Efficient Copper Biosorption by Rossellomorea sp. ZC255: Strain Characterization, Kinetic–Equilibrium Analysis, and Genomic Perspectives
Abstract
1. Introduction
2. Materials and Methods
2.1. Batch Removal Experiments
2.2. Kinetic Models for Batch Experiments
2.3. Equilibrium Isotherm Models for Batch Assays
2.4. SEM Analysis
2.5. FTIR Analysis
2.6. Genome Annotation and Analysis of ZC255
3. Results and Discussion
3.1. Batch Biosorption Experiment
3.1.1. Effect of Solution pH
3.1.2. Effect of Temperature
3.1.3. Effect of Inoculation Amount
3.2. Kinetic Models for Batch Experiment
3.3. Equilibrium Isotherm Models for Batch Assays
3.4. SEM Analysis
3.5. FTIR Analysis
3.6. Genome Annotation and Analysis of ZC255
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manzoor, R.; Zhang, T.; Zhang, X.; Wang, M.; Pan, J.-F.; Wang, Z.; Zhang, B. Single and combined metal contamination in coastal environments in China: Current status and potential ecological risk evaluation. Environ. Sci. Pollut. Res. 2018, 25, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Jarwar, M.A.; Del Buey, P.; Sanz-Montero, M.E.; Dumontet, S.; Chianese, E.; Pasquale, V. Co-Precipitation of Cd, Cr, Pb, Zn, and Carbonates Using Vibrio harveyi Strain Isolated from Mediterranean Sea Sediment. Minerals 2023, 13, 627. [Google Scholar] [CrossRef]
- Lu, Y.; Yuan, J.; Lu, X.; Su, C.; Zhang, Y.; Wang, C.; Cao, X.; Li, Q.; Su, J.; Ittekkot, V.; et al. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ. Pollut. 2018, 239, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Sarangi, N.V.; Rajkumar, R. Biosorption potential of Stoechospermum marginatum for removal of heavy metals from aqueous solution: Equilibrium, kinetic and thermodynamic study. Chem. Eng. Res. Des. 2024, 203, 207–218. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.-H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Priyadarshanee, M.; Das, S. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. J. Environ. Chem. Eng. 2021, 9, 104686. [Google Scholar] [CrossRef]
- Hasr Moradi Kargar, S.; Hadizadeh Shirazi, N. Lactobacillus fermentum and Lactobacillus plantarum bioremediation ability assessment for copper and zinc. Arch. Microbiol. 2020, 202, 1957–1963. [Google Scholar] [CrossRef]
- Mir, D.H.; Rather, M.A. Kinetic and thermodynamic investigations of copper (II) biosorption by green algae Chara vulgaris obtained from the waters of Dal Lake in Srinagar (India). J. Water Process Eng. 2024, 58, 104850. [Google Scholar] [CrossRef]
- Danial, A.W.; Dardir, F.M. Copper biosorption by Bacillus pumilus OQ931870 and Bacillus subtilis OQ931871 isolated from Wadi Nakheil, Red Sea, Egypt. Microb. Cell Factories 2023, 22, 152. [Google Scholar] [CrossRef] [PubMed]
- Anjum, A.; Garg, R.; Garg, R.; Gupta, D.; Eddy, N.O. Efficient sequestration of zinc and copper from aqueous media: Exploring strategies, mechanisms, and challenges. Int. J. Environ. Sci. Technol. 2025, 22, 5105–5126. [Google Scholar] [CrossRef]
- Rathi, M.; K N, Y. Brevundimonas diminuta MYS6 associated Helianthus annuus L. for enhanced copper phytoremediation. Chemosphere 2021, 263, 128195. [Google Scholar] [CrossRef]
- Ramírez Calderón, O.A.; Abdeldayem, O.M.; Pugazhendhi, A.; Rene, E.R. Current updates and perspectives of biosorption technology: An alternative for the removal of heavy metals from wastewater. Curr. Pollut. Rep. 2020, 6, 8–27. [Google Scholar] [CrossRef]
- Fomina, M.; Gadd, G.M. Biosorption: Current perspectives on concept, definition and application. Bioresour. Technol. 2014, 160, 3–14. [Google Scholar] [CrossRef]
- Rakhmawati, A.; Wahyuni, E.T.; Yuwono, T. Potential application of thermophilic bacterium Aeribacillus pallidus MRP280 for lead removal from aqueous solution. Heliyon 2021, 7, e08304. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Palanivelu, J.; Hemavathy, R.V. Sustainable approaches for removing toxic heavy metal from contaminated water: A comprehensive review of bioremediation and biosorption techniques. Chemosphere 2024, 357, 141933. [Google Scholar] [CrossRef] [PubMed]
- Palanivel, T.M.; Sivakumar, N.; Al-Ansari, A.; Victor, R. Bioremediation of copper by active cells of Pseudomonas stutzeri LA3 isolated from an abandoned copper mine soil. J. Environ. Manag. 2020, 253, 109706. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Feng, G.; Li, Q.; Zhang, K.; Tang, C.; Chen, H.; Cai, C.; Mao, P. Efficient uranium sequestration ability and mechanism of live and inactivated strain of Streptomyces sp. HX-1 isolated from uranium wastewater. Environ. Pollut. 2024, 356, 124307. [Google Scholar] [CrossRef]
- Zhu, H.-S.; Liang, X.; Liu, J.-C.; Zhong, H.-Y.; Yang, Y.-H.; Guan, W.-P.; Du, Z.-J.; Ye, M.-Q. Antibiotic and Heavy Metal Co-Resistant Strain Isolated from Enrichment Culture of Marine Sediments, with Potential for Environmental Bioremediation Applications. Antibiotics 2023, 12, 1379. [Google Scholar] [CrossRef]
- Liaqat, I.; Muhammad, N.; Ara, C.; Hanif, U.; Andleeb, S.; Arshad, M.; Aftab, M.N.; Raza, C.; Mubin, M. Bioremediation of heavy metals polluted environment and decolourization of black liquor using microbial biofilms. Mol. Biol. Rep. 2023, 50, 3985–3997. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, A.; Ahmady-Asbchin, S. Removal of toxic metal Cd (II) by Serratia bozhouensis CdIW2 using in moving bed biofilm reactor (MBBR). J. Environ. Manag. 2023, 344, 118361. [Google Scholar] [CrossRef]
- Mushtaq, S.; Bareen, F.e.; Tayyeb, A. Equilibrium kinetics and thermodynamic studies on biosorption of heavy metals by metal-resistant strains of Trichoderma isolated from tannery solid waste. Environ. Sci. Pollut. Res. 2023, 30, 10925–10954. [Google Scholar] [CrossRef]
- Abdelkareem, H.; Alwared, A.; Al-Musawi, T.J.; Brouers, F. A Comparative Study for the Identification of Superior Biomass Facilitating Biosorption of Copper and Lead Ions: A Single Alga or a Mixture of Algae. Int. J. Environ. Res. 2019, 13, 533–546. [Google Scholar] [CrossRef]
- Lu, N.; Hu, T.; Zhai, Y.; Qin, H.; Aliyeva, J.; Zhang, H. Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis. Environ. Res. 2020, 182, 109061. [Google Scholar] [CrossRef]
- Khandelwal, R.; Keelka, S.; Jain, N.; Jain, P.; Kumar Sharma, M.; Kaushik, P. Biosorption of arsenic (III) from aqueous solution using calcium alginate immobilized dead biomass of Acinetobacter sp. strain Sp2b. Sci. Rep. 2024, 14, 9972. [Google Scholar] [CrossRef] [PubMed]
- Niță, N.-T.; Suceveanu, E.-M.; Nedeff, F.M.; Tița, O.; Rusu, L. Biocomposite Material Based on Lactococcus lactis sp. Immobilized in Natural Polymer Matrix for Pharmaceutical Removal from Aqueous Media. Polymers 2024, 16, 1804. [Google Scholar] [CrossRef]
- Momin, S.C.; Pradhan, R.B.; Nath, J.; Lalmuanzeli, R.; Kar, A.; Mehta, S.K. Metal sequestration by Microcystis extracellular polymers: A promising path to greener water treatment. Environ. Sci. Pollut. Res. 2024, 31, 11192–11213. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Huntley, R.P.; Sawford, T.; Mutowo-Meullenet, P.; Shypitsyna, A.; Bonilla, C.; Martin, M.J.; O’Donovan, C. The GOA database: Gene Ontology annotation updates for 2015. Nucleic Acids Res. 2014, 43, D1057–D1063. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Nguyen, V.D.; Trinh, M.T.; Han, P.L.; Nguyen, T.H.; Nguyen, M.T.; Vu, A.-T. Effective biosorptive removal of Pb2+ ions from wastewater using modified lettuce leaves: A novel sustainable and eco-friendly biosorbent. J. Hazard. Mater. Adv. 2025, 19, 100770. [Google Scholar] [CrossRef]
- Joshi, H.K.; Vishwakarma, M.C.; Kumar, R.; Bisht, B.S.; Joshi, N.C.; Joshi, S.K.; Bhandari, N.S. Comparison of Ni (II) ion biosorption onto Eupatorium Adinophorum and Acer Oblongum biomass using batch operations, response surface models, thermodynamics, kinetics, and equilibrium studies. J. Contam. Hydrol. 2025, 274, 104616. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, R.; Ding, Z.; Ruan, X.; Luo, J.; Chen, J.; Zheng, J.; Tang, J. Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils. Chemosphere 2020, 241, 125039. [Google Scholar] [CrossRef]
- El-Gendy, M.M.A.A.; El-Bondkly, A.M.A. Evaluation and enhancement of heavy metals bioremediation in aqueous solutions by Nocardiopsis sp. MORSY1948, and Nocardia sp. MORSY2014. Braz. J. Microbiol. 2016, 47, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Kayalvizhi, K.; Alhaji, N.M.I.; Saravanakkumar, D.; Mohamed, S.B.; Kaviyarasu, K.; Ayeshamariam, A.; Al-Mohaimeed, A.M.; AbdelGawwad, M.R.; Elshikh, M.S. Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads—A kinetic and thermodynamic study. Environ. Res. 2022, 203, 111814. [Google Scholar] [CrossRef]
- Beni, A.A.; Esmaeili, A. Biosorption, an efficient method for removing heavy metals from industrial effluents: A Review. Environ. Technol. Innov. 2020, 17, 100503. [Google Scholar] [CrossRef]
- Cheng, J.; Gao, J.; Zhang, J.; Yuan, W.; Yan, S.; Zhou, J.; Zhao, J.; Feng, S. Optimization of Hexavalent Chromium Biosorption by Shewanella putrefaciens Using the Box-Behnken Design. Water Air Soil Pollut. 2021, 232, 92. [Google Scholar] [CrossRef]
- Mohapatra, R.K.; Parhi, P.K.; Pandey, S.; Bindhani, B.K.; Thatoi, H.; Panda, C.R. Active and passive biosorption of Pb(II)using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: Kinetics and isotherm studies. J. Environ. Manag. 2019, 247, 121–134. [Google Scholar] [CrossRef]
- Sarada, B.; Krishna Prasad, M.; Kishore Kumar, K.; Murthy, C.V.R. Biosorption of Cd+2 by green plant biomass, Araucaria heterophylla: Characterization, kinetic, isotherm and thermodynamic studies. Appl. Water Sci. 2017, 7, 3483–3496. [Google Scholar] [CrossRef]
- Pal, P.; Ghosh, S.K.; Mondal, S.; Maiti, T.K. Lead (Pb2+) biosorption and bioaccumulation efficiency of Enterobacter chuandaensis DGI-2: Isotherm, kinetics and mechanistic study for bioremediation. J. Hazard. Mater. 2025, 492, 138017. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shu, G.; Zheng, Q.; Chen, L.; Du, G.; Zhang, M. Removal of cadmium, lead, and chromium by Lactobacillus helveticus KD-3: Influential factors, adsorption mechanism, and application in goat milk powder. LWT 2025, 224, 117899. [Google Scholar] [CrossRef]
- Selatnia, A.; Bakhti, M.Z.; Madani, A.; Kertous, L.; Mansouri, Y. Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy 2004, 75, 11–24. [Google Scholar] [CrossRef]
- Lu, W.-B.; Shi, J.-J.; Wang, C.-H.; Chang, J.-S. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J. Hazard. Mater. 2006, 134, 80–86. [Google Scholar] [CrossRef]
- Khan, M.T.A.; Hassan, S.H.A.; Al-Battashi, H.; Abed, R.M.M. Biosorption of hexavalent chromium using algal biomass: Isotherm and kinetic studies. Algal Res. 2025, 85, 103867. [Google Scholar] [CrossRef]
- Alsamhary, K.E. Optimizing the process conditions for the biosorption of chromium (VI) by Bacillus subtilis in artificial wastewater. Electron. J. Biotechnol. 2025, 76, 22–38. [Google Scholar] [CrossRef]
- Mohammed, A.H.; Shartooh, S.M.; Trigui, M. Biosorption and Isotherm Modeling of Heavy Metals Using Phragmites australis. Sustainability 2025, 17, 5366. [Google Scholar] [CrossRef]
- Chintalpudi, V.K.; Kanamarlapudi, R.K.S.L.; Mallu, U.R.; Muddada, S. Isolation, identification, biosorption optimization, characterization, isotherm, kinetic and application of novel bacterium Chelatococcus sp. biomass for removal of Pb (II) ions from aqueous solutions. Int. J. Environ. Sci. Technol. 2022, 19, 1531–1544. [Google Scholar] [CrossRef]
- Alharbi, K.N.; Alsulami, R.A.; Alhakami, M.H.; Baata, M.; Alotaibi, M.F.; Alshehri, S.; Alzahrani, S.M.; Alwafi, A.M.; Aljufareen, M.A.; Albarqi, M.M.; et al. Investigation of adsorption isotherms and thermodynamic models of uranium biosorption from aqueous solutions by Rumex Acetosella. J. Radioanal. Nucl. Chem. 2025, 334, 2251–2270. [Google Scholar] [CrossRef]
- Massoud, R.; Khosravi-Darani, K.; Sharifan, A.; Asadi, G.H.; Younesi, H. The Biosorption Capacity of Saccharomyces Cerevisiae for Cadmium in Milk. Dairy 2020, 1, 169–176. [Google Scholar] [CrossRef]
- Huang, W.; Liu, Z.M. Biosorption of Cd(II)/Pb(II) from aqueous solution by biosurfactant-producing bacteria: Isotherm kinetic characteristic and mechanism studies. Colloids Surf. B-Biointerfaces 2013, 105, 113–119. [Google Scholar] [CrossRef]
- Joo, J.-H.; Hassan, S.H.A.; Oh, S.-E. Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. Int. Biodeterior. Biodegrad. 2010, 64, 734–741. [Google Scholar] [CrossRef]
- Aryal, M.; Liakopoulou-Kyriakides, M. Bioremoval of heavy metals by bacterial biomass. Environ. Monit. Assess. 2014, 187, 4173. [Google Scholar] [CrossRef]
- Gola, D.; Dey, P.; Bhattacharya, A.; Mishra, A.; Malik, A.; Namburath, M.; Ahammad, S.Z. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour. Technol. 2016, 218, 388–396. [Google Scholar] [CrossRef]
- Shabaan, A.M.; Embaby, M.S.; Reyad, A.M. Potential application of Staphylococcus devriesei MS as a biosorbent agent for manganase, chromium, and cadmium heavy metals in contaminated water. Sci. Rep. 2025, 15, 9774. [Google Scholar] [CrossRef] [PubMed]
- Ghoniem, A.A.; El-Naggar, N.E.-A.; Saber, W.I.A.; El-Hersh, M.S.; El-khateeb, A.Y. Statistical modeling-approach for optimization of Cu2+ biosorption by Azotobacter nigricans NEWG-1; characterization and application of immobilized cells for metal removal. Sci. Rep. 2020, 10, 9491. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Xing, Y.; Liu, S.; Hao, X.; Chen, W.; Huang, Q. Characterization of Cd2+ biosorption by Pseudomonas sp. strain 375, a novel biosorbent isolated from soil polluted with heavy metals in Southern China. Chemosphere 2020, 240, 124893. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.K.; Hasan, S.H.; Ranjan, D.; Banik, R.M. Modified biomass of Phanerochaete chrysosporium immobilized on luffa sponge for biosorption of hexavalent chromium. Int. J. Environ. Sci. Technol. 2014, 11, 1927–1938. [Google Scholar] [CrossRef]
- Deepika, K.V.; Raghuram, M.; Kariali, E.; Bramhachari, P.V. Biological responses of symbiotic Rhizobium radiobacter strain VBCK1062 to the arsenic contaminated rhizosphere soils of mung bean. Ecotoxicol. Environ. Saf. 2016, 134, 1–10. [Google Scholar] [CrossRef]
- Odermatt, A.; Suter, H.; Krapf, R.; Solioz, M. An ATPase Operon Involved in Copper Resistance by Enterococcus hirae. Ann. N. Y. Acad. Sci. 1992, 671, 484–486. [Google Scholar] [CrossRef]
- Majhi, K.; Let, M.; Halder, U.; Chitikineni, A.; Varshney, R.K.; Bandopadhyay, R. Copper removal capability and genomic insight into the lifestyle of copper mine inhabiting Micrococcus yunnanensis GKSM13. Environ. Res. 2023, 223, 115431. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, S.; Wang, M.; Sun, W.; Xie, Y.; Peng, H.; Zhong, A.; Liu, H.; Zhang, X.; Yu, H.; et al. Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river. Chemosphere 2019, 217, 790–799. [Google Scholar] [CrossRef]
- Osman, O.; Tanguichi, H.; Ikeda, K.; Park, P.; Tanabe-Hosoi, S.; Nagata, S. Copper-resistant halophilic bacterium isolated from the polluted Maruit Lake, Egypt. J. Appl. Microbiol. 2010, 108, 1459–1470. [Google Scholar] [CrossRef] [PubMed]
- Seiler, C.; Berendonk, T.U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 2012, 3, 399. [Google Scholar] [CrossRef]
- Wang, X.; Li, D.; Gao, P.; Gu, W.; He, X.; Yang, W.; Tang, W. Analysis of biosorption and biotransformation mechanism of Pseudomonas chengduensis strain MBR under Cd(II) stress from genomic perspective. Ecotoxicol. Environ. Saf. 2020, 198, 110655. [Google Scholar] [CrossRef] [PubMed]
- Brožková, I.; Červenka, L.; Moťková, P.; Frühbauerová, M.; Metelka, R.; Švancara, I.; Sýs, M. Electrochemical Control of Biofilm Formation and Approaches to Biofilm Removal. Appl. Sci. 2022, 12, 6320. [Google Scholar] [CrossRef]
- Aslam, A.; Kanwal, F.; Javied, S.; Nisar, N.; Torriero, A.A.J. Microbial biosorption: A sustainable approach for metal removal and environmental remediation. Int. J. Environ. Sci. Technol. 2025, 15, 3228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.-T.; Zhu, H.-S.; Zhang, J.-T.; Tan, X.-Y.; Wu, Y.-X.; Liu, C.; Liu, X.-Y.; Ye, M.-Q. Efficient Copper Biosorption by Rossellomorea sp. ZC255: Strain Characterization, Kinetic–Equilibrium Analysis, and Genomic Perspectives. Microorganisms 2025, 13, 1839. https://doi.org/10.3390/microorganisms13081839
Han H-T, Zhu H-S, Zhang J-T, Tan X-Y, Wu Y-X, Liu C, Liu X-Y, Ye M-Q. Efficient Copper Biosorption by Rossellomorea sp. ZC255: Strain Characterization, Kinetic–Equilibrium Analysis, and Genomic Perspectives. Microorganisms. 2025; 13(8):1839. https://doi.org/10.3390/microorganisms13081839
Chicago/Turabian StyleHan, Hao-Tong, Han-Sheng Zhu, Jin-Tao Zhang, Xin-Yun Tan, Yan-Xin Wu, Chang Liu, Xin-Yu Liu, and Meng-Qi Ye. 2025. "Efficient Copper Biosorption by Rossellomorea sp. ZC255: Strain Characterization, Kinetic–Equilibrium Analysis, and Genomic Perspectives" Microorganisms 13, no. 8: 1839. https://doi.org/10.3390/microorganisms13081839
APA StyleHan, H.-T., Zhu, H.-S., Zhang, J.-T., Tan, X.-Y., Wu, Y.-X., Liu, C., Liu, X.-Y., & Ye, M.-Q. (2025). Efficient Copper Biosorption by Rossellomorea sp. ZC255: Strain Characterization, Kinetic–Equilibrium Analysis, and Genomic Perspectives. Microorganisms, 13(8), 1839. https://doi.org/10.3390/microorganisms13081839