Threshold Effects of Straw Returning Amounts on Bacterial Colonization in Black Soil
Abstract
1. Introduction
2. Methods
2.1. Site Description
2.2. Experimental Design and Soil Sampling
2.3. Analysis of Soil Chemical Index and Bacterial DNA
2.4. Statistical Analyses
3. Results
3.1. The Effects of ST Treatment on the Physicochemical Characteristics of Soil
3.2. The Effects of ST Treatment on Soil Bacterial Diversity
3.3. The Effects of ST Treatment on Soil Bacterial Composition
3.4. Effects of ST on Soil Bacterial Co-Occurrence Network
4. Discussion
4.1. Effects of Different ST Application Amounts on Soil Physicochemical Properties
4.2. Effects of Different ST Application Amounts on Soil Bacterial Diversity
4.3. Effects of Different ST Application Amounts on Soil Bacterial Composition
4.4. Effects of Different ST Amounts on Soil Bacterial Co-Occurrence Network
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOC | Soil organic carbon |
BD | Bulk density |
TN | Total nitrogen |
TP | Total phosphorus |
TK | Total potassium |
AN | Available nitrogen |
AP | Available phosphorus |
AK | Available potassium |
BRT | Boosted regression tree |
PCoA | Principal coordinates analysis |
References
- Jiang, S.; Wang, J.; Zhao, Y.; Shang, Y.; Gao, X.; Li, H. Sustainability of water resources for agriculture considering grain production, trade and consumption in China from 2004 to 2013. J. Clean. Prod. 2017, 149, 1210–1218. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Jia, S.; Liang, A.; Zhang, X.; Yang, X.; Wei, S.; Sun, B.; Huang, D.; Zhou, G. The potential mechanism of long-term conservation tillage effects on maize yield in the black soil of Northeast China. Soil Tillage Res. 2015, 154, 84–90. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, Z.; Jiang, F.; Wang, J.; Dong, F.; Liu, J.; Peng, J. Impacts of tillage treatments on soil physical properties and maize growth at two sites under different climatic conditions in black soil region of Northeast China. Soil Tillage Res. 2025, 248, 106471. [Google Scholar] [CrossRef]
- Liu, C.; Si, B.; Zhao, Y.; Wu, Z.; Lu, X.; Chen, X.; Han, X.; Zhu, Y.; Zou, W. Drivers of soil quality and maize yield under long-term tillage and straw incorporation in mollisols. Soil Tillage Res. 2025, 246, 106360. [Google Scholar] [CrossRef]
- Tian, M.; Whalley, W.R.; Zhou, H.; Ren, T.; Gao, W. Does no-tillage mitigate the negative effects of harvest compaction on soil pore characteristics in Northeast China? Soil Tillage Res. 2023, 233, 105787. [Google Scholar] [CrossRef]
- Wang, S.; Xu, X.; Huang, L. Spatial and temporal variability of soil erosion in Northeast China from 2000 to 2020. Remote Sens. 2022, 15, 225. [Google Scholar] [CrossRef]
- Shan, A.Q.; Pan, J.Q.; Kang, K.J.; Pan, M.H.; Wang, G.; Wang, M.; He, Z.L.; Yang, X.E. Effects of straw return with N fertilizer reduction on crop yield, plant diseases and pests and potential heavy metal risk in a Chinese rice paddy: A field study of 2 consecutive wheat-rice cycles. Environ. Pollut. 2021, 288, 117741. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, S.; Hu, Y.; Mulder, J.; Adingo, S.; Nie, Y.; Yin, L.; Ma, Y.; Peng, X. Effects of long-term straw application and groundwater management on acidification of paddy soils in subtropical China: Insight from a 35-year field experiment. Agric. Water Manag. 2025, 309, 109337. [Google Scholar] [CrossRef]
- Ai, C.; Liang, G.Q.; Sun, J.W.; Wang, X.B.; Zhou, W. Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma 2012, 173–174, 330–338. [Google Scholar] [CrossRef]
- Navarro-Noya, Y.E.; Gomez-Acata, S.; Montoya-Ciriaco, N.; Rojas-Valdez, A.; Suarez-Arriaga, M.C.; Valenzuela-Encinas, C.; Jimenez-Bueno, N.; Verhulst, N.; Govaerts, B.; Dendooven, L. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol. Biochem. 2013, 65, 86–95. [Google Scholar] [CrossRef]
- Li, H.; Dai, M.; Dai, S.; Dong, X. Current status and environment impact of direct straw return in China’s cropland–A review. Ecotoxicol. Environ. Saf. 2018, 159, 293–300. [Google Scholar] [CrossRef]
- Li, Z.; Shen, Y.; Zhang, W.; Zhang, H.; Liu, L.; Wang, Z.; Gu, J.; Yang, J. Effects of long-term straw returning on rice yield and soil properties and bacterial community in a rice-wheat rotation system. Field Crops Res. 2023, 291, 108800. [Google Scholar] [CrossRef]
- Han, Z.; Xu, P.; Li, Z.; Lin, H.; Zhu, C.; Wang, J.; Zou, J. Microbial diversity and the abundance of keystone species drive the response of soil multifunctionality to organic substitution and biochar amendment in a tea plantation. Glob. Change Biol. 2022, 14, 481–495. [Google Scholar] [CrossRef]
- Min, J.; Sun, H.; Kronzucker, H.J.; Wang, Y.; Shi, W. Comprehensive assessment of the effects of nitrification inhibitor application on reactive nitrogen loss in intensive vegetable production systems. Agric. Ecosyst. Environ. 2021, 307, 107227. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Eldridge, D.J.; Ochoa, V.; Gozalo, B.; Singh, B.K.; Maestre, F.T. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecol. Lett. 2017, 20, 1295–1305. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Peng, C.; Huang, C.; Wang, K.; Liu, Q.; Liu, Y.; Hai, X.; Shangguan, Z. Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the loess plateau, China. Geoderma 2019, 353, 188–200. [Google Scholar] [CrossRef]
- Nottingham, A.T.; Fierer, N.; Turner, B.L.; Whitaker, J.; Ostle, N.J.; McNamara, N.P.; Bardgett, R.D.; Leff, J.W.; Salinas, N.; Silman, M.; et al. Microbes follow Humboldt: Temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 2018, 99, 2455–2466. [Google Scholar] [CrossRef]
- Kooch, Y.; Piri, A.S.; Tilaki, G.A.D. Tree cover mediate indices related to the content of organic matter and the size of microbial population in semi-arid ecosystems. J. Environ. Manag. 2021, 285, 112144. [Google Scholar] [CrossRef]
- Khan, M.F.; Hof, C.; Niemcová, P.; Murphy, C.D. Recent advances in fungal xenobiotic metabolism: Enzymes and applications. World J. Microbiol. Biotechnol. 2023, 39, 296. [Google Scholar] [CrossRef]
- Xia, Y.; Lin, X. Efficient biodegradation of straw and persistent organic pollutants by a novel strategy using recombinant Trichoderma reesei. Bioresour. Bioprocess. 2022, 9, 91. [Google Scholar] [CrossRef]
- Khan, M.F. Fungi for sustainable pharmaceutical remediation: Enzymatic innovations, challenges, and applications-a review. Processes 2025, 13, 1034. [Google Scholar] [CrossRef]
- Griffiths, R.I.; Thomson, B.C.; James, P.; Bell, T.; Bailey, M.; Whiteley, A.S. The bacterial biogeography of British soils. Environ. Microbiol. 2011, 13, 1642–1654. [Google Scholar] [CrossRef]
- Hu, H.W.; Chen, D.; He, J.Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 2015, 39, 729–749. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ye, G.; Kuzyakov, Y.; Liu, D.; Fan, J.; Ding, W. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 2019, 134, 187–196. [Google Scholar] [CrossRef]
- de Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Keith, A.M.; Kretzschmar, M.; et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 2018, 9, 3033. [Google Scholar] [CrossRef]
- de Vries, F.T.; Shade, A. Controls on soil microbial community stability under climate change. Front. Microbiol. 2013, 4, 265. [Google Scholar] [CrossRef]
- Luo, Y.; Iqbal, A.; He, L.; Zhao, Q.; Wei, S.; Ali, I.; Ullah, S.; Yan, B.; Jiang, L. Longterm no-tillage and straw retention management enhances soil bacterial community diversity and soil properties in southern China. Agronomy 2020, 10, 1233. [Google Scholar] [CrossRef]
- Zhang, S.; Li, M.; Cui, X.; Pan, Y. Effect of different straw retention techniques on soil microbial community structure in wheat-maize rotation system. Front. Microbiol. 2023, 13, 1069458. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Z.; Wang, R.; Bu, X.; Fu, J.; Dong, X. Study on the problems and countermeasures of returning wheat and corn stalks into the soil in north China. Soil Fertil. Sci. China Ser. E Technol. Sci. 2018, 1, 159–163. [Google Scholar]
- Jin, S.; Jin, W.; Dong, C.; Bai, Y.; Jin, D.; Hu, Z.; Huang, Y. Effects of rice straw and rice straw ash on rice growth and diversity of bacterial community in rare-earth mining soils. Sci. Rep. 2020, 10, 10331. [Google Scholar] [CrossRef]
- Jin, W.; Hu, Z.; Bai, Y.; Dong, C.; Jin, S. Response of rice and bacterial communities to the incorporation of rice straw in areas mined for heavy rare earth elements. Bioresources 2019, 14, 9392–9409. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, X.X.; Guo, X.; Wang, D.; Chu, H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol. Biochem. 2015, 88, 9–18. [Google Scholar] [CrossRef]
- Li, J.; Ye, X.; An, J.; Jin, X.; Fan, Q.; Zou, H.; Zhang, Y. The more straw we deepbury, the more soil TOC will be accumulated: When soil bacteria abundance keeps growing. J. Soils Sediments 2022, 22, 162–171. [Google Scholar] [CrossRef]
- Li, M.; Guo, J.; Ren, T.; Luo, G.; Shen, Q.; Lu, J.; Guo, S.; Ling, N. Crop rotation history constrains soil biodiversity and multifunctionality relationships. Agric. Ecosyst. Environ. 2021, 319, 107550. [Google Scholar] [CrossRef]
- Lian, T.; Yu, Z.; Li, Y.; Jin, J.; Wang, G.; Liu, X.; Tang, C.; Franks, A.; Liu, J.; Liu, J. The shift of bacterial community composition magnifies over time in response to different sources of soybean residues. Appl. Soil Ecol. 2019, 136, 163–167. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agrochemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Che, R.; Deng, Y.; Wang, W.; Rui, Y.; Zhang, J.; Tahmasbian, I.; Tang, L.; Wang, S.; Wang, Y.; Xu, Z. Long-term warming rather than grazing significantly changed total and active soil procaryotic community structures. Geoderma 2018, 316, 1–10. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Yuan, Z.Q.; Ali, A.; Ruiz-Benito, P.; Jucker, T.; Mori, A.; Wang, S.P.; Zhang, X.K.; Li, H.; Hao, Z.Q.; Wang, X.G.; et al. Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient. J. Ecol. 2020, 108, 2012–2024. [Google Scholar] [CrossRef]
- Ren, C.; Zhou, Z.; Guo, Y.; Yang, Y.; Zhao, F.; Wei, G.; Han, X.; Feng, L.; Feng, Y.; Ren, G. Contrasting patterns of microbial community and enzyme activity between rhizosphere and bulk soil along an elevation gradient. Catena 2021, 196, 104921. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Cui, M.; Zhou, Z.Y.; Zhang, Q.; Ha, W.X.; Pang, D.B.; Luo, J.F.; Zhou, J.X. Effects of secondary succession on soil fungal and bacterial compositions and diversities in a karst area. Plant Soil 2021, 475, 91–102. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Gephi, M.J. An open source software for exploring and manipulating networks. In Proceedings of the Third International Conference on Weblogs and Social Media, ICWSM 2009, San Jose, CA, USA, 17–20 May 2009. [Google Scholar]
- Glab, T.; Kulig, B. Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum). Soil Tillage Res. 2008, 99, 169–178. [Google Scholar] [CrossRef]
- Xiao, D.; He, X.Y.; Zhang, W.; Cheng, M.; Hu, P.L.; Sun, M.M.; Wang, K.L. Comparison of bacterial and fungal diversity and network connectivity in karst and non-karst forests in southwest China. Sci. Total Environ. 2022, 822, 153179. [Google Scholar] [CrossRef]
- Kooch, Y.; Mehr, M.A.; Hosseini, S.M. Soil biota and fertility along a gradient of forest degradation in a temperate ecosystem. Catena 2021, 196, 104922. [Google Scholar] [CrossRef]
- Peay, K.G.; Christian, V.S.; Emily, C.; Hirokazu, T.; Francis, C.A.; Chadwick, O.A.; Vitousek, P.M. Convergence and contrast in the community structure of bacteria, fungi and archaea along a tropical elevation-climate gradient. Fems Microbiol. Ecol. 2017, 93, 5. [Google Scholar] [CrossRef]
- Xiao, D.; He, X.Y.; Zhang, W.; Cheng, M.; Hu, P.L.; Wang, K.L. Diazotroph and arbuscular mycorrhizal fungal diversity and community composition responses to karst and non-karst soils. Appl. Soil Ecol. 2022, 170, 10477. [Google Scholar] [CrossRef]
- Praeg, N.; Seeber, J.; Leitinge878, G.; Tasser, E.; Newesely, C.; Tappeiner, U.; Illmer, P. The role of land management and elevation in shaping soil microbial communities: Insights from the Central European Alps. Soil Biol. Biochem. 2020, 150, 107951. [Google Scholar] [CrossRef]
- Zhou, Z.; Yu, M.; Ding, G.; Gao, G.; He, Y.; Wang, G. Effects of Hedysarum leguminous plants on soil bacterial communities in the Mu Us Desert, northwest China. Ecol. Evol. 2020, 10, 11423–11439. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ren, C.; Yi, J.; Doughty, R.; Zhao, F. Contrasting responses of rhizosphere bacteria, fungi and arbuscular mycorrhizal fungi along an elevational gradient in a temperate montane forest of China. Front. Microbiol. 2020, 11, 2042. [Google Scholar] [CrossRef]
- Ren, C.; Liu, W.; Zhao, F.; Zhong, Z.; Deng, J.; Han, X.; Yang, G.; Feng, Y.; Ren, G. Soil bacterial and fungal diversity and compositions respond differently to forest development. Catena 2019, 181, 104071. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.C.R.S.; Peixoto, R.S.; Cury, J.C.; Sul, W.J.; Pellizari, V.H.; Tiedje, J.; Rosado, A.S. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J. 2010, 4, 989. [Google Scholar] [CrossRef]
- Barberán, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012, 6, 343–351. [Google Scholar] [CrossRef]
- Fournier, B.; Dos Santos, S.P.; Gustavsen, J.A.; Imfeld, G.; Lamy, F.; Mitchell, E.A.; Mota, M.; Noll, D.; Planchamp, C.; Heger, T.J. Impact of a synthetic fungicide (fosetyl-Al and propamocarb-hydrochloride) and a biopesticide (Clonostachys rosea) on soil bacterial, fungal, and protist communities. Sci. Total Environ. 2020, 738, 139635. [Google Scholar] [CrossRef]
- Xun, W.; Liu, Y.; Li, W.; Ren, Y.; Xiong, W.; Xu, Z.; Zhang, N.; Miao, Y.; Shen, Q.; Zhang, R. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome 2021, 9, 35. [Google Scholar] [CrossRef]
- Zhou, J.; Xue, K.; Xie, J.; Deng, Y.; Wu, L.; Cheng, X.; Fei, S.; Deng, S.; He, Z.; Van Nostrand, J.D.; et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2012, 2, 106–110. [Google Scholar] [CrossRef]
- Liu, H.; Huang, X.; Tan, W.; Di, H.; Xu, J.; Li, Y. High manure load reduces bacterial diversity and network complexity in a paddy soil under crop rotations. Soil Ecol. Lett. 2020, 2, 104–119. [Google Scholar] [CrossRef]
- Morriën, E.; Hannula, S.E.; Snoek, L.B.; Helmsing, N.R.; Zweers, H.; De Hollander, M.; Soto, R.L.; Bouffaud, M.L.; Buée, M.; Dimmers, W.; et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 2017, 8, 14349. [Google Scholar] [CrossRef]
- Fu, P.L.; Zhu, S.D.; Zhang, J.L.; Finnegan, P.M.; Jiang, Y.J.; Lin, H.; Fan, Z.X.; Cao, K.F. The contrasting leaf functional traits between a karst forest and a nearby non-karst forest in south-West China. Funct. Plant Biol. 2019, 46, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Price, G.W.; Langille, M.G.; Yurgel, S.N. Microbial co-occurrence network analysis of soils receiving short-and long-term applications of alkaline treated biosolids. Sci. Total Environ. 2021, 751, 141687. [Google Scholar] [CrossRef] [PubMed]
- van der Gast, C.J.; Walker, A.W.; Stressmann, F.A.; Rogers, G.B.; Scott, P.; Daniels, T.W.; Carroll, M.P.; Parkhill, J.; Bruce, K.D. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J. 2011, 5, 780–791. [Google Scholar] [CrossRef]
- Chaudhry, V.; Rehman, A.; Mishra, A.; Chauhan, P.S.; Nautiyal, C.S. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 2012, 64, 450–460. [Google Scholar] [CrossRef]
- Dai, Z.; Su, W.; Chen, H.; Barberán, A.; Zhao, H.; Yu, M.; Yu, L.; Brookes, P.C.; Schadt, C.W.; Chang, S.X.; et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Glob. Change Biol. 2018, 24, 3452–3461. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Yu, Z.; Shi, Y.; Chu, H.; Jin, J.; Liu, X.; Wang, G. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Tveit, A.T.; Urich, T.; Svenning, M.M. Metatranscriptomic analysis of arctic peat soil microbiota. Appl. Environ. Microbiol. 2014, 80, 5761–5772. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wang, G.; Yu, M.; Gao, G.; Ding, G. The leguminous Hedysarum shrubs effectively drive the diversity and structural composition of soil bacterial community through rhizocompartments in the process of desertification reversal. Land Degrad. Dev. 2023, 34, 4833–4846. [Google Scholar] [CrossRef]
- Zhang, M.; Dang, P.; Haegeman, B.; Han, X.; Wang, X.; Pu, X.; Qin, X.; Siddique, K. The effects of straw return on soil bacterial diversity and functional profiles: A meta-analysis. Soil Biol. Biochem. 2024, 195, 109484. [Google Scholar] [CrossRef]
Straw Returning Amount | Chao1 | Shannon | OTUs | ACE |
---|---|---|---|---|
0 t/hm2 | 2197 ± 23 c | 6.1 ± 0.01 d | 1715 ± 38 b | 2182 ± 18 c |
3 t/hm2 | 2661 ± 77 a | 6.42 ± 0.02 a | 2197 ± 77 a | 2666 ± 80 a |
4.5 t/hm2 | 2415 ± 48 b | 6.28 ± 0.01 c | 1944 ± 40 a | 2422 ± 58 b |
5 t/hm2 | 2686 ± 120 a | 6.35 ± 0.02 b | 2152 ± 120 a | 2664 ± 106 a |
6 t/hm2 | 2608 ± 111 ab | 6.43 ± 0.03 a | 2113 ± 166 a | 2593 ± 138 ab |
Dominant Phyla | 0 t/hm2 | 3 t/hm2 | 4.5 t/hm2 | 5 t/hm2 | 6 t/hm2 |
---|---|---|---|---|---|
Proteobacteria | 24.82 ± 0.45 d | 30.88 ± 0.66 ab | 31.59 ± 0.1 a | 28.46 ± 0.31 c | 29.7 ± 0.34 bc |
Actinobacteria | 35.6 ± 0.65 a | 26.88 ± 0.42 c | 25.3 ± 0.44 c | 29.36 ± 0.09 b | 28.87 ± 0.44 b |
Acidobacteria | 8.13 ± 0.24 b | 10.47 ± 0.2 a | 10.59 ± 0.34 a | 8.4 ± 0.09 b | 9.93 ± 0.23 a |
Chloroflexi | 11.4 ± 0.16 a | 8.13 ± 0.16 c | 9.13 ± 0.19 b | 9.29 ± 0.07 b | 9.51 ± 0.18 b |
Gemmatimonadetes | 6.17 ± 0.11 c | 7.68 ± 0.2 ab | 8.14 ± 0.24 a | 7.65 ± 0.09 ab | 7.32 ± 0.16 b |
Firmicutes | 2.69 ± 0.15 a | 2.29 ± 0.17 a | 2.88 ± 0.14 a | 2.5 ± 0.16 a | 2.27 ± 0.08 a |
Planctomycetes | 4.78 ± 0.08 b | 6.29 ± 0.28 a | 5.98 ± 0.19 a | 5.55 ± 0.08 ab | 5.69 ± 0.35 ab |
0 t/hm2 | 3 t/hm2 | 4.5 t/hm2 | 5 t/hm2 | 6 t/hm2 | ||
---|---|---|---|---|---|---|
Empirical networks | Similarity threshold | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |
Total nodes | 543 | 1068 | 650 | 106 | 329 | |
Total links | 805 | 3313 | 753 | 708 | 592 | |
R2 of power law | 0.912 | 0.765 | 0.949 | 0.715 | 0.836 | |
Average clustering coefficient | 0.179 | 0.197 | 0.082 | 0.342 | 0.61 | |
Connectedness | 0.042 | 0.679 | 0.201 | 1 | 0.011 | |
Harmonic geodesic distance | 2.535 | 6.609 | 5.798 | 1.944 | 1.001 | |
Average path distance | 4.034 | 8.311 | 8.031 | 2.18 | 1.002 | |
Modularity | 0.926 | 0.917 | 0.888 | 0.856 | 0.938 | |
Random networks | Random average clustering coefficient | 0.008 ± 0.003 | 0.012 ± 0.002 | 0.004 ± 0.002 | 0.452 ± 0.019 | 0.007 ± 0.002 |
Random average path distance | 4.997 ± 0.065 | 3.852 ± 0.017 | 6.173 ± 0.112 | 2.180 ± 0.017 | 4.672 ± 0.058 | |
Modularity | 0.633 ± 0.006 | 0.374 ± 0.004 | 0.763 ± 0.006 | 0.150 ± 0.005 | 0.633 ± 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Qin, W.; Yin, Z.; Zhou, Z.; Jiao, J.; Xu, X.; Zhang, Y.; Han, X. Threshold Effects of Straw Returning Amounts on Bacterial Colonization in Black Soil. Microorganisms 2025, 13, 1797. https://doi.org/10.3390/microorganisms13081797
Wang G, Qin W, Yin Z, Zhou Z, Jiao J, Xu X, Zhang Y, Han X. Threshold Effects of Straw Returning Amounts on Bacterial Colonization in Black Soil. Microorganisms. 2025; 13(8):1797. https://doi.org/10.3390/microorganisms13081797
Chicago/Turabian StyleWang, Genzhu, Wei Qin, Zhe Yin, Ziyuan Zhou, Jian Jiao, Xiaohong Xu, Yu Zhang, and Xing Han. 2025. "Threshold Effects of Straw Returning Amounts on Bacterial Colonization in Black Soil" Microorganisms 13, no. 8: 1797. https://doi.org/10.3390/microorganisms13081797
APA StyleWang, G., Qin, W., Yin, Z., Zhou, Z., Jiao, J., Xu, X., Zhang, Y., & Han, X. (2025). Threshold Effects of Straw Returning Amounts on Bacterial Colonization in Black Soil. Microorganisms, 13(8), 1797. https://doi.org/10.3390/microorganisms13081797