Anal. Biochem. 1996, 236, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Vélez-Gómez, J.M.; Melchor-Moncada, J.J.; Veloza, L.A.; Sepúlveda-Arias, J.C. Purification and Characterization of a Metalloprotease Produced by the C8 Isolate of Serratia Marcescens Using Silkworm Pupae or Casein as a Protein Source. Int. J. Biol. Macromol. 2019, 135, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cheng, H.; Wang, F.; Wei, D.; Wang, X. An Improved 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl Tetrazolium Bromide (MTT) Reduction Assay for Evaluating the Viability of Escherichia coli Cells. J. Microbiol. Methods 2010, 82, 330–333. [Google Scholar] [CrossRef]
- Dzionek, A.; Dzik, J.; Wojcieszyńska, D.; Guzik, U. Fluorescein Diacetate Hydrolysis Using the Whole Biofilm as a Sensitive Tool to Evaluate the Physiological State of Immobilized Bacterial Cells. Catalysts 2018, 8, 434. [Google Scholar] [CrossRef]
- Reichhardt, C.; Jacobson, A.N.; Maher, M.C.; Uang, J.; McCrate, O.A.; Eckart, M.; Cegelski, L. Congo Red Interactions with Curli-Producing E. coli and Native Curli Amyloid Fibers. PLoS ONE 2015, 10, e0140388. [Google Scholar] [CrossRef]
- Andreadou, E.G.; Katsipis, G.; Tsolaki, M.; Pantazaki, A.A. Investigation for the Involvement of Microbial FliC and DING Proteins in Alzheimer’s Disease and Mild Cognitive Impairment and Correlation with Neurodegeneration and Inflammation Markers. Brain Disord. 2023, 11, 100091. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Honorato, R.V.; Trellet, M.E.; Jiménez-García, B.; Schaarschmidt, J.J.; Giulini, M.; Reys, V.; Koukos, P.I.; Rodrigues, J.P.G.L.M.; Karaca, E.; van Zundert, G.C.P.; et al. The HADDOCK2.4 Web Server for Integrative Modeling of Biomolecular Complexes. Nat. Protoc. 2024, 19, 3219–3241. [Google Scholar] [CrossRef] [PubMed]
- Honorato, R.V.; Koukos, P.I.; Jiménez-García, B.; Tsaregorodtsev, A.; Verlato, M.; Giachetti, A.; Rosato, A.; Bonvin, A.M.J.J. Structural Biology in the Clouds: The WeNMR-EOSC Ecosystem. Front. Mol. Biosci. 2021, 8, 729513. [Google Scholar] [CrossRef]
- Percival, S.L.; Suleman, L.; Vuotto, C.; Donelli, G. Healthcare-Associated Infections, Medical Devices and Biofilms: Risk, Tolerance and Control. J. Med. Microbiol. 2015, 64, 323–334. [Google Scholar] [CrossRef]
- Bjarnsholt, T. The Role of Bacterial Biofilms in Chronic Infections. APMIS 2013, 121, 1–58. [Google Scholar] [CrossRef]
- Ballén, V.; Cepas, V.; Ratia, C.; Gabasa, Y.; Soto, S.M. Clinical Escherichia coli: From Biofilm Formation to New Antibiofilm Strategies. Microorganisms 2022, 10, 1103. [Google Scholar] [CrossRef]
- Longhi, C.; Scoarughi, G.L.; Poggiali, F.; Cellini, A.; Carpentieri, A.; Seganti, L.; Pucci, P.; Amoresano, A.; Cocconcelli, P.S.; Artini, M.; et al. Protease Treatment Affects Both Invasion Ability and Biofilm Formation in Listeria Monocytogenes. Microb. Pathog. 2008, 45, 45–52. [Google Scholar] [CrossRef]
- Artini, M.; Papa, R.; Scoarughi, G.L.; Galano, E.; Barbato, G.; Pucci, P.; Selan, L. Comparison of the Action of Different Proteases on Virulence Properties Related to the Staphylococcal Surface. J. Appl. Microbiol. 2013, 114, 266–277. [Google Scholar] [CrossRef]
- Selan, L.; Papa, R.; Tilotta, M.; Vrenna, G.; Carpentieri, A.; Amoresano, A.; Pucci, P.; Artini, M. Serratiopeptidase: A Well-Known Metalloprotease with a New Non-Proteolytic Activity against S. aureus. Biofilm. BMC Microbiol. 2015, 15, 207. [Google Scholar] [CrossRef]
- Devlin, H.; Fulaz, S.; Hiebner, D.W.; O’Gara, J.P.; Casey, E. Enzyme-Functionalized Mesoporous Silica Nanoparticles to Target Staphylococcus aureus and Disperse Biofilms. Int. J. Nanomedicine 2021, 16, 1929–1942. [Google Scholar] [CrossRef]
- Srivastava, V.; Bandhu, S.; Mishra, S.; Chaudhuri, T.K. Serratiopeptidase Exhibits Antibiofilm Activity through the Proteolytic Function of N-Terminal Domain and Versatile Function of the C-Terminal Domain. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2025, 1873, 141046. [Google Scholar] [CrossRef]
- Mecikoglu, M.; Saygi, B.; Yildirim, Y.; Karadag-Saygi, E.; Ramadan, S.S.; Esemenli, T. The Effect of Proteolytic Enzyme Serratiopeptidase in the Treatment of Experimental Implant-Related Infection. J. Bone Joint Surg. Am. 2006, 88, 1208–1214. [Google Scholar] [CrossRef]
- Oulahal-Lagsir, N.; Martial-Gros, A.; Bonneau, M.; Blum, L.J. “Escherichia coli-Milk” Biofilm Removal from Stainless Steel Surfaces: Synergism between Ultrasonic Waves and Enzymes. Biofouling 2003, 19, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Papa, R.; Artini, M.; Cellini, A.; Tilotta, M.; Galano, E.; Pucci, P.; Amoresano, A.; Selan, L. A New Anti-Infective Strategy to Reduce the Spreading of Antibiotic Resistance by the Action on Adhesion-Mediated Virulence Factors in Staphylococcus aureus. Microb. Pathog. 2013, 63, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Grela, E.; Kozłowska, J.; Grabowiecka, A. Current Methodology of MTT Assay in Bacteria–A Review. Acta Histochem. 2018, 120, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Danikowski, K.M.; Cheng, T. Alkaline Phosphatase Activity of Staphylococcus aureus Grown in Biofilm and Suspension Cultures. Curr. Microbiol. 2018, 75, 1226–1230. [Google Scholar] [CrossRef]
- Kamitani, S.; Akiyama, Y.; Ito, K. Identification and Characterization of an Escherichia coli Gene Required for the Formation of Correctly Folded Alkaline Phosphatase, a Periplasmic Enzyme. EMBO J. 1992, 11, 57–62. [Google Scholar] [CrossRef]
- Santos-Beneit, F. The Pho Regulon: A Huge Regulatory Network in Bacteria. Front. Microbiol. 2015, 6, 402. [Google Scholar] [CrossRef]
- Zaborina, O.; Holbrook, C.; Chen, Y.; Long, J.; Zaborin, A.; Morozova, I.; Fernandez, H.; Wang, Y.; Turner, J.R.; Alverdy, J.C. Structure-Function Aspects of PstS in Multi-Drug-Resistant Pseudomonas Aeruginosa. PLoS Pathog. 2008, 4, e43. [Google Scholar] [CrossRef]
- Vuppada, R.K.; Hansen, C.R.; Strickland, K.A.P.; Kelly, K.M.; McCleary, W.R. Phosphate Signaling through Alternate Conformations of the PstSCAB Phosphate Transporter. BMC Microbiol. 2018, 18, 8. [Google Scholar] [CrossRef]
- Monds, R.D.; Newell, P.D.; Gross, R.H.; O’Toole, G.A. Phosphate-Dependent Modulation of c-Di-GMP Levels Regulates Pseudomonas Fluorescens Pf0-1 Biofilm Formation by Controlling Secretion of the Adhesin LapA. Mol. Microbiol. 2007, 63. [Google Scholar] [CrossRef] [PubMed]
- Haddad, A.; Jensen, V.; Becker, T.; Häussler, S. The Pho Regulon Influences Biofilm Formation and Type Three Secretion in Pseudomonas Aeruginosa. Environ. Microbiol. Rep. 2009, 1, 488–494. [Google Scholar] [CrossRef]
- Monds, R.D.; Silby, M.W.; Mahanty, H.K. Expression of the Pho Regulon Negatively Regulates Biofilm Formation by Pseudomonas Aureofaciens PA147-2. Mol. Microbiol. 2001, 42, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Neznansky, A.; Blus-Kadosh, I.; Yerushalmi, G.; Banin, E.; Opatowsky, Y. The Pseudomonas aeruginosa Phosphate Transport Protein PstS Plays a Phosphate-independent Role in Biofilm Formation. FASEB J. 2014, 28, 5223–5233. [Google Scholar] [CrossRef] [PubMed]
- Mudrak, B.; Tamayo, R. The Vibrio Cholerae Pst2 Phosphate Transport System Is Upregulated in Biofilms and Contributes to Biofilm-Induced Hyperinfectivity. Infect. Immun. 2012, 80, 1794–1802. [Google Scholar] [CrossRef]
- O’May, G.A.; Jacobsen, S.M.; Longwell, M.; Stoodley, P.; Mobley, H.L.T.; Shirtliff, M.E. The High-Affinity Phosphate Transporter Pst in Proteus Mirabilis HI4320 and Its Importance in Biofilm Formation. Microbiology 2009, 155, 1523–1535. [Google Scholar] [CrossRef]
- Kikuchi, T.; Mizunoe, Y.; Takade, A.; Naito, S.; Yoshida, S. Curli Fibers Are Required for Development of Biofilm Architecture in Escherichia coli K-12 and Enhance Bacterial Adherence to Human Uroepithelial Cells. Microbiol. Immunol. 2005, 49, 875–884. [Google Scholar] [CrossRef]
- Saldaña, Z.; Xicohtencatl-Cortes, J.; Avelino, F.; Phillips, A.D.; Kaper, J.B.; Puente, J.L.; Girón, J.A. Synergistic Role of Curli and Cellulose in Cell Adherence and Biofilm Formation of Attaching and Effacing Escherichia coli and Identification of Fis as a Negative Regulator of Curli. Environ. Microbiol. 2009, 11, 992–1006. [Google Scholar] [CrossRef]
- Serra, D.O.; Mika, F.; Richter, A.M.; Hengge, R. The Green Tea Polyphenol EGCG Inhibits E. coli Biofilm Formation by Impairing Amyloid Curli Fibre Assembly and Downregulating the Biofilm Regulator CsgD via the ΣE-dependent SRNA RybB. Mol. Microbiol. 2016, 101, 136–151. [Google Scholar] [CrossRef]
- Arita-Morioka, K.; Yamanaka, K.; Mizunoe, Y.; Tanaka, Y.; Ogura, T.; Sugimoto, S. Inhibitory Effects of Myricetin Derivatives on Curli-Dependent Biofilm Formation in Escherichia coli. Sci. Rep. 2018, 8, 8452. [Google Scholar] [CrossRef]
- Uhlich, G.A.; Keen, J.E.; Elder, R.O. Variations in the CsgD Promoter of Escherichia coli O157:H7 Associated with Increased Virulence in Mice and Increased Invasion of HEp-2 Cells. Infect. Immun. 2002, 70, 395–399. [Google Scholar] [CrossRef]
- Gophna, U.; Oelschlaeger, T.A.; Hacker, J.; Ron, E.Z. Role of Fibronectin in Curli-Mediated Internalization. FEMS Microbiol. Lett. 2002, 212, 55–58. [Google Scholar] [CrossRef]
- Gophna, U.; Barlev, M.; Seijffers, R.; Oelschlager, T.A.; Hacker, J.; Ron, E.Z. Curli Fibers Mediate Internalization of Escherichia coli by Eukaryotic Cells. Infect. Immun. 2001, 69, 2659–2665. [Google Scholar] [CrossRef]
- Metkar, S.K.; Girigoswami, A.; Murugesan, R.; Girigoswami, K. In Vitro and In Vivo Insulin Amyloid Degradation Mediated by Serratiopeptidase. Mater. Sci. Eng. C 2017, 70, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Metkar, S.K.; Girigoswami, A.; Vijayashree, R.; Girigoswami, K. Attenuation of Subcutaneous Insulin Induced Amyloid Mass In Vivo Using Lumbrokinase and Serratiopeptidase. Int. J. Biol. Macromol. 2020, 163, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Metkar, S.K.; Girigoswami, A.; Bondage, D.D.; Shinde, U.G.; Girigoswami, K. The Potential of Lumbrokinase and Serratiopeptidase for the Degradation of Aβ 1–42 Peptide—An In Vitro and In Silico Approach. Int. J. Neurosci. 2024, 134, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, N.; Silhavy, T.J. Constitutive Activation of the Escherichia coli Pho Regulon Upregulates RpoS Translation in an Hfq-Dependent Fashion. J. Bacteriol. 2003, 185, 5984–5992. [Google Scholar] [CrossRef]
- Ogasawara, H.; Yamamoto, K.; Ishihama, A. Regulatory Role of MlrA in Transcription Activation of CsgD, the Master Regulator of Biofilm Formation in Escherichia coli. FEMS Microbiol. Lett. 2010, 312, 160–168. [Google Scholar] [CrossRef]
- Coulon, C.; Vinogradov, E.; Filloux, A.; Sadovskaya, I. Chemical Analysis of Cellular and Extracellular Carbohydrates of a Biofilm-Forming Strain Pseudomonas Aeruginosa PA14. PLoS ONE 2010, 5, e14220. [Google Scholar] [CrossRef]
- Sarkar, S.; Ulett, G.C.; Totsika, M.; Phan, M.-D.; Schembri, M.A. Role of Capsule and O Antigen in the Virulence of Uropathogenic Escherichia coli. PLoS ONE 2014, 9, e94786. [Google Scholar] [CrossRef]
- Brown, G.C.; Neher, J.J. Inflammatory Neurodegeneration and Mechanisms of Microglial Killing of Neurons. Mol. Neurobiol. 2010, 41, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.K.; Leatham, M.P.; Conway, T.; Nuijten, P.J.M.; de Haan, L.A.M.; Krogfelt, K.A.; Cohen, P.S. An Escherichia coli MG1655 Lipopolysaccharide Deep-Rough Core Mutant Grows and Survives in Mouse Cecal Mucus but Fails to Colonize the Mouse Large Intestine. Infect. Immun. 2003, 71, 2142–2152. [Google Scholar] [CrossRef] [PubMed]
- Yeom, J.; Lee, Y.; Park, W. Effects of Non-Ionic Solute Stresses on Biofilm Formation and Lipopolysaccharide Production in Escherichia coli O157:H7. Res. Microbiol. 2012, 163, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, W.; Fang, Y.; Liang, H.; Yang, H.; Wang, Y.; Dong, X.; Zhan, Y.; Wang, X. Core Oligosaccharide Portion of Lipopolysaccharide Plays Important Roles in Multiple Antibiotic Resistance in Escherichia coli. Antimicrob. Agents Chemother. 2021, 65, e00341-21. [Google Scholar] [CrossRef]
- Lamarche, M.G.; Kim, S.-H.; Crépin, S.; Mourez, M.; Bertrand, N.; Bishop, R.E.; Dubreuil, J.D.; Harel, J. Modulation of Hexa-Acyl Pyrophosphate Lipid A Population under Escherichia coli Phosphate (Pho) Regulon Activation. J. Bacteriol. 2008, 190, 5256–5264. [Google Scholar] [CrossRef]
- Vogeleer, P.; Vincent, A.T.; Chekabab, S.M.; Charette, S.J.; Novikov, A.; Caroff, M.; Beaudry, F.; Jacques, M.; Harel, J. Regulation of WaaH by PhoB during Pi Starvation Promotes Biofilm Formation by Escherichia coli O157:H7. J. Bacteriol. 2019, 201, e00093-19. [Google Scholar] [CrossRef]
- Yuan, Z.-C.; Zaheer, R.; Morton, R.; Finan, T.M. Genome Prediction of PhoB Regulated Promoters in Sinorhizobium Meliloti and Twelve Proteobacteria. Nucleic Acids Res. 2006, 34, 2686–2697. [Google Scholar] [CrossRef]
- Chiu, Y.-K.; Yin, T.; Lee, Y.-T.; Chen, S.-J.; Wang, Y.-C.; Ma, K.-H. Proteomic Profiling of Outer Membrane Vesicles Released by Escherichia coli LPS Mutants Defective in Heptose Biosynthesis. J. Pers. Med. 2022, 12, 1301. [Google Scholar] [CrossRef]
- Toyofuku, M.; Nomura, N.; Eberl, L. Types and Origins of Bacterial Membrane Vesicles. Nat. Rev. Microbiol. 2019, 17, 13–24. [Google Scholar] [CrossRef]
- Friedland, R.P. Mechanisms of Molecular Mimicry Involving the Microbiota in Neurodegeneration. J. Alzheimers Dis. 2015, 45, 349–362. [Google Scholar] [CrossRef]
- Duan, Q.; Zhou, M.; Zhu, X.; Bao, W.; Wu, S.; Ruan, X.; Zhang, W.; Yang, Y.; Zhu, J.; Zhu, G. The Flagella of F18ab Escherichia coli Is a Virulence Factor That Contributes to Infection in a IPEC-J2 Cell Model In Vitro. Vet. Microbiol. 2012, 160, 132–140. [Google Scholar] [CrossRef]
- Lane, M.C.; Alteri, C.J.; Smith, S.N.; Mobley, H.L.T. Expression of Flagella Is Coincident with Uropathogenic Escherichia coli Ascension to the Upper Urinary Tract. Proc. Natl. Acad. Sci. USA 2007, 104, 16669–16674. [Google Scholar] [CrossRef]
- Hung, C.; Zhou, Y.; Pinkner, J.S.; Dodson, K.W.; Crowley, J.R.; Heuser, J.; Chapman, M.R.; Hadjifrangiskou, M.; Henderson, J.P.; Hultgren, S.J. Escherichia coli Biofilms Have an Organized and Complex Extracellular Matrix Structure. mBio 2013, 4, e00645-13. [Google Scholar] [CrossRef]
- Pesavento, C.; Becker, G.; Sommerfeldt, N.; Possling, A.; Tschowri, N.; Mehlis, A.; Hengge, R. Inverse Regulatory Coordination of Motility and Curli-Mediated Adhesion in Escherichia coli. Genes. Dev. 2008, 22, 2434–2446. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y. PhoU Is a Persistence Switch Involved in Persister Formation and Tolerance to Multiple Antibiotics and Stresses in Escherichia coli. Antimicrob. Agents Chemother. 2007, 51, 2092–2099. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsipis, G.; Aivaliotis, M.; Pantazaki, A.A. Serrapeptase Eliminates Escherichia coli Biofilms by Targeting Curli Fibers, Lipopolysaccharides, and Phosphate Metabolism. Microorganisms 2025, 13, 1875. https://doi.org/10.3390/microorganisms13081875
Katsipis G, Aivaliotis M, Pantazaki AA. Serrapeptase Eliminates Escherichia coli Biofilms by Targeting Curli Fibers, Lipopolysaccharides, and Phosphate Metabolism. Microorganisms. 2025; 13(8):1875. https://doi.org/10.3390/microorganisms13081875
Chicago/Turabian StyleKatsipis, Georgios, Michalis Aivaliotis, and Anastasia A. Pantazaki. 2025. "Serrapeptase Eliminates Escherichia coli Biofilms by Targeting Curli Fibers, Lipopolysaccharides, and Phosphate Metabolism" Microorganisms 13, no. 8: 1875. https://doi.org/10.3390/microorganisms13081875
APA StyleKatsipis, G., Aivaliotis, M., & Pantazaki, A. A. (2025). Serrapeptase Eliminates Escherichia coli Biofilms by Targeting Curli Fibers, Lipopolysaccharides, and Phosphate Metabolism. Microorganisms, 13(8), 1875. https://doi.org/10.3390/microorganisms13081875