Risk of Secondary Bacterial Infections Revealed by Changes in Trachinotus ovatus Skin and Gill Microbiota During a Cryptocaryon irritans Infection Cycle
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish, C. irritans, and Infection Experiment
2.1.1. Fish
2.1.2. C. irritans Propagation and Collection
2.1.3. C. irritans Infection
2.2. Sample Collection and Processing
2.3. Liver Bacterial Load Measurement
2.4. Ethical Statement
2.5. DNA Extraction and 16S rRNA High-Throughput Sequencing
2.6. Bioinformatics and Statistical Analysis
3. Results
3.1. Hepatic Bacterial Load
3.2. Operational Taxonomic Unit (OTU) Analysis
3.3. Skin and Gill Microbiota Diversity Analysis
3.3.1. Alpha Diversity
3.3.2. Beta Diversity Analysis
3.4. Skin and Gill Microbiota Structural Analysis
3.4.1. Phylum Level
3.4.2. Genus Level
3.4.3. LEfSe Multilevel Species Differential Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, X.; Sun, Z.; Huang, Z.; Zhou, C.; Lin, H.; Tan, L.; Xun, P.; Huang, Q. Effects of dietary hawthorn extract on growth performance, immune responses, growth- and immune-related genes expression of juvenile golden pompano (Trachinotus ovatus) and its susceptibility to Vibrio harveyi infection. Fish Shellfish Immunol. 2017, 70, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Fang, H.H.; Gao, B.Y.; Dai, C.M.; Liu, Z.Z.; Zhang, C.W.; Niu, J. Dietary Tribonema sp. supplementation increased growth performance, antioxidant capacity, immunity and improved hepatic health in golden pompano (Trachinotus ovatus). Aquaculture 2020, 529, 735667. [Google Scholar] [CrossRef]
- Chen, F.; Liang, W.; Chen, M. Histopathological study on Cryptocaryon irritans infection in Trachinotus ovatus. Fish. Res. 2017, 39, 181–187. [Google Scholar]
- Su, Y. Investigation and prevention and control strategies of Cryptocaryon irritans infection in marine cage-cultured fish in major mariculture areas of Fujian Province. J. Fish. Sci. Technol. Inf. 2009, 36, 4–7. [Google Scholar]
- Diggles, B.K.; Adlard, R.D. Taxonomic affinities of Cryptocaryon irritans and Ichthyophthirius multifiliis inferred from ribosomal RNA sequence data. Dis. Aquat. Org. 1995, 22, 39–43. [Google Scholar] [CrossRef]
- Colorni, A.; Burgess, P. Cryptocaryon irritans Brown 1951, the cause of white spot disease in marine fish: An update. Aquar. Sci. Conserv. 1997, 1, 217–238. [Google Scholar] [CrossRef]
- Liu, J. Screening of Genes Related to Resistance Against Cryptocaryon irritans Infection and Their Association Analysis with Traits Based on Transcriptome in Trachinotus ovatus. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2023. [Google Scholar]
- Wang, X.; Clark, T.G.; Noe, J.; Dickerson, H.W. Immunisation of channel catfish, Ictalurus punctatus, with Ichthyophthirius multifiliis immobilisation antigens elicits serotype-specific protection. Fish Shellfish Immunol. 2002, 13, 337–350. [Google Scholar] [CrossRef]
- Bär, A.K.; Phukan, N.; Pinheiro, J.; Simoes-Barbosa, A. The Interplay of Host Microbiota and Parasitic Protozoans at Mucosal Interfaces: Implications for the Outcomes of Infections and Diseases. PLoS Neglected Trop. Dis. 2015, 9, e0004176. [Google Scholar] [CrossRef]
- Llewellyn, M.S.; Leadbeater, S.; Garcia, C.; Sylvain, F.E.; Custodio, M.; Ang, K.P.; Derome, N. Parasitism perturbs the mucosal microbiome of Atlantic Salmon. Sci. Rep. 2017, 7, 43465. [Google Scholar] [CrossRef]
- Legrand, T.P.; Catalano, S.R.; Wos-Oxley, M.L.; Stephens, F.; Landos, M.; Bansemer, M.S.; Oxley, A.P. The Inner Workings of the Outer Surface: Skin and Gill Microbiota as Indicators of Changing Gut Health in Yellowtail Kingfish. Front. Microbiol. 2018, 8, 2664. [Google Scholar] [CrossRef]
- Robert, P.H. Mucosal microbial parasites/symbionts in health and disease: An integrative overview. Parasitology 2019, 146, 1109–1115. [Google Scholar]
- Hayes, K.S.; Bancroft, A.J.; Goldrick, M.; Portsmouth, C.; Roberts, I.S.; Grencis, R. Exploitation of the Intestinal Microflora by the Parasitic Nematode Trichuris muris. Science 2010, 328, 1391–1394. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Miranda, C.; Palomares, E.; Jurado, M.; Marín, A.; Vega, F.; Soriano-Vargas, E. Isolation and distribution of bacterial flora in farmed rainbow trout from Mexico. J. Aquat. Anim. Health 2010, 22, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ke, L.; Xia, M. A Case of Liver Abscess Complicated by Hysteroscopic Surgery. J. Hubei Univ. Med. 2025, 44, 217–220. [Google Scholar]
- Liu, Z. Efficacy Evaluation of Xianglian Solution against Aeromonas hydrophila in Micropterus salmoides and Analysis of Its Active Components. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2024. [Google Scholar]
- Zhou, Y.C.; Li, G.H.; Liu, S.L.; Jiang, M.Y.; Zhao, Z.C.; Deng, H.W.; Huang, J.H. Oral self-microemulsifying drug delivery system for honokiol’s stress responses attenuation and anti-Cryptocaryon irritans efficacy enhancement in Trachinotus ovatus. AquaC 2024, 578, 740130. [Google Scholar] [CrossRef]
- Dan, X.M. Passage, Preservation of Cryptocaryon irritans and Prevention and Treatment of Cryptocaryon irritans Disease. Ph.D. Thesis, Jinan University, Changchun, China, 2006. [Google Scholar]
- Zhong, Z. Screening and Application of Natural Compounds against Cryptocaryon irritans. Master’s Thesis, Hainan University, Haikou, China, 2019. [Google Scholar]
- Dan, X.; Li, A.; Lin, X. A standardized method to propagate Cryptocaryon irritans on a susceptible host pompano Trachinotus ovatus. AquaC 2006, 258, 127–133. [Google Scholar] [CrossRef]
- Chen, H. Response Characteristics of CD4-1+ T Cells and Related Transcription Factors in Epinephelus spp. To Cryptocaryon irritans Infection. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2021. [Google Scholar]
- Harikrishnan, R.; Balasundaram, C.; Heo, M.S. Impact of Plant Products on Innate and Adaptive Immune System of Cultured Finfish and Shellfish. AquaC 2011, 317, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, B.; Dan, X. Research progress on mucosal immunity against Cryptocaryon irritans infection in fish. J. Fish. China 2019, 43, 156–167. [Google Scholar]
- Jiang, B. Study on the Disease-Resistant Biological Characteristics of Siganus oramin against Cryptocaryon irritans Infection. Ph.D. Thesis, Sun Yat-sen University, Guangzhou, China, 2019. [Google Scholar]
- Li, R.; Liu, F.; Wang, F.; Li, A. Inhibitory and killing effects of skin mucus of yellow-spotted spinefoot (Siganus oramin) on Cryptocaryon irritans and some pathogenic bacteria. Acta Hydrobiol. Sin. 2013, 37, 243–251. [Google Scholar]
- Amill, F.; Gauthier, J.; Rautio, M.; Derome, N. Characterization of gill bacterial microbiota in wild Arctic char (Salvelinus alpinus) across lakes, rivers, and bays in the Canadian Arctic ecosystems. Microbiol. Spectr. 2024, 12, e0294323. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, L.; Qiu, C.; Ye, S.; Pan, Y.; Lyu, X.; Zhang, W. Characterization of the gill microbiota in koi following carp edema virus infection. AquaC 2025, 604, 742485. [Google Scholar] [CrossRef]
- Xie, X.; Sun, K.; Liu, A.; Miao, R.; Yin, F. Analysis of gill and skin microbiota in Larimichthys crocea reveals bacteria associated with cryptocaryoniasis resistance potential. Fish Shellfish Immunol. 2025, 161, 110228. [Google Scholar] [CrossRef] [PubMed]
- Dheilly, N.M.; Bolnick, D.; Bordenstein, S.; Brindley, P.J.; Figuères, C.; Holmes, E.C.; Rosario, K. Parasite Microbiome Project: Systematic Investigation of Microbiome Dynamics within and across Parasite-Host Interactions. MSystems 2017, 2, e00050-17. [Google Scholar] [CrossRef] [PubMed]
- Boutin, S.; Bernatchez, L.; Audet, C.; Derôme, N. Network Analysis Highlights Complex Interactions between Pathogen, Host and Commensal Microbiota. PLoS ONE 2013, 8, e84772. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, S.; Mitri, S. A Spatially Structured Mathematical Model of the Gut Microbiome Reveals Factors That Increase Community Stability. iScience 2023, 26, 107499. [Google Scholar] [CrossRef]
- Risely, A.; Byrne, P.G.; Hoye, B.J.; Silla, A.J. Dietary Carotenoid Supplementation Has Long-Term and Community-Wide Effects on the Amphibian Skin Microbiome. Mol. Ecol. 2024, 33, e17203. [Google Scholar] [CrossRef]
- Guivier, E.; Pech, N.; Chappaz, R.; Gilles, A. Microbiota Associated with the Skin, Gills, and Gut of the Fish Parachondrostoma Toxostoma from the Rhône Basin. Freshw. Biol. 2020, 65, 446–459. [Google Scholar] [CrossRef]
- Simon, B.; Jack, J.; Amy, E. The Supplementation of a Prebiotic Improves the Microbial Community in the Gut and the Skin of Atlantic Salmon (Salmo Salar). Aquac. Rep. 2022, 25, 101204. [Google Scholar]
- Kanno, T.; Nakai, T.; Muroga, K. Scanning Electron Microscopy on the Skin Surface of Ayu Plecoglossus Altivelis Infected with Vibrio Anguillarum. Dis. Aquat. Org. 1990, 8, 73–75. [Google Scholar] [CrossRef]
- Buchmann, K.; Bresciani, J. Parasitic Infections in Pond-Reared Rainbow Trout Oncorhynchus Mykiss in Denmark. Dis. Aquat. Org. 1997, 28, 125–138. [Google Scholar] [CrossRef]
- Cusack, R.; Cone, D.K. A Review of Parasites as Vectors of Viral and Bacterial Diseases of Fish. J. Fish Dis. 1986, 9, 169–171. [Google Scholar] [CrossRef]
- Denk, D.; Boylan, S.; Just, F.T.; Sommer, M.; Clarke III, E.O. An Outbreak of Cryptocaryon Irritans in Aquarium Quarantine—New Variations of an Old Theme. J. Fish Dis. 2025, 48, e14084. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Lin, X.J.; Xie, Y.Q. Study on the Causes of Death from Secondary Bacterial Infections in Large Yellow Croaker with Cryptocaryon irritans Disease. J. Fujian Fish. 2012, 34, 11–15. [Google Scholar]
- Grice, E.A.; Kong, H.H.; Conlan, S.; Deming, C.B.; Davis, J.; Young, A.C.; Segre, J.A. Topographical and Temporal Diversity of the Human Skin Microbiome. Science 2009, 324, 1190–1192. [Google Scholar] [CrossRef] [PubMed]
- Costello, E.K.; Lauber, C.L.; Hamady, M.; Fierer, N.; Gordon, J.I.; Knight, R. Bacterial Community Variation in Human Body Habitats Across Space and Time. Science 2009, 326, 1694–1697. [Google Scholar] [CrossRef]
- Lv, Z.; Guo, Q.; Deng, Z.; Cao, Z.; Jiang, J.; Chen, S.; Gan, L. Lactiplantibacillus plantarum fermented broth improved survival of marble goby (Oxyeleotris marmoratus) after skin abrasion by regulating skin mucus microbiota. Aquaculture 2023, 573, 739575. [Google Scholar] [CrossRef]
- Qi, X.; Xue, M.; Shi, K.; Wang, G.; Ling, F. Evaluating Pseudomonas monteilii JK-1 as an in-feed probiotic: Enhancing growth, immune-antioxidant, disease resistance and modulating gut microflora composition in grass carp (Ctenopharyngodon idella). AquaC 2024, 585, 740715. [Google Scholar] [CrossRef]
- Sun, K.; Wang, X.L.; Zhang, J. Evaluation of Bacterial Diversity on the Body Surface and in the Liver of Diseased Grass Carp Based on 16S rRNA High-Throughput Sequencing. Fish. Sci. 2022, 41, 202–209. [Google Scholar]
- Wang, W.Z.; Huang, J.S.; Zhang, J.D.; Wang, Z.L.; Li, H.J.; Amenyogbe, E.; Chen, G. Effects of hypoxia stress on the intestinal microflora of juvenile of cobia (Rachycentron canadum). AquaC 2021, 536, 736419. [Google Scholar] [CrossRef]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial Signature of Dysbiosis in Gut Microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Sun, F.; Wang, C.; Chen, L.; Weng, G.; Zheng, Z. The Intestinal Bacterial Community of Healthy and Diseased Animals and Its Association with the Aquaculture Environment. Appl. Microbiol. Biotechnol. 2020, 104, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Bharathi Rathinam, R.; Tripathi, G.; Das, B.K.; Jain, R.; Acharya, A. Comparative Analysis of Gut Microbiome in Pangasionodon Hypopthalmus and Labeo Catla during Health and Disease. Int. Microbiol. 2024, 27, 1557–1571. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Duan, Y.; Li, X.; Hu, Y.; Mo, Z.; Dan, X.; Li, Y. Effects of Cryptocaryon irritans infection on the histopathology, oxidative stress, immune response, and intestinal microbiota in the orange-spotted grouper Epinephelus coioides. Fish Shellfish Immunol. 2023, 133, 108562. [Google Scholar] [CrossRef]
- Li, B.; Zhang, K.; Li, C.; Wang, X.; Chen, Y.; Yang, Y. Characterization and Comparison of Microbiota in the Gastrointestinal Tracts of the Goat (Capra Hircus) During Preweaning Development. Front. Microbiol. 2019, 10, 2125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wu, G.T.; Zhu, J.Y.; Wang, X.W.; Liu, L.L.; Li, H.J.; Zhu, H. Povidone iodine exposure alters the immune response and microbiota of the gill and skin in koi carp, Cyprinus carpio. Aquaculture 2023, 563, 738926. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, M.; Wang, J.; Longshaw, M.; Song, K.; Wang, L.; Lu, K. Methanotroph (Methylococcus capsulatus, Bath) bacteria meal alleviates soybean meal-induced enteritis in spotted seabass (Lateolabrax maculatus) by modulating immune responses and the intestinal flora. Aquaculture 2023, 575, 739795. [Google Scholar] [CrossRef]
- Zhang, X.; He, X.; Austin, B. Vibrio harveyi: A serious pathogen of fish and invertebrates in mariculture. Mar. Life Sci. Technol. 2020, 2, 231–245. [Google Scholar] [CrossRef]
- Li, A. Research on Secondary Bacterial Diseases of Trachinotus ovatus Infected with Cryptocaryon irritans. Master’s Thesis, Hainan University, Haikou, China, 2020. [Google Scholar]
- Qiao, Y.; Wang, J.; Mao, Y.; Liu, M.; Chen, R.; Su, Y.; Zheng, W. Pathogenic bacterium Vibrio harveyi: An endosymbiont in the marine parasitic ciliate protozoan Cryptocaryon irritans. Acta Oceanol. Sin. 2017, 36, 115–119. [Google Scholar] [CrossRef]
- Valenzuela-Miranda, D.; Valenzuela-Muñoz, V.; Benavente, B.P.; Muñoz-Troncoso, M.; Nuñez-Acuña, G.; Gallardo-Escárate, C. The Atlantic salmon microbiome infected with the sea louse Caligus rogercresseyi reveals tissue-specific functional dysbiosis. Aquaculture 2024, 580, 740328. [Google Scholar] [CrossRef]
- Melissa, G.; Torsten, T.; Suhelen, E. A Glutathione Peroxidase (GpoA) Plays a Role in the Pathogenicity of Nautella Italica Strain R11 towards the Red Alga Delisea Pulchra. FEMS Microbiol. Ecol. 2015, 91, fiv021. [Google Scholar]
- Sakami, T.; Koiso, M.; Sugaya, T. Characterization of bacterial community composition in rotifer cultures under unexpected growth suppression. Fish. Sci. 2014, 80, 757–765. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, M.; Liu, Y.; Su, Y.; Xu, T.; Yu, M.; Zhang, X.H. Comparison of cultivable bacterial communities associated with Pacific white shrimp (Litopenaeus vannamei) larvae at different health statuses and growth stages. Aquaculture 2016, 451, 163–169. [Google Scholar] [CrossRef]
- Edwards, B.D.; Greysson-Wong, J.; Somayaji, R.; Waddell, B.; Whelan, F.J.; Storey, D.G.; Parkins, M.D. Prevalence and outcomes of Achromobacter species infections in adults with cystic fibrosis: A North American cohort study. J. Clin. Microbiol. 2017, 55, 2074–2085. [Google Scholar] [CrossRef] [PubMed]
- Sterner, R.M.; Schuetz, A.N.; Larson, J.M.; Zomok, C.D.; Thangaiah, J.J. Disseminated Rhodococcus equi infection in a patient with diffuse large B-cell lymphoma treated with immunotherapy. IDCases 2024, 36, e01972. [Google Scholar] [CrossRef] [PubMed]
- Veschetti, L.; Boaretti, M.; Saitta, G.M.; Mantovani, R.P.; Lleò, M.M.; Sandri, A.; Malerba, G. Achromobacter spp. prevalence and adaptation in cystic fibrosis lung infection. Microbiol. Res. 2022, 263, 127140. [Google Scholar] [CrossRef] [PubMed]
- Bandilla, M.; Valtonen, E.T.; Suomalainen, L.R.; Aphalo, P.J.; Hakalahti, T. A Link between Ectoparasite Infection and Susceptibility to Bacterial Disease in Rainbow Trout. Int. J. Parasitol. 2006, 36, 987–991. [Google Scholar] [CrossRef]
- Wang, Y.; Fei, S.; Gao, X.; Wu, H.; Hong, Z.; Hu, K. Mechanical abrasion stimulation: Altered epidermal mucus composition and microbial community in grass carp (Ctenopharyngodon idella). Aquac. Rep. 2024, 35, 101936. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, N.; Zhu, L.; Wang, S.; Zhang, W.; Lin, X.; Zhou, Y.; Ke, H.; Yuan, S.; Li, M.; Cai, Y. Risk of Secondary Bacterial Infections Revealed by Changes in Trachinotus ovatus Skin and Gill Microbiota During a Cryptocaryon irritans Infection Cycle. Microorganisms 2025, 13, 1660. https://doi.org/10.3390/microorganisms13071660
Liang N, Zhu L, Wang S, Zhang W, Lin X, Zhou Y, Ke H, Yuan S, Li M, Cai Y. Risk of Secondary Bacterial Infections Revealed by Changes in Trachinotus ovatus Skin and Gill Microbiota During a Cryptocaryon irritans Infection Cycle. Microorganisms. 2025; 13(7):1660. https://doi.org/10.3390/microorganisms13071660
Chicago/Turabian StyleLiang, Naiqi, Li Zhu, Shifeng Wang, Weihao Zhang, Xinlei Lin, Yongcan Zhou, Haizhu Ke, Shanheng Yuan, Meijing Li, and Yan Cai. 2025. "Risk of Secondary Bacterial Infections Revealed by Changes in Trachinotus ovatus Skin and Gill Microbiota During a Cryptocaryon irritans Infection Cycle" Microorganisms 13, no. 7: 1660. https://doi.org/10.3390/microorganisms13071660
APA StyleLiang, N., Zhu, L., Wang, S., Zhang, W., Lin, X., Zhou, Y., Ke, H., Yuan, S., Li, M., & Cai, Y. (2025). Risk of Secondary Bacterial Infections Revealed by Changes in Trachinotus ovatus Skin and Gill Microbiota During a Cryptocaryon irritans Infection Cycle. Microorganisms, 13(7), 1660. https://doi.org/10.3390/microorganisms13071660