Endophytic Species of the Genus Colletotrichum as a Source of Bioactive Metabolites: A Review of Their Biotechnological Potential
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wijesekara, T.; Xu, B. Health-promoting effects of bioactive compounds from plant endophytic fungi. J. Fungi 2023, 9, 997. [Google Scholar] [CrossRef]
- Corda, A.K.J. Die Pilze Deutschlands. In Deutschlands Flora in Abbildungen nach der Natur mit Beschreibungen; Sturm, J., Ed.; Gedruckt auf kosten des verfassers: Nuremberg, Germany, 1817; Volume 3, pp. 1–144. Available online: https://books.google.com.br/books?id=iTF6vuXQ6FsC (accessed on 20 March 2025).
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Schrenk, H.; Spaulding, P. The bitter-rot fungus. Science 1903, 17, 750–751. [Google Scholar] [CrossRef]
- Damm, U.; Cannon, P.F.; Crous, P.W. (Eds.) Colletotrichum: Complex Species or Species Complexes? CBS-KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2012; Volume 73, pp. 1–213. [Google Scholar] [CrossRef]
- Index Fungorum Partnership. Landcare Research–NZ and RBG Kew: Mycology and Institute of Microbiology, Chinese Academy of Science. 2025. Available online: www.indexfungorum.org (accessed on 20 March 2025).
- Freeman, S.; Katan, T.; Shabi, E. Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Dis. 1998, 82, 596–605. [Google Scholar] [CrossRef]
- Münch, S.; Lingner, U.; Floss, D.S.; Ludwig, N.; Sauer, N.; Deising, H.B. The hemibiotrophic lifestyle of Colletotrichum species. J. Plant Physiol. 2008, 165, 41–51. [Google Scholar] [CrossRef]
- Jayawardena, R.S.; Bhunjun, C.S.; Hyde, K.D.; Gentekaki, E.; Itthayakorn, P. Colletotrichum: Lifestyles, biology, morpho-species, species complexes and accepted species. Mycosphere 2021, 12, 519–669. [Google Scholar] [CrossRef]
- Bailey, J.A.; Jeger, M.J. Colletotrichum: Biology, Pathology and Control; CAB International: Wallingford, UK, 1992. Available online: https://archive.org/details/colletotrichumbi0000unse/page/n15/mode/2up (accessed on 20 March 2025).
- Agrios, G.N. Plant Pathology, 5th ed.; Elsevier Academic Press: San Diego, CA, USA, 2005; Available online: https://pt.slideshare.net/slideshow/agrios-2005-plant-pathology-5-edpdf/257736607 (accessed on 20 March 2025).
- Noireung, P.; Phoulivong, S.; Liu, F.; Cai, L.; Mckenzie, E.H.; Chukeatirote, E.; Jones, E.B.G.; Bahkali, A.H.; Hyde, K.D. Novel species of Colletotrichum revealed by morphology and molecular analysis. Cryptogam. Mycol. 2012, 33, 347–362. [Google Scholar] [CrossRef]
- García-Pajón, C.M.; Collado, I.G. Secondary metabolites isolated from Colletotrichum species. Nat. Prod. Rep. 2003, 20, 426–431. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture. USDA Fungal Databases. 2024. Available online: https://fungi.ars.usda.gov/ (accessed on 20 March 2025).
- Zakaria, L. Diversity of Colletotrichum species associated with anthracnose disease in tropical fruit crops—A review. Agriculture 2021, 11, 297. [Google Scholar] [CrossRef]
- Hyde, K.D.; Cai, L.; McKenzie, E.H.C.; Yang, Y.L.; Zhang, J.Z.; Prihastuti, H. Colletotrichum—A catalogue of confusion. Fungal Divers. 2009, 39, 1–17. Available online: https://www.researchgate.net/publication/274385803 (accessed on 23 March 2025).
- Talhinhas, P.; Baroncelli, R. Colletotrichum species and complexes: Geographic distribution, host range and conservation status. Fungal Divers. 2021, 110, 109–198. [Google Scholar] [CrossRef]
- Petrini, O. Fungal endophytes of tree leaves. In Microbial Ecology of Leaves; Andrews, J.H., Hirano, S.S., Eds.; Springer: New York, NY, USA, 1991; pp. 179–197. [Google Scholar] [CrossRef]
- Photita, W.; Taylor, P.W.J.; Ford, R.; Hyde, K.D.; Lumyong, S. Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Divers. 2005, 18, 117–133. Available online: https://www.academia.edu/download/34259306/18-9.pdf (accessed on 23 March 2025).
- Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes: Unique plant inhabitants with great promises. Appl. Microbiol. Biotechnol. 2011, 90, 1829–1845. [Google Scholar] [CrossRef]
- Muhammad, M.; Basit, A.; Ali, K.; Ahmad, H.; Li, W.J.; Khan, A.; Mohamed, H.I. A review on endophytic fungi: A potent reservoir of bioactive metabolites with special emphasis on blight disease management. Arch. Microbiol. 2024, 206, 129. [Google Scholar] [CrossRef]
- Rodriguez, R.; Redman, R. More than 400 million years of evolution and some plants still can’t make it on their own: Plant stress tolerance via fungal symbiosis. J. Exp. Bot. 2008, 59, 1109–1114. [Google Scholar] [CrossRef]
- Oliveira-Silva, A.; Aliyeva-Schnorr, L.; Wirsel, S.G.R.; Deising, H.B. Fungal pathogenesis-related cell wall biogenesis, with emphasis on the maize anthracnose fungus Colletotrichum graminicola. Plants 2022, 11, 849. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.E.; Mejia, L.C.; Kyllo, D.; Rojas, E.I.; Maynard, Z.; Robbins, N.; Herre, E.A. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci. USA 2003, 100, 15649–15654. [Google Scholar] [CrossRef]
- Gond, S.K.; Mishra, A.; Sharma, V.K.; Verma, S.K.; Kumar, J.; Kharwar, R.N.; Kumar, A. Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor-tristis, a well-known medicinal plant of India. Mycoscience 2012, 53, 113–121. [Google Scholar] [CrossRef]
- Santos, S.S.; Silva, A.A.; Polonio, J.C.; Polli, A.D.; Orlandelli, R.C.; Oliveira, J.A.S.; Brandão-Filho, J.U.T.; Azevedo, J.L.; Pamphile, J.A. Influence of plant growth-promoting endophytes Colletotrichum siamense and Diaporthe masirevici on tomato plants (Lycopersicon esculentum Mill.). Mycology 2022, 13, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, M.; Basit, A.; Ali, K.; Li, W.J.; Li, L.; Mohamed, H.I. Endophytic fungi as potential bio-control agents of soil-borne pathogen. J. Crop Health 2024, 76, 617–636. [Google Scholar] [CrossRef]
- Li, N.; Xu, D.; Huang, R.-H.; Zheng, J.-Y.; Liu, Y.-Y.; Hu, B.-S.; Gu, Y.-Q.; Du, Q. A New Source of Diterpene Lactones From Andrographis paniculata (Burm. f.) Nees—Two Endophytic Fungi of Colletotrichum sp. with Antibacterial and Antioxidant Activities. Front. Microbiol. 2022, 13, 819770. [Google Scholar] [CrossRef]
- Lu, H.; Zou, W.X.; Meng, J.C.; Hu, J.; Tan, R.X. New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci. 2000, 151, 67–73. [Google Scholar] [CrossRef]
- Inácio, M.L.; Silva, G.H.; Teles, H.L.; Trevisan, H.C.; Cavalheiro, A.J.; Bolzani, V.S.; Young, M.C.M.; Pfenning, L.H.; Araújo, A.R. Antifungal metabolites from Colletotrichum gloeosporioides, an endophytic fungus in Cryptocarya mandioccana Nees (Lauraceae). Biochem. Syst. Ecol. 2006, 34, 822–824. [Google Scholar] [CrossRef]
- Siqueira, V.M.; Conti, R.; Araújo, J.M.; Souza-Motta, C.M. Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity. Symbiosis 2011, 53, 89–95. [Google Scholar] [CrossRef]
- Kusari, S.; Hertweck, C.; Spiteller, M. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. Biol. 2012, 19, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.S.; Rhoden, S.A.; Barros, I.T.; Tonini, R.C.G.; Marques, R.M.; Souza, V.H.E.; Pamphile, J.A. A interação harmônica entre fungos e plantas: Aspectos da relação endófito/hospedeiro. SaBios Rev. Saúde Biol. 2013, 8, 92–101. Available online: http://periodicos.grupointegrado.br/revista/index.php/sabios/article/view/1335 (accessed on 23 March 2025).
- Newfeld, J.; Ujimatsu, R.; Hiruma, K. Uncovering the Host Range–Lifestyle Relationship in the Endophytic and Anthracnose Pathogenic Genus Colletotrichum. Microorganisms 2025, 13, 428. [Google Scholar] [CrossRef]
- Cannon, P.F.; Johnston, P.R.; Weir, B.S. Colletotrichum—Current status and future directions. Stud. Mycol. 2012, 73, 181–213. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 2017, 5, 10-1128. [Google Scholar] [CrossRef]
- Boufleur, T.R.; Ciampi-Guillardi, M.; Tikami, I.; Rogério, F.; Thon, M.R.; Sukno, S.A.; Massola Júnior, N.S.; Baroncelli, R. Soybean anthracnose caused by Colletotrichum species: Current status and future prospects. Mol. Plant Pathol. 2021, 22, 393–409. [Google Scholar] [CrossRef]
- Azevedo, J.L. Microrganismos endofíticos. In Ecologia microbiana; Melo, I.S., Azevedo, J.L., Eds.; EMBRAPA: Jaguariúna, Brazil, 1998; pp. 117–137. Available online: https://pt.scribd.com/doc/114865324/Micro-organismos-endofiticos-Joao-Lucio-Azevedo (accessed on 23 March 2025).
- Faria, C.M.X.; Inácio, C.A. Considerações Sobre o Gênero Colletotrichum. Rev. Anu. Patol. Plantas 2023, 29, 131–147. [Google Scholar] [CrossRef]
- Inoue, M.; Takenaka, H.; Tsurushima, T.; Miyagawa, H.; Ueno, T. Colletofragarones A1 and A2, novel germination self-inhibitors from the fungus Colletotrichum fragariae. Tetrahedron Lett. 1996, 37, 5731–5734. [Google Scholar] [CrossRef]
- Munasinghe, M.V.K.; Kumar, N.S.; Jayasinghe, L.; Fujimoto, Y. Indole-3-acetic acid production by Colletotrichum siamense, an endophytic fungus from Piper nigrum leaves. J. Biol. Act. Prod. Nat. 2017, 7, 475–479. [Google Scholar] [CrossRef]
- Numponsak, T.; Kumla, J.; Suwannarach, N.; Matsui, K.; Lumyong, S. Biosynthetic pathway and optimal conditions for the production of indole-3-acetic acid by an endophytic fungus, Colletotrichum fructicola CMU-A109. PLoS ONE 2018, 13, e0205070. [Google Scholar] [CrossRef]
- Sun, S.F.; Zhu, S.; Cao, H.Y.; Liu, Y.B.; Yu, S.S. Tridepsides from the endophytic fungus Colletotrichum gloeosporioides associated with a toxic medicinal plant Tylophora ovata. Frigid Zone Med. 2021, 1, 45. [Google Scholar] [CrossRef]
- Wary, S.; Sarma, A.; Talukdar, R.; Tayung, K. Leaf endophytic fungi of Cymbidium aloifolium L. produces antimicrobials and indole-3-acetic acid. S. Afr. J. Bot. 2022, 149, 381–388. [Google Scholar] [CrossRef]
- Okoli, J.T.; Okolo, C.C.; Anyanwu, O.O.; Oranu, E.C.; Ezeagha, C.C.; Obidiegwu, O.C.; Okoye, N.N.; Okoye, F.B.C. Antimicrobial activity of secondary metabolites produced by Colletotrichum species, an endophytic fungus on Vernonia amygdalina Del (fam. Asteraceae). World J. Biol. Pharm. Health Sci. 2023, 14, 031–042. [Google Scholar] [CrossRef]
- Ningsih, K.N.; Hakim, E.H. New indole alkaloid morucolletotricin from endophytic fungus Colletotrichum queenslandicum associated with Morus australis Poir. Leaf. Nat. Prod. Res. 2025, 39, 202–207. [Google Scholar] [CrossRef]
- Carvalho, J.M.; Paixão, L.K.O.D.; Dolabela, M.F.; Marinho, P.S.B.; Marinho, A.M.D.R. Phytosterols isolated from endophytic fungus Colletotrichum gloeosporioides (Melanconiaceae). Acta Amaz. 2016, 46, 7–12. [Google Scholar] [CrossRef]
- Yang, Z.D.; Li, Z.J.; Zhao, J.W.; Sun, J.H.; Yang, L.J.; Shu, Z.M. Secondary metabolites and PI3K inhibitory activity of Colletotrichum gloeosporioides, a fungal endophyte of Uncaria rhynchophylla. Curr. Microbiol. 2019, 76, 904–908. [Google Scholar] [CrossRef]
- Mancilla, G.; Jiménez-Teja, D.; Femenia-Rios, M.; Macías-Sánchez, A.J.; Collado, I.G.; Hernández-Galán, R. Novel macrolide from wild strains of the phytopathogen fungus Colletotrichum acutatum. Nat. Prod. Commun. 2009, 4, 316. [Google Scholar] [CrossRef]
- Zhou, S.L.; Zhou, S.L.; Wang, M.X.; Chen, S.L. Two compounds from the endophytic Colletotrichum sp. of Ginkgo biloba. Nat. Prod. Commun. 2011, 6, 1131–1132. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, X.; Wang, J. Phillyrin produced by Colletotrichum gloeosporioides, an endophytic fungus isolated from Forsythia suspensa. Fitoterapia 2012, 83, 1500–1505. [Google Scholar] [CrossRef] [PubMed]
- Devi, N.N.; Singh, M.S. GC-MS analysis of metabolites from the endophytic fungus Colletotrichum gloeosporioides isolated from Phlogacanthus thyrsiflorus Nees. Int. J. Pharm. Sci. 2013, 23, 392–395. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5d3b28ec90dd69b109fce5258c9497a47548f789 (accessed on 2 April 2025).
- Bungihan, M.E.; Tan, M.A.; Takayama, H.; Dela Cruz, T.E.E.; Nonato, M.G. A new macrolide isolated from the endophytic fungus Colletotrichum sp. Philipp. Sci. Lett. 2013, 6, 57–73. Available online: https://scienggj.org/2013/2013n1.7.pdf (accessed on 2 April 2025).
- Senthilkumar, N.; Govindasamy, V.; Raguchander, T.; Samiyappan, R. Taxol producing fungal endophyte, Colletotrichum gloeosporioides (Penz.) from Tectona grandis L. Int. J. Eng. Sci. Technol. 2013, 7, 8–15. Available online: http://www.academia.edu/15213664/Taxol_producing_fungal_endophyte_Colletotrichum_gleospoiroides_Penz_from_Tectona_grandis_L (accessed on 2 April 2025).
- Choi, J.; Park, J.G.; Ali, M.S.; Choi, S.-J.; Baek, K.H. Systematic analysis of the anticancer agent taxol-producing capacity in Colletotrichum species and use of the species for taxol production. Mycobiology 2016, 44, 105–111. [Google Scholar] [CrossRef]
- Chapla, V.M.; Zeraik, M.L.; Leptokarydis, I.H.; Silva, G.H.; Bolzani, V.S.; Young, M.C.M.; Pfenning, L.H.; Araújo, A.R. Antifungal compounds produced by Colletotrichum gloeosporioides, an endophytic fungus from Michelia champaca. Molecules 2014, 19, 19243–19252. [Google Scholar] [CrossRef]
- Yang, S.W.; Li, X.; Lu, Z.; Sun, L.; Yang, B. Pyrenocines from Colletotrichum sp. HCCB03289. J. Antibiot. 2014, 67, 343–346. [Google Scholar] [CrossRef][Green Version]
- Chithra, S.; Jasim, B.; Anisha, C.; Mathew, J.; Radhakrishnan, E.K. Piperine production by endophytic Colletotrichum gloeosporioides isolated from Piper nigrum and its antimicrobial properties. Braz. J. Microbiol. 2014, 21, 1137–1146. [Google Scholar] [CrossRef]
- Su, H.; Kang, J.C.; Cao, J.J.; Mo, L.; Hyde, K.D. Medicinal plant endophytes produce analogous bioactive compounds. Chiang Mai J. Sci. 2014, 41, 1–13. Available online: https://www.thaiscience.info/journals/Article/CMJS/10905185.pdf (accessed on 3 April 2025).
- Dong, L.H.; Fan, S.W.; Ling, Q.Z.; Huang, B.B.; Wei, Z.J. Identification of huperzine A-producing endophytic fungi isolated from Huperzia serrata. World J. Microbiol. Biotechnol. 2014, 30, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Premjanu, N.; Jaynthy, C. Identification and characterization of antimicrobial metabolite from an endophytic fungus, Colletotrichum gloeosporioides isolated from Lannea coromandelica. Int. J. ChemTech Res. 2015, 7, 369–374. Available online: https://www.researchgate.net/publication/282275569_Identification_and_characterization_of_antimicrobial_metabolite_from_an_endophytic_fungus_Colletotrichum_gloeosporioides_isolated_from_Lannea_corammendalica (accessed on 3 April 2025).
- Wang, F.W.; Jiao, R.H.; Cheng, A.B.; Tan, S.H.; Song, Y.C. Azaphilones Colletotrichum sp. Isol. Buxus sinica. J. Nat. Prod. 2016, 79, 14–19. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, H.; Ma, H.; Jiang, J.; Sun, W.; Cheng, L.; Zhang, G.; Zhang, Y. Citrinal B, a new secondary metabolite from endophytic fungus Colletotrichum capsici and structure revision of citrinal A. Tetrahedron Lett. 2016, 57, 4250–4253. [Google Scholar] [CrossRef]
- Seetharaman, P.; Gnanasekar, S.; Chandrasekaran, R.; Chandrakasan, G.; Kadarkarai, M.; Sivaperumal, S. Isolation and characterization of anticancer flavone chrysin (5,7-dihydroxyflavone)-producing endophytic fungi from Passiflora incarnata L. leaves. Ann. Microbiol. 2017, 67, 321–331. [Google Scholar] [CrossRef]
- Song, J.H.; Lee, C.; Lee, D.; Kim, S.; Bang, S.; Shin, M.-S.; Lee, J.; Kang, K.S.; Shim, S.H. Neuroprotective compound from an endophytic fungus, Colletotrichum sp. JS-0367. J. Nat. Prod. 2018, 81, 1411–1416. [Google Scholar] [CrossRef]
- Gupta, S.; Bhatt, P.; Chaturvedi, P. Determination and quantification of asiaticoside in endophytic fungus from Centella asiatica (L.) Urban. World J. Microbiol. Biotechnol. 2018, 34, 111. [Google Scholar] [CrossRef]
- Chapla, V.M.; Zeraik, M.L.; Cafeu, M.C.; Silva, G.H.; Cavalheiro, A.J.; Bolzani, V.S.; Young, M.C.M.; Pfenning, L.H.; Araujo, A.R. Griseofulvin, diketopiperazines and cytochalasins from endophytic fungi Colletotrichum crassipes and Xylaria sp., and their antifungal, antioxidant and anticholinesterase activities. J. Braz. Chem. Soc. 2018, 29, 1707–1713. [Google Scholar] [CrossRef]
- Li, Y.; Wei, W.; Wang, R.L.; Liu, F.; Wang, Y.K.; Li, R.; Ye, Y.H. Colletolides A and B, two new γ-butyrolactone derivatives from the endophytic fungus Colletotrichum gloeosporioides. Phytochem. Lett. 2019, 33, 90–93. [Google Scholar] [CrossRef]
- Abonyi, D.O.; Eze, P.M.; Abba, C.C.; Chukwunwejim, C.R.; Ejikeugwu, C.P.; Okoye, F.B.C.; Esimone, C.O. Metabolites of endophytic Colletotrichum gloeosporioides isolated from leaves of Carica papaya. Am. J. Essent. Oils Nat. Prod. 2019, 7, 39–46. Available online: http://95.179.195.156/bitstream/123456789/437/1/ABBA%20CHIKA%20C.%207.pdf (accessed on 4 April 2025).
- Yehia, R.S. Multi-function of a new bioactive secondary metabolite derived from endophytic fungus Colletotrichum acutatum of Angelica sinensis. J. Microbiol. Biotechnol. 2023, 33, 806–822. [Google Scholar] [CrossRef]
- Gakuubi, M.M.; Omosa, L.K.; Cheplogoi, P.K.; Wansi, J.D.; Muthee, J.K.; Wekesa, C.S.; Koorbanally, N.A. Enhancing the discovery of bioactive secondary metabolites from fungal endophytes using chemical elicitation and variation of fermentation media. Front. Microbiol. 2022, 13, 898976. [Google Scholar] [CrossRef]
- Santra, H.K.; Banerjee, D. Bioactivity study and metabolic profiling of Colletotrichum alatae LCS1, an endophyte of club moss Lycopodium clavatum L. PLoS ONE 2022, 17, e0267302. [Google Scholar] [CrossRef]
- Eboh, C.V.; Okolo, C.C.; Anyanwu, O.O.; Okoye, N.N.; Ezeagha, C.C.; Okoye, F.B.C. Metabolites of Colletotrichum species, an endophytic fungus isolated from Vernonia amygdalina Del possess antimicrobial and antioxidant activities. GSC Biol. Pharm. Sci. 2022, 20, 148–159. [Google Scholar] [CrossRef]
- Prasai, J.R.; Sureshkumar, S.; Ahmad, W.; Ashraf, M.; Gopi, C.; Rajapriya, P.; Aloufi, A.S.; Natarajan, N.; Pandi, M. Evaluation and chemical characterization of bioactive secondary metabolites from endophytic fungi associated with the ethnomedicinal plant Bergenia ciliata. Open Chem. 2023, 21, 20230158. [Google Scholar] [CrossRef]
- Pun, B.; Joshi, S.R. Bioprospection unveils the bioactive potential of Colletotrichum taiwanense BPSRJ3, an endophytic fungus of an ethnomedicinal orchid, Vanda cristata Wall. Ex Lindl. Syst. Microbiol. Biomanuf. 2024, 5, 754–771. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Ermolenko, E.; Savidov, N.; Gloriozova, T.A.; Poroikov, V.V. Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity. Molecules 2021, 26, 686. [Google Scholar] [CrossRef]
- Hossain, R.; Sultana, A.; Nuinoon, M.; Noonong, K.; Tangpong, J.; Hossain, K.H.; Rahman, M.A. A Critical Review of the Neuropharmacological Effects of Kratom: An Insight from the Functional Array of Identified Natural Compounds. Molecules 2023, 28, 7372. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Liu, D.; Huang, J.; Zhang, C.; Proksch, P.; Lin, W. Polyketide Derivatives from the Sponge Associated Fungus Aspergillus europaeus with Antioxidant and NO Inhibitory Activities. Fitoterapia 2018, 130, 190–197. [Google Scholar] [CrossRef]
- Mózsik, L.; Iacovelli, R.; Bovenberg, R.A.; Driessen, A.J. Transcriptional activation of biosynthetic gene clusters in filamentous fungi. Front. Bioeng. Biotechnol. 2022, 10, 901037. [Google Scholar] [CrossRef] [PubMed]
- Stroe, M.C.; Gao, J.; Pitz, M.; Fischer, R. Complexity of fungal polyketide biosynthesis and function. Mol. Microbiol. 2024, 121, 18–25. [Google Scholar] [CrossRef]
- González-Hernández, R.A.; Valdez-Cruz, N.A.; Macías-Rubalcava, M.L.; Trujillo-Roldán, M.A. Overview of fungal terpene synthases and their regulation. World J. Microbiol. Biotechnol. 2023, 39, 194. [Google Scholar] [CrossRef]
- Yu, W.; Pei, R.; Zhou, J.; Zeng, B.; Tu, Y.; He, B. Molecular Regulation of Fungal Secondary Metabolism. World J. Microbiol. Biotechnol. 2023, 39, 204. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.J.; Thon, M.R.; Hacquard, S.; Amyotte, S.G.; Kleemann, J.; Torres, M.F.; Damm, U.; Buiate, E.A.; Epstein, L.; Alkan, N.; et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 2012, 44, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Hacquard, S.; Kracher, B.; Hiruma, K.; Münch, P.C.; Garrido-Oter, R.; Thon, M.R.; Weimann, A.; Damm, U.; Dallery, J.-F.; Hainaut, M.; et al. Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat. Commun. 2016, 7, 11362. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, S.; Gunne, S.; Ulshöfer, T.; Henke, M.; Roser, L.A.; Schneider, A.K.; Cinatl, J.; Thomas, D.; Schreiber, Y.; Wagner, P.V.; et al. In Vitro Safety, Off-Target and Bioavailability Profile of the Antiviral Compound Silvestrol. Pharmaceuticals 2022, 15, 1086. [Google Scholar] [CrossRef]
- Jha, P.; Kaur, T.; Chhabra, I.; Panja, A.; Paul, S.; Kumar, V.; Malik, T. Endophytic Fungi: Hidden Treasure Chest of Antimicrobial Metabolites—Interrelationship of Endophytes and Metabolites. Front. Microbiol. 2023, 14, 1227830. [Google Scholar] [CrossRef]
- Tian, D.S.; Zhang, X.; Cox, R.J. Comparing Total Chemical Synthesis and Total Biosynthesis Routes to Fungal Specialized Metabolites. Nat. Prod. Rep. 2025, 42, 720–738. [Google Scholar] [CrossRef]
- Rufino, M.P. Avaliação Química e Biológica do Fungo Endofítico Colletotrichum sp. Isolado de Senna spectabilis. Master’s Thesis, Instituto de Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, Brazil, 2011. Available online: https://repositorio.unesp.br/bitstreams/3224f16f-eb22-4c94-8f04-32072dd6abc7/download (accessed on 6 April 2025).
- Ningaraju, S.; Kalyani, M.I. Endophytic fungi inhabitants of Hultholia mimosoides—Isolation, identification and antimicrobial activity. Asian J. Microbiol. Biotechnol. Environ. Sci. 2024, 26, 497–506. [Google Scholar] [CrossRef]
- Singh, S.K.; Verma, M.; Ranjan, A.; Singh, R.K. Antibacterial activity and preliminary phytochemical screening of endophytic fungal extract of Rauvolfia serpentina. Open Conf. Proc. J. 2016, 7, 104–113. [Google Scholar] [CrossRef]
- Fruet, T.K.; Polonio, J.C.; Ramos, A.V.G.; Golias, H.C.; Malaco, N.S.; Baldoqui, D.C.; Pamphile, J.A.; Vicentini, V.E.P. Prospection and antibacterial screening of metabolic extracts from endophytic fungi isolated from Tibouchina granulosa (Desr.) Cogn. (Melastomataceae). Ciência Nat. 2024, 46, e74647. [Google Scholar] [CrossRef]
- Rai, N.; Keshri, P.K.; Gupta, P.; Verma, A.; Kamble, S.C.; Singh, S.K.; Gautam, V. Bioprospecting of fungal endophytes from Oroxylum indicum (L.) Kurz Antioxid. Cytotoxic activity. PLoS ONE 2022, 17, e0264673. [Google Scholar] [CrossRef]
- Subbulakshmi, G.K.; Thalavaipandian, A.; Ramesh, V.; Bagyalakshmi, B.; Rajendran, A. Bioactive endophytic fungal isolates of Biota orientalis (L.) Endl., Pinus excelsa Wall. and Thuja occidentalis L. Int. J. Adv. Life Sci. 2012, 4, 9–15. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20123374734 (accessed on 6 April 2025).
- Bin, G.; Yanping, C.; Hong, Z.; Zheng, X.; Yanqiu, Z.; Huaiyi, F.; Qiupin, Z.; Chenxiao, Z. Isolation, characterization and anti-multiple drug resistant (MDR) bacterial activity of endophytic fungi isolated from the mangrove plant, Aegiceras corniculatum. Trop. J. Pharm. Res. 2014, 13, 593–599. [Google Scholar] [CrossRef]
- Garg, S. The importance of fungal biotechnology for sustainable applications. Trends Biotechnol. 2025. [Google Scholar] [CrossRef]
- Wang, Z.; Kim, W.; Wang, Y.W.; Yakubovich, E.; Dong, C.; Trail, F.; Townsend, J.P.; Yarden, O. The Sordariomycetes: An Expanding Resource with Big Data for Mining in Evolutionary Genomics and Transcriptomics. Front. Fungal Biol. 2023, 4, 1214537. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xu, Y.; Dong, Z.; Guo, Y.; Luo, J.; Wang, F.; Yan, L.; Zou, X. Endophytic fungal diversity and its interaction mechanism with medicinal plants. Molecules 2025, 30, 1028. [Google Scholar] [CrossRef] [PubMed]
- Karpinski, L. Bioprospecção de Fungos Endofíticos da Planta Medicinal Kalanchoe daigremontiana e Avaliação do Potencial Biotecnológico Aplicado à Agricultura. Bachelor’s Thesis, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil, 2021. Available online: http://repositorio.utfpr.edu.br/jspui/handle/1/30465 (accessed on 8 April 2025).
Endophytic Fungus | Host Plant(s) | Identified Compound(s) | Chemical Class | Biological Activity | References |
---|---|---|---|---|---|
C. fragariae | Fragaria spp. | Colletofragarones; A1 (1) e A2 (2) | Polyketides | Self-germination inhibitory activity | [40] |
Colletotrichum sp. (unresolved taxon); C. gloeosporioides; C. fructicola; C. siamense; C. queenslandicum | Artemisia annua; Piper nigrum; Vincetoxicum hirsutum; Cymbidium aloifolium; Vernonia amygdalina; Morus australis | Indole-3-acetic acid (IAA) * (3) | Indole alkaloid | Plant growth-promoting activity | [29,41,42,43,44,45,46] |
Colletotrichum sp. (unresolved taxon); C. gloeosporioides; C. queenslandicum | Artemisia annua; Virola Michelii; Uncaria rhynchophylla; Morus australis | Ergosterol * (4) | Sterol | Anti-inflammatory activity; cytotoxic activity | [29,46,47,48] |
Colletotrichum sp. (unresolved taxon); C. gloeosporioides | Artemisia annua; Virola michelli; Uncaria rhynchophylla | Ergosterol peroxide * (5) | Sterol | Anti-inflammatory activity; PI3Kα inhibitory activity | [29,47,48] |
Colletotrichum sp. (unresolved taxon) | Artemisia annua | Isoprenylindole-3-carboxylic acid (6); 3,5-Dihydroxy-6-acetoxyergosta-7,22-dienoic acid (7); 3,5-Dihydroxy-6-phenylacetoxyergosta-7,22-dienoic acid (8); 3β,5α,6β-Trihydroxyergosta-7,22-diene (9); 3-Oxoergosta-4,6,8(14),22-tetraene (10); 3β-Hydroxy-5α,8α-epidioxyergosta-6,9(11),22-triene (11); 3β-Hydroxyergosta-5-ene (12); 3-Oxoergosta-4-ene (13) | Indole alkaloid; Sterol derivative; Sterol derivative; Sterol derivative; Sterol derivative; Sterol derivative; Sterol; Sterol derivative | Antimicrobial activity | [29] |
C. gloeosporioides | Vincetoxicum hirsutum | Coletotric acid (14) | Polyketide | PTP1B inhibitory activity; anti-inflammatory activity | [43] |
C. gloeosporioides; C. acutatum | Cryptocaryamandioccana; Fragaria × ananassa | (4R)-4,8-Dihydroxy-α-tetralone * (15); cis-4-Hydroxy-6-deoxyscytalone * (16) | Polyketides | Antifungal activity | [30,49] |
Colletotrichum sp. (unresolved taxon) (NTB-2) | Ginkgo biloba | Apigenin-8-C-β-D-glucopyranoside (17) | Flavonoid glycoside | Anti-inflammatory activity; antioxidant activity; antihypertensive activity; antihepatotoxic activity; Antiarteriosclerotic activity | [50] |
C. gloeosporioides | Forsythia suspensa | Phillyrin (18) | Lignan glycoside | Antioxidant activity; anti-inflammatory activity; antipyretic activity | [51] |
C. gloeosporioides | Phlogacanthus thyrsiflorus | 2,4-Bis(1,1-dimethylethyl)phenol (19); Hexadecanoic acid (20); Methyl octadecanoate (21) | Phenolic compound; Fatty acid; Fatty acid ester | Antimicrobial activity; antioxidant activity | [52] |
Colletotrichum sp. (unresolved taxon); C. gloeosporioides | Pandanus amaryllifolius | Colletotriolide (22); Tyrosol C (23) | Macrolide; Phenolic compound | Antibacterial activity | [53] |
C. gloeosporioides C. dematium CBP2; | Tectona grandis; Not specified (KACC) | Taxol (Paclitaxel) * (24) | Diterpenoid | Cytotoxic activity | [54,55] |
C. siamense; C. gloeosporioides | Piper nigrum; Magnolia champaca | Uracil * (25) | Pyrimidine derivative | Acetylcholinesterase (AChE) inhibitory activity; antifungal activity | [41,56] |
Colletotrichum sp. (unresolved taxon) (HCCB03289) | Ludwigia prostrata | Pyrenocine N (26); Pyrenocine O (27); Macommelin-9-acetate (28); Pyrenocine A (29); Pyrenocine B (30); Pyrenocine E (31); Novaezelandine A (32) | Polyketide; Polyketide; Diterpenoid; Polyketide; Polyketide; Polyketide; Sesquiterpenoid | Cytotoxic activity | [57] |
C. gloeosporioides | Piper nigrum | Piperine (33) | Alkaloid | Antimicrobial activity; antioxidant activity; cytotoxic activity | [58] |
C. gloeosporioides XSXY05 | Camptotheca acuminata | 10-Hydroxycamptothecin (34) | Alkaloid | Cytotoxic activity | [59] |
C. gloeosporioides | Magnolia champaca | 2-Phenylethyl 1H-indol-3-ylacetate (35); Cyclo-(S-Pro-S-Tyr) (36); Cyclo-(S-Pro-S-Val) (37); 2-(2-Aminophenyl)acetic acid (38); 2-(4-Hydroxyphenyl)acetic acid (39); 2-(2-Hydroxyphenyl)acetic acid (40); 4-Hydroxybenzamide (41) | Indole derivative; Diketopiperazines; Aromatic amino acid derivative; Phenolic acid; Phenolic acid; Benzamide derivative; | Antifungal activity; acetylcholinesterase (AChE) inhibitory activity | [56] |
Colletotrichum sp. (unresolved taxon) | Huperzia serrata | Huperzine A (42) | Alkaloid | Antioxidant activity; acetylcholinesterase (AChE) inhibitory activity | [60] |
C. gloeosporioides | Lannea corammendalica | 9-Octadecenamide (43); Hexadecenamide (44); Diethyl phthalate (45) | Fatty acid amide; Fatty acid amide; Phthalate ester | Antimicrobial activity | [61] |
Colletotrichum sp. (unresolved taxon) (BS4) | Buxus sinica | Colletotrichone A (46); Colletotrichone B (47); Colletotrichone C (48); Chermesinone B (49) | Polyketides | Antibacterial activity; cytotoxic activity | [62] |
C. capsici | Siegesbeckia pubescens | Citrinal A (50); Citrinal B (51) | Polyketides | Cytotoxic activity | [63] |
C. gloeosporioides | Virola michelii | β-Sitosterol; (52); Stigmasterol; (53); Sitostenone (54) | Sterol; Sterol; Sterol derivative | Anti-inflammatory activity | [47] |
C. gloeosporioides | Cymbidium aloifolium; Virola michelii | Squalene (55) | Triterpenoid | Antimicrobial activity; antioxidant activity; cytotoxic activity | [44,47] |
C. capsici KT37396; C. taiwanense PI-3 KX580307 | Passiflora incarnata | Chrysin (56) | Flavonoid | Cytotoxic activity | [64] |
Colletotrichum sp. (unresolved taxon) (JS-0367) | Morus alba | Evariquinone (57) | Anthraquinone | Neuroprotective activity | [65] |
C. gloeosporioides | Centella asiatica | Asiaticoside (58) | Triterpenoid glycoside | Immunomodulatory activity; antidepressant activity; | [66] |
C. crassipes | Casearia sylvestris | Cyclo-(D-Pro-D-Phe) (59); N-(2-Phenylethyl) acetamide; (60) | Diketopiperazine; Aromatic amide | Antioxidant activity; antifungal activity | [67] |
C. gloeosporioides GT-7 | Uncaria rhynchophylla | Cyclo-(L-Leu-L-Leu) (61); Brevianamide F (62) | Diketopiperazine; Indole alkaloid | PI3Kα inhibitory activity | [48] |
C. gloeosporioides B12 | Illigera rhodantha | Colletolides A (63) e B (64) | Polyketides | Antibacterial activity | [68] |
C. gloeosporioides | Carica papaya | Aureonitol (65); Protocatechuic acid (66); Glucobrassicin (67) | Lignan; Phenolic acid; Indole glucosinolate | Antiviral activity; antibacterial activity; cytotoxic activity | [69] |
C. gloeosporioides | Vincetoxicum hirsutum | Lumichrome (68); β-Acetyltryptamine (69); Cyclo-(Trp-Phe) (70); (Z)-2-(2-(2-(4-hydroxyphenyl)acetoxy)ethyl)but-2-enoic acid (71); | Flavin derivative; Indole derivative; Diketopiperazine; Phenolic acid derivative | PTP1B inhibitory activity; anti-inflammatory activity | [43] |
C. acutatum | Angelica sinensis | 5-(1-Hydroxybutyl)-4-methoxy-3-methyl-2H-pyran-2-one (C-HMMP) (72) | Pyrone derivative | Antimicrobial activity; antibiofilm activity; antioxidant activity; antimalarial activity; antiproliferative activity | [70] |
C. tropicicola F10154 | Native plants from Singapore (not specified) | Tropicicolide (73) | Polyketide | Antifungal activity | [71] |
Colletotrichum sp. (unresolved taxon) (AP-4) | Andrographis paniculata | Andrographolide (AD) (74); Neandrographolide (NAD) (75); 14-Deoxyandrographolide (DAD) (76); 14-Deoxy-11,12-didehydroandrographolide (DDAD) (77) | Diterpenoids | Antioxidant activity; antibacterial activity | [28] |
C. alatae LCS1 | Lycopodium clavatum | Bisabolol (78); Oxalic acid (79); 7-Isopropyl-1-methylphenanthrene (80); Pterine-6-carboxylic acid (81); Dimethylamine (82); 2-(2-Aminopropyl)phenol (83); Phthalic acid (84); Naphthalene (85) | Sesquiterpenoid; Dicarboxylic acid; Polycyclic aromatic hydrocarbon; Pteridine derivative; Amine; Aromatic amine derivative; Dicarboxylic acid; Polycyclic aromatic hydrocarbon | Antibacterial activity; antioxidant activity | [72] |
Colletotrichum sp. (unresolved taxon) | Vernonia amygdalina | Palitantin (86); Cladosporin (87); p-Hydroxybenzaldehyde (88); Desmethyldichloro-diaportin (89); p-Hydroxybenzoic acid (90) | Alkaloid; Polyketide; Phenolic aldehyde; Polyketide; Phenolic acid; | Antimicrobial activity; antioxidant activity | [73] |
C. gloeosporioides | Cymbidium aloifolium | Farnesol (91); Tryptophan (92); 4-Hydroxybenzyl alcohol (93) | Sesquiterpenoid alcohol; Aromatic amino acid; Phenolic alcohol | Antimicrobial activity | [44] |
C. brevisporum JPSK19 | Bergenia ciliata | 4-(1,1-Dimethylpropyl)phenol (94); 1-Docosene (95) | Phenolic compound; Alkene | Antibacterial activity; antioxidant activity | [74] |
Colletotrichum sp. (unresolved taxon) | Vernonia amygdalina | Acropyrone (96); Beauvericin (97); Indole-3-carbaldehyde (98); Rocaglamide A (99) | Polyketide; Cyclic hexadepsipeptide; Indole derivative; Flavagline | Antimicrobial activity; | [45] |
C. taiwanense BPSRJ3 | Vanda cristata | Cyclobarbital (100); Phenanthrene (101); 2,6-Di-tert-butylphenol (102); 3-Carene (103); Camphene (104); 1-Fluorododecane (105); 17-Octadecenoic acid (106); 2,6-Dihydroxyacetophenone (107) | Barbiturate; Polycyclic aromatic hydrocarbon; Phenolic compound; Monoterpene; Monoterpene; Fluoroalkane; Unsaturated fatty acid; Phenolic ketone; | Antioxidant activity; antimicrobial activity; anti-inflammatory activity; cytotoxic activity | [75] |
C. queenslandicum | Morus australis | Morucolletotricin (108); Tryptophol (109); Phomopyronol (110); 2-(3-Aminophenyl)acetic acid (111) | Polyketide; Indole derivative; Polyketide; Aromatic amino acid derivative | Cytotoxic activity | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, M.V.N.; Alexandre, A.d.S.; Nunez, C.V. Endophytic Species of the Genus Colletotrichum as a Source of Bioactive Metabolites: A Review of Their Biotechnological Potential. Microorganisms 2025, 13, 1826. https://doi.org/10.3390/microorganisms13081826
da Silva MVN, Alexandre AdS, Nunez CV. Endophytic Species of the Genus Colletotrichum as a Source of Bioactive Metabolites: A Review of Their Biotechnological Potential. Microorganisms. 2025; 13(8):1826. https://doi.org/10.3390/microorganisms13081826
Chicago/Turabian Styleda Silva, Manuela Vitoria Nascimento, Andrei da Silva Alexandre, and Cecilia Veronica Nunez. 2025. "Endophytic Species of the Genus Colletotrichum as a Source of Bioactive Metabolites: A Review of Their Biotechnological Potential" Microorganisms 13, no. 8: 1826. https://doi.org/10.3390/microorganisms13081826
APA Styleda Silva, M. V. N., Alexandre, A. d. S., & Nunez, C. V. (2025). Endophytic Species of the Genus Colletotrichum as a Source of Bioactive Metabolites: A Review of Their Biotechnological Potential. Microorganisms, 13(8), 1826. https://doi.org/10.3390/microorganisms13081826