Airborne Algae and Cyanobacteria Originating from Lakes: Formation Mechanisms, Influencing Factors, and Potential Health Risks
Abstract
1. Introduction
2. The Formation and Environmental Factors on Airborne Algae and Their Toxins
2.1. The Aerosolised Algae Produced from the Aquatic Environment
2.2. Long-Range Transport of Airborne Algae
2.3. The Concentration and Species of Algae and Cyanobacteria Determined the Airborne Distribution
2.4. Meteorological and Environmental Factors Influence the Airborne Algae, Cyanobacteria, and Toxin
2.5. Airborne Chemical Compositions Interact with Airborne Algae and Toxins
3. The Current Sample Collection and Detection Methods
3.1. Sample Collection and Analysis
3.2. The Algal and Cyanobacterial Toxins Analysis and Potential Human Risk Assessment
4. The Airborne Algal and Cyanobacterial Toxin Risk on Human Health
4.1. The Toxic Mechanism on Human Health
4.2. Aerosolised HABs Events
5. Future Perspective
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Plaas, H.E.; Paerl, H.W. Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. Environ. Sci. Technol. 2021, 55, 44–64. [Google Scholar] [CrossRef] [PubMed]
- Ariel, C.T.; Yehonatan, S.; Naama, L. Aeromicrobiology: A global review of the cycling and relationships of bioaerosols with the atmosphere. Sci. Total. Environ. 2024, 912, 168478. [Google Scholar]
- Dillon, K.P.; Correa, F.; Judon, C.; Sancelme, M.; Fennell, D.E.; Delort, A.-M.; Amato, P.; Stams, A.J.M. Cyanobacteria and Algae in Clouds and Rain in the Area of puy de Dôme, Central France. Appl. Environ. Microbiol. 2020, 87, e01850-20. [Google Scholar] [CrossRef] [PubMed]
- May, N.W.; Axson, J.L.; Watson, A.; Pratt, K.A.; Ault, A.P. Lake spray aerosol generation: A method for producing representative particles from freshwater wave breaking. Atmos. Meas. Tech. 2016, 9, 4311–4325. [Google Scholar] [CrossRef]
- Gobler, C.J.; Doherty, O.M.; Hattenrath-Lehmann, T.K.; Griffith, A.W.; Kang, Y.; Litaker, R.W. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proc. Natl. Acad. Sci. USA 2017, 114, 4975–4980. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.C.; Yoon, J.; Reynolds, K.; Gerald, L.B.; Ault, A.P.; Heo, S.; Bell, M.L. Harmful algal bloom aerosols and human health. eBioMedicine 2023, 93, 104604. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Chen, Q.; Lauridsen, T. A Systematic Investigation into the Environmental Fate of Microcystins and The Potential Risk: Study in Lake Taihu. Toxins 2016, 8, 170. [Google Scholar] [CrossRef] [PubMed]
- Melaram, R.; Newton, A.R.; Lee, A.; Herber, S.; El-Khouri, A.; Chafin, J. A review of microcystin and nodularin toxins derived from freshwater cyanobacterial harmful algal blooms and their impact on human health. Toxicol. Environ. Health Sci. 2024, 16, 233–241. [Google Scholar] [CrossRef]
- Picardo, M.; Filatova, D.; Nuñez, O.; Farré, M. Recent advances in the detection of natural toxins in freshwater environments. TrAC Trends Anal. Chem. 2019, 112, 75–86. [Google Scholar] [CrossRef]
- Olson, N.E.; Cooke, M.E.; Shi, J.H.; Birbeck, J.A.; Westrick, J.A.; Ault, A.P. Harmful Algal Bloom Toxins in Aerosol Generated from Inland Lake Water. Environ. Sci. Technol. 2020, 54, 4769–4780. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.K.; Rai, A.K. Allergenicity of airborne cyanobacteria Phormidium fragile and Nostoc muscorum. Ecotoxicol. Environ. Saf. 2008, 69, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Ault, A.P.; Moffet, R.C.; Baltrusaitis, J.; Collins, D.B.; Ruppel, M.J.; Cuadra-Rodriguez, L.A.; Zhao, D.; Guasco, T.L.; Ebben, C.J.; Geiger, F.M.; et al. Size-Dependent Changes in Sea Spray Aerosol Composition and Properties with Different Seawater Conditions. Environ. Sci. Technol. 2013, 47, 5603–5612. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.P.; Collins, D.B.; Michaud, J.M.; Axson, J.L.; Sultana, C.M.; Moser, T.; Dommer, A.C.; Conner, J.; Grassian, V.H.; Stokes, M.D.; et al. Sea Spray Aerosol Structure and Composition Using Cryogenic Transmission Electron Microscopy. ACS Cent. Sci. 2016, 2, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Slade, J.H.; Vanreken, T.M.; Mwaniki, G.R.; Bertman, S.; Stirm, B.; Shepson, P.B. Aerosol production from the surface of the Great Lakes. Geophys. Res. Lett. 2010, 37, L18807. [Google Scholar] [CrossRef]
- May, N.W.; Gunsch, M.J.; Olson, N.E.; Bondy, A.L.; Kirpes, R.M.; Bertman, S.B.; China, S.; Laskin, A.; Hopke, P.K.; Ault, A.P.; et al. Unexpected Contributions of Sea Spray and Lake Spray Aerosol to Inland Particulate Matter. Environ. Sci. Technol. Lett. 2018, 5, 405–412. [Google Scholar]
- Rogers, M.; Stanley, R. Airborne Algae: A Rising Public Health Risk. Environ. Sci. Technol. 2023, 57, 5501–5503. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.A.; Dietrich, D.R. Quantitative assessment of aerosolized cyanobacterial toxins at two New Zealand lakes. J. Environ. Monit. 2011, 13, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- May, N.W.; Olson, N.E.; Panas, M.; Axson, J.L.; Tirella, P.S.; Kirpes, R.M.; Craig, R.L.; Gunsch, M.J.; China, S.; Laskin, A.; et al. Aerosol Emissions from Great Lakes Harmful Algal Blooms. Environ. Sci. Technol. 2017, 52, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Qiu, Y.; Pei, T.; Qin, Y. Specific Sources Exert Influence on the Community Structures of Bioaerosols. Aerobiology 2024, 2, 72–84. [Google Scholar] [CrossRef]
- Fröhlich-Nowoisky, J.; Kampf, C.J.; Weber, B.; Huffman, J.A.; Pöhlker, C.; Andreae, M.O.; Lang-Yona, N.; Burrows, S.M.; Gunthe, S.S.; Elbert, W.; et al. Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos. Res. 2016, 182, 346–376. [Google Scholar] [CrossRef]
- Lewandowska, A.U.; Śliwińska-Wilczewska, S.; Woźniczka, D. Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea. Mar. Pollut. Bull. 2017, 125, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Sahu, N.; Tangutur, A.D. Airborne algae: Overview of the current status and its implications on the environment. Aerobiologia 2015, 31, 89–97. [Google Scholar] [CrossRef]
- Vejerano, E.P.; Ahn, J.; Scott, G.I. Aerosolized algal bloom toxins are not inert. Environ. Sci. Atmos. 2024, 4, 1113–1128. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewska, K.; Lewandowska, A.U.; Śliwińska-Wilczewska, S. The importance of cyanobacteria and microalgae present in aerosols to human health and the environment—Review study. Environ. Int. 2019, 131, 104964. [Google Scholar] [CrossRef] [PubMed]
- Harb, C.; Foroutan, H. Experimental development of a lake spray source function and its model implementation for Great Lakes surface emissions. Atmos. Chem. Phys. 2022, 22, 11759–11779. [Google Scholar] [CrossRef]
- Tormo, R.; Recio, D.; Silva, I.; Muñoz, A.F. A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain. Eur. J. Phycol. 2001, 36, 385–390. [Google Scholar] [CrossRef]
- Huang, Z.; Yu, X.; Liu, Q.; Maki, T.; Alam, K.; Wang, Y.; Xue, F.; Tang, S.; Du, P.; Dong, Q.; et al. Bioaerosols in the atmosphere: A comprehensive review on detection methods, concentration and influencing factors. Sci. Total Environ. 2024, 912, 168818. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Yao, M. Bioaerosol nexus of air quality, climate system and human health. Natl. Sci. Open 2023, 2, 20220050. [Google Scholar] [CrossRef]
- Xie, W.; Li, Y.; Bai, W.; Hou, J.; Ma, T.; Zeng, X.; Zhang, L.; An, T. The source and transport of bioaerosols in the air: A review. Front. Environ. Sci. Eng. 2020, 15, 44. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Chen, J.; Wang, Z.; Chen, H.; Feng, H.; Wang, L.; Xie, Y.; Wang, Z.; Ye, X.; Kan, H.; et al. Diverse bacterial populations of PM2.5 in urban and suburb Shanghai, China. Front. Environ. Sci. Eng. 2021, 15, 37. [Google Scholar] [CrossRef]
- Wei, M.; Liu, H.; Chen, J.; Xu, C.; Li, J.; Xu, P.; Sun, Z. Effects of aerosol pollution on PM2.5-associated bacteria in typical inland and coastal cities of northern China during the winter heating season. Environ. Pollut. 2020, 262, 114188. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.; Becagli, S.; Lucarelli, F.; Rispoli, G.; Perrone, M.R. Airborne bacteria structure and chemical composition relationships in winter and spring PM10 samples over southeastern Italy. Sci. Total Environ. 2020, 730, 138899. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Liu, H.; Zhang, H.; Zhang, X.; Zhou, M.; Lou, L.; Zheng, P.; Xi, C.; Hu, B. Temporal discrepancy of airborne total bacteria and pathogenic bacteria between day and night. Environ. Res. 2020, 186, 109540. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Seo, J.; Jee, Y.; Kim, Y.; Sohn, J. Composition Analysis of Airborne Microbiota in Outdoor and Indoor Based on Dust Separated by Micro-sized and Nano-sized. Aerosol Air Qual. Res. 2023, 23, 210231. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Zhang, H.; Yao, X.; Zhou, M.; Wang, J.; He, Z.; Zhang, H.; Lou, L.; Mao, W.; et al. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environ. Pollut. 2018, 233, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Singh, S.; Rai, A. Diversity and seasonal variation of viable algal particles in the atmosphere of a subtropical city in India. Environ. Res. 2006, 102, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, B.A.; Urquhart, E.; Coffer, M.; Salls, W.; Stumpf, R.P.; Loftin, K.A.; Jeremy Werdell, P. Satellites quantify the spatial extent of cyanobacterial blooms across the United States at multiple scales. Ecol. Indic. 2022, 140, 108990. [Google Scholar] [CrossRef] [PubMed]
- Stroming, S.; Robertson, M.; Mabee, B.; Kuwayama, Y.; Schaeffer, B. Quantifying the Human Health Benefits of Using Satellite Information to Detect Cyanobacterial Harmful Algal Blooms Manage Recreational Advisories in, U.S. Lakes. GeoHealth 2020, 4, e2020GH000254. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, D.; Wei, X. Monitoring cyanobacterial harmful algal blooms at high spatiotemporal resolution by fusing Landsat and MODIS imagery. Environ. Adv. 2020, 2, 100008. [Google Scholar] [CrossRef]
- Yang, J.; Kim, J.; Jeon, H.; Lee, J.; Seo, J. Integrated culture-based and metagenomic profiling of airborne and surface-deposited bacterial communities in residential environments. Environ. Pollut. 2025, 382, 126703. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.H.; Birbeck, J.A.; Olson, N.E.; Parham, R.L.; Holen, A.L.; Ledsky, I.R.; Ramakrishna, B.S.; Bilyeu, L.; Jacquemin, S.J.; Schmale, D.G.; et al. Detection of Aerosolized Anabaenopeptins from Cyanobacterial Harmful Algal Blooms in Atmospheric Particulate Matter. ACS Earth Space Chem. 2025, 9, 603–616. [Google Scholar] [CrossRef]
- Yu, S.; Zhou, X.; Hu, P.; Chen, H.; Shen, F.; Yu, C.; Meng, H.; Zhang, Y.; Wu, Y. Inhalable particle-bound marine biotoxins in a coastal atmosphere: Concentration levels, influencing factors and health risks. J. Hazard. Mater. 2022, 434, 128925. [Google Scholar] [CrossRef] [PubMed]
- Després, V.R.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.O.; Pöschl, U.; et al. Primary biological aerosol particles in the atmosphere: A review. Tellus B Chem. Phys. Meteorol. 2012, 64, 15598. [Google Scholar] [CrossRef]
- Schlichting, H.E. The Importance Of Airborne Algae and Protozoa. J. Air Pollut. Control Assoc. 1969, 19, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Heise, H.A. Symptoms of hay fever caused by algae. J. Allergy 1949, 20, 383–385. [Google Scholar] [CrossRef]
- Hu, J.; Liu, J.; Zhu, Y.; Diaz-Perez, Z.; Sheridan, M.; Royer, H.; Leibensperger, R.; Maizel, D.; Brand, L.; Popendorf, K.J.; et al. Exposure to Aerosolized Algal Toxins in South Florida Increases Short- and Long-Term Health Risk in Drosophila Model of Aging. Toxins 2020, 12, 787. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Guo, Y.; Xu, C.; Liu, Y.; Zhao, X.; Liu, Q.; Jeppesen, E.; Wang, H.; Xie, P. Will “Air Eutrophication” Increase the Risk of Ecological Threat to Public Health? Environ. Sci. Technol. 2023, 57, 10512–10520. [Google Scholar] [CrossRef] [PubMed]
- Breidenbach, J.D.; French, B.W.; Gordon, T.T.; Kleinhenz, A.L.; Khalaf, F.K.; Willey, J.C.; Hammersley, J.R.; Mark Wooten, R.; Crawford, E.L.; Modyanov, N.N.; et al. Microcystin-LR aerosol induces inflammatory responses in healthy human primary airway epithelium. Environ. Int. 2022, 169, 107531. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.M.; Yrastorza, L.; Stockley, N.; Harvey, K.; Harris, N.; Grady, R.; Sullivan, J.; McFarland, M.; Reif, J.S. Exposure to microcystin among coastal residents during a cyanobacteria bloom in Florida. Harmful Algae 2020, 92, 101769. [Google Scholar] [CrossRef] [PubMed]
- Stewart, I.; Webb, P.M.; Schluter, P.J.; Fleming, L.E.; Burns, J.W.; Gantar, M.; Backer, L.C.; Shaw, G.R. Epidemiology of recreational exposure to freshwater cyanobacteria—An international prospective cohort study. BMC Public Health 2006, 6, 93. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Nie, C.; Wang, L.; Li, L.; Li, D.; Nishino, A.; Chen, J. ITS and 16S rRNA Gene Revealed Multitudinous Microbial Contaminations of Residential Air Conditioning Filters in Megacity Shanghai, China. Environ. Health 2023, 2, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Geng, X.; Zhang, R.; Wang, L.; Li, L.; Chen, J. Abundant Cyanobacteria in Autumn Adhering to the Heating, Ventilation, and Air-Conditioning (HVAC) in Shanghai. Microorganisms 2023, 11, 1835. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Geng, X.; Ouyang, H.; Wang, L.; Li, Z.; Wang, M.; Sun, X.; Wu, Y.; Qin, Y.; Xu, Y.; et al. Abundant bacteria and fungi attached to airborne particulates in vegetable plastic greenhouses. Sci. Total Environ. 2023, 857, 159507. [Google Scholar] [CrossRef] [PubMed]
Technique | Results of Sampling | References |
---|---|---|
Illumina Miseq sequencing | Cyanobacteria adhere to PM2.5, accounting for 8.53% as the second most abundant genus of the microbial community | [31] |
High-throughput sequencing and qPCR | The results show that in the bacterial community structure attached to PM2.5 during the winter heating period in Jinan City, cyanobacteria accounted for 15.95% of the third abundant phylum | [32] |
High-throughput sequencing, PCR amplifications, and taxonomic classification | Abundant cyanobacteria are found in more than 80% of PM10 samples | [33] |
High-throughput sequencing | Higher relative abundance of cyanobacteria was detected in PM2.5 samples | [34] |
High-throughput sequencing | Higher abundance of cyanobacteria in some specific samples | [35] |
High-throughput sequencing | Analysis of the bacterial community structure in TSP, PM10, and PM2.5 revealed an average relative abundance of 18% cyanobacteria | [36] |
Algae culture | Cyanobacteria were the dominant, comprising 23 genera and accounting for 67.6% of the total algal genera recorded, followed by green algae (23.5%) and others | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Li, T.; Qiu, Y.; Nie, C.; Nie, X.; Geng, X. Airborne Algae and Cyanobacteria Originating from Lakes: Formation Mechanisms, Influencing Factors, and Potential Health Risks. Microorganisms 2025, 13, 1702. https://doi.org/10.3390/microorganisms13071702
Liu X, Li T, Qiu Y, Nie C, Nie X, Geng X. Airborne Algae and Cyanobacteria Originating from Lakes: Formation Mechanisms, Influencing Factors, and Potential Health Risks. Microorganisms. 2025; 13(7):1702. https://doi.org/10.3390/microorganisms13071702
Chicago/Turabian StyleLiu, Xiaoming, Tingfu Li, Yuqi Qiu, Changliang Nie, Xiaoling Nie, and Xueyun Geng. 2025. "Airborne Algae and Cyanobacteria Originating from Lakes: Formation Mechanisms, Influencing Factors, and Potential Health Risks" Microorganisms 13, no. 7: 1702. https://doi.org/10.3390/microorganisms13071702
APA StyleLiu, X., Li, T., Qiu, Y., Nie, C., Nie, X., & Geng, X. (2025). Airborne Algae and Cyanobacteria Originating from Lakes: Formation Mechanisms, Influencing Factors, and Potential Health Risks. Microorganisms, 13(7), 1702. https://doi.org/10.3390/microorganisms13071702