Heat Shock Protein 70 in Cold-Stressed Farm Animals: Implications for Viral Disease Seasonality
Abstract
1. Introduction
2. Expression Dynamics of HSP70 in Cold-Stressed Poultry and Livestock
Species | Organs | Increased Levels | Potential Functions of HSP70 | Reference |
---|---|---|---|---|
Chicken | Heart | mRNA and proteins | Protects heart against cold stress | [29] |
Spleen, thymus, and bursa of Fabricius | mRNA and proteins | Protects immune organs against cold stress | [30] | |
Spleen and bursa of Fabricius | mRNA | - | [31] | |
Midbrain and forebrain | mRNA | Delays the pathological process of cold stress | [32] | |
Liver | mRNA | - | [33] | |
Liver, | ||||
heart, and breast muscle | mRNA | - | [34] | |
Jejunum and ileum | mRNA and proteins | Protects cells against damage caused by cold stress | [20] | |
Quail | Heart | Protein | Biomarker of ambient hazards | [16] |
Cecum | mRNA | Protects cecum against cold stress | [17] | |
Spleen | mRNA | Protects spleen against cold stress | [18] | |
Bovine | Blood | mRNA | - | [23,24] |
Blood | mRNA | - | [24,27] | |
Sertoli cells | mRNA and proteins | Protects sertoli cells against cold stress | [35] | |
PBMCs | mRNA and proteins | - | [25,26] | |
Porcine | Duodenum, | mRNA and proteins | Promotes PEDV replication in vivo | [28] |
jejunum, and | ||||
ileum |
3. Seasonal Trends of Farm Animal Viral Diseases
4. Potential Roles of HSP70 in Shaping Farm Animal Viral Disease Seasonality
4.1. Roles of Hsp70 in Boosting Viral Replication and Infections
4.2. Roles of Hsp70 in Regulating Farm Animal Immune Responses
5. Other Potential Factors in Shaping Farm Animal Viral Disease Seasonality
5.1. Environmental Factors in Viral Persistence
5.2. Host and Viral Population Factors
6. Conclusions
7. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, Y.; Zhang, X.; Xin, H.; Li, S.; Li, J.; Zhang, R.; Li, X.; Li, J.; Bao, J. Effects of prior cold stimulation on inflammatory and immune regulation in ileum of cold-stressed broilers. Poult. Sci. 2018, 97, 4228–4237. [Google Scholar] [CrossRef]
- Archana, P.R.; Sejian, V.; Ruban, W.; Bagath, M.; Krishnan, G.; Aleena, J.; Manjunathareddy, G.B.; Beena, V.; Bhatta, R. Comparative assessment of heat stress induced changes in carcass traits, plasma leptin profile and skeletal muscle myostatin and HSP70 gene expression patterns between indigenous Osmanabadi and Salem Black goat breeds. Meat Sci. 2018, 141, 66–80. [Google Scholar] [CrossRef]
- Hu, L.; Brito, L.F.; Abbas, Z.; Sammad, A.; Kang, L.; Wang, D.; Wu, H.; Liu, A.; Qi, G.; Zhao, M.; et al. Investigating the Short-Term Effects of Cold Stress on Metabolite Responses and Metabolic Pathways in Inner-Mongolia Sanhe Cattle. Animals 2021, 11, 2493. [Google Scholar] [CrossRef]
- Caremani, M.; Brunello, E.; Linari, M.; Fusi, L.; Irving, T.C.; Gore, D.; Piazzesi, G.; Irving, M.; Lombardi, V.; Reconditi, M. Low temperature traps myosin motors of mammalian muscle in a refractory state that prevents activation. J. Gen. Physiol. 2019, 151, 1272–1286. [Google Scholar] [CrossRef]
- Ji, H.; Niu, C.; Zhan, X.; Xu, J.; Lian, S.; Xu, B.; Guo, J.; Zhen, L.; Yang, H.; Li, S.; et al. Identification, functional prediction, and key lncRNA verification of cold stress-related lncRNAs in rats liver. Sci. Rep. 2020, 10, 521. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, Y.; Quan, X.; Fan, W.; Xu, B.; Li, S. RBM3 is an outstanding cold shock protein with multiple physiological functions beyond hypothermia. J. Cell. Physiol. 2022, 237, 3788–3802. [Google Scholar] [CrossRef]
- Mayer, M.P.; Gierasch, L.M. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J. Biol. Chem. 2019, 294, 2085–2097. [Google Scholar] [CrossRef]
- Moran Luengo, T.; Mayer, M.P.; Rudiger, S.G.D. The Hsp70-Hsp90 Chaperone Cascade in Protein Folding. Trends Cell Biol. 2019, 29, 164–177. [Google Scholar] [CrossRef]
- Hassan, F.U.; Nawaz, A.; Rehman, M.S.; Ali, M.A.; Dilshad, S.M.R.; Yang, C. Prospects of HSP70 as a genetic marker for thermo-tolerance and immuno-modulation in animals under climate change scenario. Anim. Nutr. 2019, 5, 340–350. [Google Scholar] [CrossRef]
- Kumar, B.; Sahoo, A.K.; Dayal, S.; Das, A.K.; Taraphder, S.; Batabyal, S.; Ray, P.K.; Kumari, R. Genetic profiling of Hsp70 gene in Murrah buffalo (Bubalus bubalis) under sub-tropical climate of India. Cell Stress Chaperones 2019, 24, 1187–1195. [Google Scholar] [CrossRef]
- Craig, E.A.; Marszalek, J. How Do J-Proteins Get Hsp70 to Do So Many Different Things? Trends Biochem. Sci. 2017, 42, 355–368. [Google Scholar] [CrossRef]
- VanPelt, J.; Page, R.C. Unraveling the CHIP: Hsp70 complex as an information processor for protein quality control. Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 133–141. [Google Scholar] [CrossRef]
- Al-Aqil, A.; Zulkifli, I. Changes in heat shock protein 70 expression and blood characteristics in transported broiler chickens as affected by housing and early age feed restriction. Poult. Sci. 2009, 88, 1358–1364. [Google Scholar] [CrossRef]
- Whitley, D.; Goldberg, S.P.; Jordan, W.D. Heat shock proteins: A review of the molecular chaperones. J. Vasc. Surg. 1999, 29, 748–751. [Google Scholar] [CrossRef]
- Rosenzweig, R.; Nillegoda, N.B.; Mayer, M.P.; Bukau, B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 2019, 20, 665–680. [Google Scholar] [CrossRef]
- Hoekstra, K.A.; Iwama, G.K.; Nichols, C.R.; Godin, D.V.; Cheng, K.M. Increased heat shock protein expression after stress in Japanese quail. Stress 1998, 2, 265–272. [Google Scholar] [CrossRef]
- Liu, C.; Chaudhry, M.T.; Zhao, D.; Lin, T.; Tian, Y.; Fu, J. Heat shock protein 70 protects the quail cecum against oxidant stress, inflammatory injury, and microbiota imbalance induced by cold stress. Poult. Sci. 2019, 98, 5432–5445. [Google Scholar] [CrossRef]
- Ren, J.; Liu, C.; Zhao, D.; Fu, J. The role of heat shock protein 70 in oxidant stress and inflammatory injury in quail spleen induced by cold stress. Environ. Sci. Pollut. Res. Int. 2018, 25, 21011–21023. [Google Scholar] [CrossRef]
- Gong, R.; Xing, L.; Yin, J.; Ding, Y.; Liu, X.; Bao, J.; Li, J. Appropriate cold stimulation changes energy distribution to improve stress resistance in broilers. J. Anim. Sci. 2023, 101, skad185. [Google Scholar] [CrossRef]
- Bi, Y.; Wei, H.; Chai, Y.; Wang, H.; Xue, Q.; Li, J. Intermittent mild cold acclimation ameliorates intestinal inflammation and immune dysfunction in acute cold-stressed broilers by regulating the TLR4/MyD88/NF-kappaB pathway. Poult. Sci. 2024, 103, 103637. [Google Scholar] [CrossRef]
- Zhang, S.; Gong, R.; Zhao, N.; Zhang, Y.; Xing, L.; Liu, X.; Bao, J.; Li, J. Effect of intermittent mild cold stimulation on intestinal immune function and the anti-stress ability of broilers. Poult. Sci. 2023, 102, 102407. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, Y.; Zhang, Y.G.; Yin, Y.L.; Yan, S.C.; Zhao, Y.Z.; Shen, W.Z. Research and application of a new multilevel fuzzy comprehensive evaluation method for cold stress in dairy cows. J. Dairy Sci. 2022, 105, 9137–9161. [Google Scholar] [CrossRef]
- Pawar, N.H.; Kumar, G.R.; Narang, R.; Agrawal, R.K. Heat and cold stress enhances the expression of heat shock protein 70, heat shock transcription factor 1 and cytokines (IL-12, TNF and GMCSF) in buffaloes. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 307–317. [Google Scholar]
- Kumar, A.; Ashraf, S.; Goud, T.S.; Grewal, A.; Singh, S.V.; Yadav, B.R.; Upadhyay, R.C. Expression profiling of major heat shock protein genes during different seasons in cattle (Bos indicus) and buffalo (Bubalus bubalis) under tropical climatic condition. J. Therm. Biol. 2015, 51, 55–64. [Google Scholar] [CrossRef]
- Mayengbam, P.; Tolenkhomba, T.C.; Upadhyay, R.C. Expression of heat-shock protein 72 mRNA in relation to heart rate variability of Sahiwal and Karan-Fries in different temperature-humidity indices. Vet. World 2016, 9, 1051–1055. [Google Scholar] [CrossRef]
- Bhanuprakash, V.; Singh, U.; Sengar, G.; Sajjanar, B.; Bhusan, B.; Raja, T.V.; Alex, R.; Kumar, S.; Singh, R.; Ashish, K.; et al. Differential effect of thermal stress on HSP70 expression, nitric oxide production and cell proliferation among native and crossbred dairy cattle. J. Therm. Biol. 2016, 59, 18–25. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, Y.C.; Liu, R.; Brito, L.F.; Kang, L.; Yu, Y.; Wang, D.S.; Wu, H.J.; Liu, A. Differential gene expression in the peripheral blood of Chinese Sanhe cattle exposed to severe cold stress. Genet. Mol. Res. 2017, 16, gmr16029593. [Google Scholar] [CrossRef]
- Kong, F.; Xu, Y.; Ran, W.; Yin, B.; Feng, L.; Sun, D. Cold Exposure-Induced Up-Regulation of Hsp70 Positively Regulates PEDV mRNA Synthesis and Protein Expression In Vitro. Pathogens 2020, 9, 246. [Google Scholar] [CrossRef]
- Zhao, F.Q.; Zhang, Z.W.; Wang, C.; Zhang, B.; Yao, H.D.; Li, S.; Xu, S.W. The role of heat shock proteins in inflammatory injury induced by cold stress in chicken hearts. Cell Stress Chaperones 2013, 18, 773–783. [Google Scholar] [CrossRef]
- Zhao, F.Q.; Zhang, Z.W.; Qu, J.P.; Yao, H.D.; Li, M.; Li, S.; Xu, S.W. Cold stress induces antioxidants and Hsps in chicken immune organs. Cell Stress Chaperones 2014, 19, 635–648. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, C.; Zheng, W.; Teng, X.; Li, S. The Functions of Antioxidants and Heat Shock Proteins Are Altered in the Immune Organs of Selenium-Deficient Broiler Chickens. Biol. Trace Elem. Res. 2016, 169, 341–351. [Google Scholar] [CrossRef]
- Hassanpour, H.; Khosravi Alekoohi, Z.; Madreseh, S.; Bahadoran, S.; Nasiri, L. Variation of heat shock protein gene expression in the brain of cold-induced pulmonary hypertensive chickens. Br. Poult. Sci. 2016, 57, 636–642. [Google Scholar] [CrossRef]
- Aminoroaya, K.; Sadeghi, A.A.; Ansari-Pirsaraei, Z.; Kashan, N. Effect of cyclical cold stress during embryonic development on aspects of physiological responses and HSP70 gene expression of chicks. J. Therm. Biol. 2016, 61, 50–54. [Google Scholar] [CrossRef]
- Leandro, N.S.; Gonzales, E.; Ferro, J.A.; Ferro, M.I.; Givisiez, P.E.; Macari, M. Expression of heat shock protein in broiler embryo tissues after acute cold or heat stress. Mol. Reprod. Dev. 2004, 67, 172–177. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, H.; Zheng, P.; Feng, R.; Wang, X.; Huang, F.; Ma, M.; Tian, Y.; Zhang, G. The alleviative effect of thyroid hormone on cold stress-induced apotosis via HSP70 and mitochondrial apoptosis signal pathway in bovine Sertoli cells. Cryobiology 2022, 105, 63–70. [Google Scholar] [CrossRef]
- Audi, A.; AlIbrahim, M.; Kaddoura, M.; Hijazi, G.; Yassine, H.M.; Zaraket, H. Seasonality of Respiratory Viral Infections: Will COVID-19 Follow Suit? Front. Public Health 2020, 8, 567184. [Google Scholar] [CrossRef]
- Moriyama, M.; Hugentobler, W.J.; Iwasaki, A. Seasonality of Respiratory Viral Infections. Annu. Rev. Virol. 2020, 7, 83–101. [Google Scholar] [CrossRef]
- Le Gall-Ladeveze, C.; Vollot, B.; Hirschinger, J.; Lebre, L.; Aaziz, R.; Laroucau, K.; Guerin, J.L.; Paul, M.; Cappelle, J.; Le Loc’h, G. Limited transmission of avian influenza viruses, avulaviruses, coronaviruses and Chlamydia sp. at the interface between wild birds and a free-range duck farm. Vet. Res. 2025, 56, 36. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Haga, T. Association between highly pathogenic avian influenza outbreaks and weather conditions in Japan. J. Vet. Med. Sci. 2024, 86, 1045–1051. [Google Scholar] [CrossRef]
- Lowen, A.C.; Mubareka, S.; Steel, J.; Palese, P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007, 3, 1470–1476. [Google Scholar] [CrossRef]
- Lowen, A.C.; Steel, J. Roles of humidity and temperature in shaping influenza seasonality. J. Virol. 2014, 88, 7692–7695. [Google Scholar] [CrossRef]
- Pardon, B.; Callens, J.; Maris, J.; Allais, L.; Van Praet, W.; Deprez, P.; Ribbens, S. Pathogen-specific risk factors in acute outbreaks of respiratory disease in calves. J. Dairy Sci. 2020, 103, 2556–2566. [Google Scholar] [CrossRef]
- Trevisan, G.; Linhares, L.C.M.; Crim, B.; Dubey, P.; Schwartz, K.J.; Burrough, E.R.; Main, R.G.; Sundberg, P.; Thurn, M.; Lages, P.T.F.; et al. Macroepidemiological aspects of porcine reproductive and respiratory syndrome virus detection by major United States veterinary diagnostic laboratories over time, age group, and specimen. PLoS ONE 2019, 14, e0223544. [Google Scholar] [CrossRef]
- Lim, S.; Perez, A.M.; Kanankege, K.S.T. Modeling the Seasonal Variation of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms. Viruses 2023, 15, 1765. [Google Scholar] [CrossRef]
- Coelho, I.M.P.; Paiva, M.T.; da Costa, A.J.A.; Nicolino, R.R. African Swine Fever: Spread and seasonal patterns worldwide. Prev. Vet. Med. 2025, 235, 106401. [Google Scholar] [CrossRef]
- Saechin, A.; Suksai, P.; Sariya, L.; Mongkolphan, C.; Tangsudjai, S. Species and seasonality can affect recent trends in beak and feather disease virus prevalence in captive psittacine birds. Acta Trop. 2024, 249, 107071. [Google Scholar] [CrossRef]
- Liang, J.; Wang, T.; Wang, Q.; Wang, X.; Fan, X.; Hu, T.; Leng, X.; Shi, K.; Li, J.; Gong, Q.; et al. Prevalence of canine distemper in minks, foxes and raccoon dogs from 1983 to 2023 in Asia, North America, South America and Europe. Front. Vet. Sci. 2024, 11, 1394631. [Google Scholar] [CrossRef]
- Park, G.N.; Song, S.; Choe, S.; Shin, J.; An, B.H.; Kim, S.Y.; Hyun, B.H.; An, D.J. Spike Gene Analysis and Prevalence of Porcine Epidemic Diarrhea Virus from Pigs in South Korea: 2013-2022. Viruses 2023, 15, 2165. [Google Scholar] [CrossRef]
- Kikuti, M.; Picasso-Risso, C.; Corzo, C.A. Porcine Deltacoronavirus Occurrence in the United States Breeding Herds since Its Emergence in 2014. Viruses 2024, 16, 445. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Y.; Yang, J.; Liu, X.; Luo, Y.; Zhu, L.; Huang, K.; Sheng, F.; Du, X.; Jin, M. Seroprevalence of the novel swine acute diarrhea syndrome coronavirus in China assessed by enzyme-linked immunosorbent assay. Front. Cell. Infect. Microbiol. 2024, 14, 1367975. [Google Scholar] [CrossRef]
- Kudo, E.; Song, E.; Yockey, L.J.; Rakib, T.; Wong, P.W.; Homer, R.J.; Iwasaki, A. Low ambient humidity impairs barrier function and innate resistance against influenza infection. Proc. Natl. Acad. Sci. USA 2019, 116, 10905–10910. [Google Scholar] [CrossRef]
- Sun, D.; Wang, X.; Wei, S.; Chen, J.; Feng, L. Epidemiology and vaccine of porcine epidemic diarrhea virus in China: A mini-review. J. Vet. Med. Sci. 2016, 78, 355–363. [Google Scholar] [CrossRef]
- Li, C.; Guo, D.; Wu, R.; Kong, F.; Zhai, J.; Yuan, D.; Sun, D. Molecular surveillance of canine distemper virus in diarrhoetic puppies in northeast China from May 2014 to April 2015. J. Vet. Med. Sci. 2018, 80, 1029–1033. [Google Scholar] [CrossRef]
- Zhong, N.S.; Zheng, B.J.; Li, Y.M.; Poon, L.L.M.; Xie, Z.H.; Chan, K.H.; Li, P.H.; Tan, S.Y.; Chang, Q.; Xie, J.P.; et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 2003, 362, 1353–1358. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Lubkowska, A.; Pluta, W.; Stronska, A.; Lalko, A. Role of Heat Shock Proteins (HSP70 and HSP90) in Viral Infection. Int. J. Mol. Sci. 2021, 22, 9366. [Google Scholar] [CrossRef]
- Dai, G.; Han, K.; Huang, X.; Zhang, L.; Liu, Q.; Yang, J.; Liu, Y.; Li, Y.; Zhao, D. Heat shock protein 70 (HSP70) plays important role in tembusu virus infection. Vet. Microbiol. 2022, 267, 109377. [Google Scholar] [CrossRef]
- Lahaye, X.; Vidy, A.; Fouquet, B.; Blondel, D. Hsp70 protein positively regulates rabies virus infection. J. Virol. 2012, 86, 4743–4751. [Google Scholar] [CrossRef]
- Guo, J.; Yan, Y.; Sun, J.; Ji, K.; Hei, Z.; Zeng, L.; Xu, H.; Ren, X.; Sun, Y. Chaperones Hsc70 and Hsp70 play distinct roles in the replication of bocaparvovirus minute virus of canines. Mol. Microbiol. 2024, 121, 1127–1147. [Google Scholar] [CrossRef]
- Zhang, C.; Kang, K.; Ning, P.; Peng, Y.; Lin, Z.; Cui, H.; Cao, Z.; Wang, J.; Zhang, Y. Heat shock protein 70 is associated with CSFV NS5A protein and enhances viral RNA replication. Virology 2015, 482, 9–18. [Google Scholar] [CrossRef]
- Chen, N.; Liu, Y.; Bai, T.; Chen, J.; Zhao, Z.; Li, J.; Shao, B.; Zhang, Z.; Zhou, Y.; Wang, X.; et al. Quercetin Inhibits Hsp70 Blocking of Bovine Viral Diarrhea Virus Infection and Replication in the Early Stage of Virus Infection. Viruses 2022, 14, 2365. [Google Scholar] [CrossRef]
- Meng, Y.; Yu, X.; You, C.; Zhang, W.; Sun, Y.; Li, L.; Jin, T.; Pan, P.; Xie, A. Chicken Heat Shock Protein 70 Is an Essential Host Protein for Infectious Bursal Disease Virus Infection In Vitro. Pathogens 2021, 10, 664. [Google Scholar] [CrossRef]
- Liu, J.; Bai, J.; Zhang, L.; Jiang, Z.; Wang, X.; Li, Y.; Jiang, P. Hsp70 positively regulates porcine circovirus type 2 replication in vitro. Virology 2013, 447, 52–62. [Google Scholar] [CrossRef]
- Gao, J.; Xiao, S.; Liu, X.; Wang, L.; Ji, Q.; Mo, D.; Chen, Y. Inhibition of HSP70 reduces porcine reproductive and respiratory syndrome virus replication in vitro. BMC Microbiol. 2014, 14, 64. [Google Scholar] [CrossRef]
- Manzoor, R.; Kuroda, K.; Yoshida, R.; Tsuda, Y.; Fujikura, D.; Miyamoto, H.; Kajihara, M.; Kida, H.; Takada, A. Heat shock protein 70 modulates influenza A virus polymerase activity. J. Biol. Chem. 2014, 289, 7599–7614. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, X.; Xu, P.; Wu, X.; Zhou, L.; Wang, H. Heat shock protein 70 in lung and kidney of specific-pathogen-free chickens is a receptor-associated protein that interacts with the binding domain of the spike protein of infectious bronchitis virus. Arch. Virol. 2017, 162, 1625–1631. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, Y.; Wei, Q.; Chen, Y.; Yang, S.; Cheng, A.; Zhang, G. HSPA5 Promotes Attachment and Internalization of Porcine Epidemic Diarrhea Virus through Interaction with the Spike Protein and the Endo-/Lysosomal Pathway. J. Virol. 2023, 97, e0054923. [Google Scholar] [CrossRef]
- Park, J.Y.; Ryu, J.; Park, J.E.; Hong, E.J.; Shin, H.J. Heat shock protein 70 could enhance porcine epidemic diarrhoea virus replication by interacting with membrane proteins. Vet. Res. 2021, 52, 138. [Google Scholar] [CrossRef]
- Broquet, A.H.; Lenoir, C.; Gardet, A.; Sapin, C.; Chwetzoff, S.; Jouniaux, A.M.; Lopez, S.; Trugnan, G.; Bachelet, M.; Thomas, G. Hsp70 negatively controls rotavirus protein bioavailability in caco-2 cells infected by the rotavirus RF strain. J. Virol. 2007, 81, 1297–1304. [Google Scholar] [CrossRef]
- Cao, J.; Liu, S.; Liu, M.; Wang, S.; Bi, Z.; Fan, W.; Shi, Z.; Song, S.; Yan, L. Hsp70 Inhibits the Replication of Fowl Adenovirus Serotype 4 by Suppressing Viral Hexon with the Assistance of DnaJC7. J. Virol. 2022, 96, e0080722. [Google Scholar] [CrossRef]
- Borges, T.J.; Wieten, L.; van Herwijnen, M.J.; Broere, F.; van der Zee, R.; Bonorino, C.; van Eden, W. The anti-inflammatory mechanisms of Hsp70. Front. Immunol. 2012, 3, 95. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, H.; Joo, C.H. Negative Regulation of IKKepsilon-Mediated IRF7 Phosphorylation by HSP70. J. Immunol. 2020, 204, 2562–2574. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, Q.; Chen, Y.; Sun, X.; Gu, Y.; Zhao, Z.; Cheng, Y.; Zhao, L.; Huang, J.; Zhan, B.; et al. Ts-Hsp70 induces protective immunity against Trichinella spiralis infection in mouse by activating dendritic cells through TLR2 and TLR4. PLoS Negl. Trop. Dis. 2018, 12, e0006502. [Google Scholar] [CrossRef]
- Kumada, K.; Fuse, N.; Tamura, T.; Okamori, C.; Kurata, S. HSP70/DNAJA3 chaperone/cochaperone regulates NF-kappaB activity in immune responses. Biochem. Biophys. Res. Commun. 2019, 513, 947–951. [Google Scholar] [CrossRef]
- Mansilla, M.J.; Costa, C.; Eixarch, H.; Tepavcevic, V.; Castillo, M.; Martin, R.; Lubetzki, C.; Aigrot, M.S.; Montalban, X.; Espejo, C. Hsp70 regulates immune response in experimental autoimmune encephalomyelitis. PLoS ONE 2014, 9, e105737. [Google Scholar] [CrossRef]
- Pica, N.; Bouvier, N.M. Environmental factors affecting the transmission of respiratory viruses. Curr. Opin. Virol. 2012, 2, 90–95. [Google Scholar] [CrossRef]
- Kormuth, K.A.; Lin, K.; Prussin, A.J., 2nd; Vejerano, E.P.; Tiwari, A.J.; Cox, S.S.; Myerburg, M.M.; Lakdawala, S.S.; Marr, L.C. Influenza Virus Infectivity Is Retained in Aerosols and Droplets Independent of Relative Humidity. J. Infect. Dis. 2018, 218, 739–747. [Google Scholar] [CrossRef]
- Bozic, A.; Kanduc, M. Relative humidity in droplet and airborne transmission of disease. J. Biol. Phys. 2021, 47, 1–29. [Google Scholar] [CrossRef]
- Aganovic, A.; Bi, Y.; Cao, G.; Kurnitski, J.; Wargocki, P. Modeling the impact of indoor relative humidity on the infection risk of five respiratory airborne viruses. Sci. Rep. 2022, 12, 11481. [Google Scholar] [CrossRef]
- Wei, Y.; Dong, Z.; Fan, W.; Xu, K.; Tang, S.; Wang, Y.; Wu, F. A narrative review on the role of temperature and humidity in COVID-19: Transmission, persistence, and epidemiological evidence. Eco. Environ. Health 2022, 1, 73–85. [Google Scholar] [CrossRef]
- Anderson, B.D.; Lednicky, J.A.; Torremorell, M.; Gray, G.C. The Use of Bioaerosol Sampling for Airborne Virus Surveillance in Swine Production Facilities: A Mini Review. Front. Vet. Sci. 2017, 4, 121. [Google Scholar] [CrossRef]
- Bottoms, K.; Poljak, Z.; Dewey, C.; Deardon, R.; Holtkamp, D.; Friendship, R. Investigation of strategies for the introduction and transportation of replacement gilts on southern Ontario sow farms. BMC Vet. Res. 2012, 8, 217. [Google Scholar] [CrossRef]
- Tanner, H.; Boxall, E.; Osman, H. Respiratory viral infections during the 2009-2010 winter season in Central England, UK: Incidence and patterns of multiple virus co-infections. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 3001–3006. [Google Scholar] [CrossRef]
- Guo, J.; Lai, Y.; Yang, Z.; Song, W.; Zhou, J.; Li, Z.; Su, W.; Xiao, S.; Fang, L. Coinfection and nonrandom recombination drive the evolution of swine enteric coronaviruses. Emerg. Microbes Infect. 2024, 13, 2332653. [Google Scholar] [CrossRef]
- Hill, D.L.; Wall, E. Weather influences feed intake and feed efficiency in a temperate climate. J. Dairy Sci. 2017, 100, 2240–2257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, F.; Zhang, X.; Xiao, Q.; Jia, H.; Jiang, T. Heat Shock Protein 70 in Cold-Stressed Farm Animals: Implications for Viral Disease Seasonality. Microorganisms 2025, 13, 1755. https://doi.org/10.3390/microorganisms13081755
Kong F, Zhang X, Xiao Q, Jia H, Jiang T. Heat Shock Protein 70 in Cold-Stressed Farm Animals: Implications for Viral Disease Seasonality. Microorganisms. 2025; 13(8):1755. https://doi.org/10.3390/microorganisms13081755
Chicago/Turabian StyleKong, Fanzhi, Xinyue Zhang, Qi Xiao, Huilin Jia, and Tengfei Jiang. 2025. "Heat Shock Protein 70 in Cold-Stressed Farm Animals: Implications for Viral Disease Seasonality" Microorganisms 13, no. 8: 1755. https://doi.org/10.3390/microorganisms13081755
APA StyleKong, F., Zhang, X., Xiao, Q., Jia, H., & Jiang, T. (2025). Heat Shock Protein 70 in Cold-Stressed Farm Animals: Implications for Viral Disease Seasonality. Microorganisms, 13(8), 1755. https://doi.org/10.3390/microorganisms13081755