Aspects of the Immunopathogenesis of Lyme Arthritis
Abstract
1. Introduction
NAME | DISEASE ASSOCIATION | DISTRIBUTION |
B. afzelii | implicated | Asia, Europe |
B. bavariensis | implicated | Asia, Europe |
B. bissettiae | possible | Europe, North America |
B. burdorferi, sensu stricto | implicated | Europe, North America |
B. garinii | implicated | Asia, Europe |
B. kurtenbachii | implicated | North America |
B. lusitaniae | possible | Europe |
B. mayonii | implicated | North America |
B. spielmanii | implicated | Europe |
B. yangtzensis | possible | Asia |
B. miyamotoi | B. miyamotoi disease | Asia, Europe, North America |
- Local presence of organism, dead or alive;
- Pro-inflammatory molecule release;
- Autonomous self-perpetuating immune/inflammatory reaction;
- Molecular mimicry.
2. Arthralgias/Migratory Polyarthralgias/Myalgias
3. Mono-Arthritis/Oligoarthritis
- Antigen-specific immune responses with a direct attack on organisms or debris eliciting inflammation;
- Innate immune system responses (to “danger-associated molecular patterns” [DAMPs]”, pathogen-associated molecular patterns” [PAMPs]) focusing on live, dead, or dying organisms;
- Toxins released by an organism, e.g., Clostridium difficile and Staphylococcus aureus, although no toxin has been identified from B. burgdorferi;
- The production of pro-inflammatory substances during the immune response that may effect changes locally or at a distance;
- Poorly regulated local immune reactions with a shift to autonomous, independent, and unregulated inflammatory condition;
- Poorly regulated immune responses to B. burgdorferi causing auto-immune reactivity, e.g., molecular mimicry, to local self-antigen(s).
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steere, A.C.; Malawista, S.E.; Snydman, D.R.; Shope, R.E.; Andiman, W.A.; Ross, M.R.; Steele, F.M. Lyme arthritis: An epidemic of oligoarticular arthritis in children and adults in three Connecticut communities. Arthritis Rheumatol. 1977, 20, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Steere, A.C.; Malawista, S.E.; Hardin, J.A.; Ruddy, S.; Askenase, W.; Andiman, W.A. Erythema chronicum migrans and Lyme arthritis. The enlarging clinical spectrum. Ann. Intern. Med. 1977, 86, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Steere, A.C.; Broderick, T.F.; Malawista, S.E. Erythema chronicum migrans and Lyme arthritis: Epidemiologic evidence for a tick vector. Am. J. Epidemiol. 1978, 108, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Afzelius, A. Verhandlungen der Dermatologischen Gesellschaft zu Stockholm; Archiv für Dermatologie und Syphilis: Berlin, Germany, 1910; Volume 101, p. 104. [Google Scholar]
- Scrimenti, R.J. Erythema chronicum migrans. Arch. Dermatol. 1970, 102, 104–105. [Google Scholar] [CrossRef]
- Steere, A.C. Lyme disease. N. Engl. J. Med. 2001, 345, 115–125. [Google Scholar] [CrossRef]
- Puius, Y.A.; Kalish, R.A. Lyme arthritis: Pathogenesis, clinical presentation, and management. Infect. Dis. Clin. N. Am. 2008, 22, 289–300. [Google Scholar] [CrossRef]
- Sigal, L.H. Lyme disease: A worldwide Borreliosis. Clin. Exp. Rheumatol. 1988, 6, 411–421. [Google Scholar]
- Steere, A.C.; Schoen, R.T.; Taylor, E. The clinical evolution of Lyme arthritis. Ann. Intern. Med. 1987, 107, 725–731. [Google Scholar] [CrossRef]
- Hollstrom, E. Successful treatment of erythema migrans Afzelius. Acta Derm. Venereol. 1951, 31, 235–243. [Google Scholar]
- Steere, A.C.; Malawista, S.E.; Newman, J.H.; Spieler, P.N.; Bartenhagen, N.H. Antibiotic therapy in Lyme disease. Ann. Intern. Med. 1980, 93, 1–8. [Google Scholar] [CrossRef]
- Steere, A.C.; Hutchinson, G.J.; Rahn, D.W.; Sigal, L.H.; Craft, J.E.; DeSanna, E.T.; Malawista, S.E. Treatment of the early manifestations of Lyme disease. Ann. Intern. Med. 1983, 99, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Steere, A.C.; Green, J.; Schoen, R.T.; Taylor, E.; Hutchinson, G.J.; Rahn, D.W.; Malawista, S.E. Successful parenteral penicillin therapy of established Lyme arthritis. N. Engl. J. Med. 1985, 312, 869–874. [Google Scholar] [CrossRef]
- Steere, A.C.; Grodzicki, R.L.; Kornblatt, A.N.; Craft, J.E.; Barbour, A.G.; Burgdorfer, W.; Schmid, G.P.; Johnson, E.; Malawista, S.E. The spirochetal etiology of Lyme disease. N. Engl. J. Med. 1983, 308, 733–740. [Google Scholar]
- Steinbrink, A.; Brugger, K.; Margos, G.; Kraiczy, P.; Klimpel, P. The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitol. Res. 2022, 121, 781–803. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sigal, L.H. The immunology and potential mechanisms of immunopathogenesis of Lyme disease. Annu. Rev. Immunol. 1997, 15, 63–92. [Google Scholar] [CrossRef]
- Marques, A.R.; Strle, F.; Wormser, G.P. Comparison of Lyme Disease in the United States and Europe. Emerg. Infect. Dis. 2021, 27, 2017–2024. [Google Scholar] [CrossRef]
- Coburn, J.; Garcia, B.; Hu, L.T.; Jewett, M.W.; Kraiczy, P.; Norris, S.J.; Skare, J. Lyme Disease Pathogenesis. Curr. Issues Mol. Biol. 2021, 42, 473–518. [Google Scholar] [CrossRef]
- Hyde, J.A. Borrelia burgdorferi Keeps Moving and Carries on: A Review of Borrelial Dissemination and Invasion. Front. Immunol. 2017, 8, 114. [Google Scholar] [CrossRef] [PubMed Central]
- Jones, K.L.; Muellegger, R.R.; Means, T.K.; Lee, M.; Glickstein, L.J.; Damle, N.; Sikand, V.K.; Luster, A.D.; Steere, A.C. Higher mRNA Levels of Chemokines and Cytokines Associated with Macrophage Activation in Erythema Migrans Skin Lesions in Patients from the United States than in Patients from Austria with Lyme Borreliosis. Clin. Infect. Dis. 2008, 46, 85–92. [Google Scholar] [CrossRef]
- Liang, F.T.; Jacobs, M.B.; Bowers, L.C.; Philipp, M.T. An Immune Evasion Mechanism for Spirochetal Persistence in Lyme Borreliosis. J. Exp. Med. 2002, 195, 415–422. [Google Scholar] [CrossRef]
- Smith, A.J.; Oertle, J.; Prato, D. Chronic Lyme Disease: Persistent Clinical Symptoms Related to Immune Evasion, Antibiotic Resistance and Various Defense Mechanisms of Borrelia burgdorferi. Open J. Med. Microbiol. 2014, 4, 252–260. [Google Scholar] [CrossRef]
- Alvarez-Olmedo, D.; Kamaliddin, C.; Verhey, T.B.; Ho, M.; De Vinney, R.; Chaconas, G. Transendothelial migration of the Lyme disease spirochete involves spirochete internalization as an intermediate step through a transcellular pathway that involves Cdc42 and Rac1. Microbiol. Spectr. 2025, 13, e0222124. [Google Scholar] [CrossRef] [PubMed]
- Bockenstedt, L.K.; Wormser, G.P. Unraveling Lyme disease. Arthritis Rheumatol. 2014, 66, 2313–2323. [Google Scholar] [CrossRef]
- Bockenstedt, L.K.; Belperron, A.A. Insights From Omics in Lyme Disease. J. Infect. Dis. 2024, 230 (Suppl. S1), S18–S26. [Google Scholar] [CrossRef]
- Imai, D.; Holden, K.; Velazquez, E.M.; Feng, S.; Hodzic, E.; Barthold, S.W. Influence of arthritis-related protein (BBF01) on infectivity of Borrelia burgdorferi B31. BMC Microbiol. 2013, 13, 100. [Google Scholar] [CrossRef]
- Yang, X.; Qin, J.; Promnares, K.; Kariu, T.; Anderson, J.F.; Pal, U. Novel Microbial Virulence Factor Triggers Murine Lyme Arthritis. J. Infect. Dis. 2013, 207, 907–918. [Google Scholar] [CrossRef]
- Strnad, M.; Rudenko, N.; Rego, R.O.M. Pathogenicity and virulence of Borrelia burgdorferi. Virulence 2023, 14, 2265015. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lochhead, R.B.; Strle, K.; Arvikar, S.L.; Weis, J.J.; Steere, A.C. Lyme arthritis: Linking infection, inflammation and autoimmunity. Nat. Rev. Rheumatol. 2021, 17, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Mac, S.; Bahia, S.; Simbulan, F.; Pullenayegum, E.M.; Evans, G.A.; Patel, S.N.; Sander, B. Long-Term Sequelae and Health-Related Quality of Life Associated with Lyme Disease: A Systematic Review. Clin. Infect. Dis. 2020, 71, 440–452. [Google Scholar] [CrossRef]
- Monaghan, M.; Norman, S.; Gierdalski, M.; Marques, A.; Bost, J.E.; DeBiasi, R.L. Pediatric Lyme disease: Systematic assessment of posttreatment symptoms and quality of life. Pediatr. Res. 2024, 95, 174–181. [Google Scholar] [CrossRef]
- Tokarz, R.; Guo, C.; Sanchez-Vicente, S.; Horn, E.; Eschman, A.; Turk, S.P.; Lipkin, W.I.; Marques, A. Identification of reactive Borrelia burgdorferi peptides associated with Lyme disease. mBio 2024, 15, e0236024. [Google Scholar] [CrossRef] [PubMed]
- Morrissette, M.; Pitt, N.; González, A.; Philip Strandwitz, P.; Caboni, M.; Rebman, R.W.; Knight, R.; D’Onofrio, A.; Aucott, J.N.; Soloski, M.J.; et al. A Distinct Microbiome Signature in Post-treatment Lyme Disease Patients. mBio 2020, 11, e02310-20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sigal, L.H. Persisting complaints attributed to Lyme disease: Possible mechanisms and implications for management. Am. J. Med. 1994, 96, 365–374. [Google Scholar] [CrossRef]
- Gyllemark, P.; Sjöwall, J.; Forsberg, P.; Ernerudh, J.; Henningsson, A.J. Intrathecal Th17-driven inflammation is associated with prolonged post-treatment convalescence for patients with Lyme neuroborreliosis. Sci. Rep. 2023, 13, 9722. [Google Scholar] [CrossRef] [PubMed]
- McCausland, J.W.; Kloos, Z.A.; Irnov, I.; Sonnert, N.D.; Zhou, J.; Putnick, R.; Mueller, E.A.; Steere, A.C.; Palm, N.W.; Grimes, C.L.; et al. Bacterial and host enzymes modulate the inflammatory response produced by the peptidoglycan of the Lyme disease agent. bioRxiv 2025. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, M.A.E.; van de Schoor, F.R.; Vrijmoeth, H.D.; Netea, M.G.; Joosten, L.A.B. A joint effort: The interplay between the innate and the adaptive immune system in Lyme arthritis. Immunol. Rev. 2020, 294, 63–79. [Google Scholar] [CrossRef]
- Raghunandanan, S.; Zhang, K.; Zhang, Y.; Priya, R.; Sze, C.W.; Lou, Y.; Lynch, M.J.; Crane, B.R.; Kaplan, M.H.; Li, C.; et al. MCP5, a methyl-accepting chemotaxis protein regulated by both the Hk1-Rrp1 and Rrp2-RpoN-RpoS pathways, is required for the immune evasion of Borrelia burgdorferi. PLoS Pathog. 2024, 20, e1012327. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J.R.; Danner, R.; Wahhab, A.; Pereckas, M.; Nguyen, C.; McClune, M.E.; Steere, A.C.; Strle, K.; Jutras, B.L.; Lochhead, R.B. HLA-DR-Expressing Fibroblast-Like Synoviocytes Are Inducible Antigen Presenting Cells That Present Autoantigens in Lyme Arthritis. ACR Open Rheumatol. 2024, 6, 678–689. [Google Scholar] [CrossRef] [PubMed]
- McClune, M.E.; Ebohon, O.; Dressler, J.M.; Davis, M.M.; Tupik, J.D.; Lochhead, R.B.; Booth, C.J.; Steere, A.C.; Jutras, B.L. The peptidoglycan of Borrelia burgdorferi can persist in discrete tissues and cause systemic responses consistent with chronic illness. Sci. Transl. Med. 2025, 17, eadr2955. [Google Scholar] [CrossRef] [PubMed]
- Sigal, L.H.; Steere, A.C.; Freeman, D.H.; Dwyer, J.M. Proliferative responses of mononuclear cells in Lyme disease: Concentration of Borrelia burgdorferi—Reactive cells in joint fluid. Arthritis Rheumatol. 1986, 29, 761–769. [Google Scholar] [CrossRef]
- Bockenstedt, L.K.; Wooten, R.M.; Baumgarth, N. Immune Response to Borrelia: Lessons from Lyme Disease Spirochetes. Curr. Issues Mol. Biol. 2021, 42, 145–190. [Google Scholar] [CrossRef]
- Li, X.; McHugh, G.A.; Damle, N.; Sikind, V.K.; Glickstein, L.; Steere, A.C. Burden and viability of Borrelia burgdorferi in skin and joints of patients with erythema migrans and Lyme arthritis. Arthritis Rheumatol. 2011, 63, 2238–2247. [Google Scholar] [CrossRef]
- Russell, T.M.; Johnson, B.J.B. Lyme disease spirochaetes possess an aggrecan-binding protease with aggrecanase activity. Mol. Microbiol. 2013, 90, 228–240. [Google Scholar] [CrossRef]
- Jutras, B.L.; Lochhead, R.B.; Kloos, Z.A.; Biboy, J.; Strle, K.; Booth, C.J.; Govers, S.K.; Gray, J.; Schumann, P.; Vollmer, W.; et al. Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proc. Natl. Acad. Sci. USA 2019, 116, 13498–13507. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crossland, N.A.; Alvarez, X.; Embers, M.E. Late Disseminated Lyme Disease: Associated Pathology and Spirochete Persistence Posttreatment in Rhesus Macaques. Am. J. Pathol. 2018, 188, 672–682. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lantos, P.M.; Rumbaugh, J.; Bockenstedt Falck-Ytter, Y.T.; Aguero-Rosenfeld, M.E.; Auwaerter, P.G.; Baldwin, K.; Bannuru, R.R.; Belani, K.K.; Bowie, W.R.; Branda, J.A.; et al. AAN/ACR/IDSA 2020 Guidelines for the Prevention, Diagnosis and Treatment of Lyme Disease. Clin. Infect. Dis. 2021, 72, e1–e48. [Google Scholar] [CrossRef]
- Bockenstedt, L.K.; Gonzalez, D.G.; Haberman, A.M.; Belperron, A.A. Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy. J. Clin. Investig. 2012, 122, 2652–2660. [Google Scholar] [CrossRef]
- Wormser, G.P.; Nadelman, R.B.; Schwartz, I. The amber theory of Lyme arthritis: Initial description and clinical implications. Clin. Rheumatol. 2012, 31, 989–994. [Google Scholar] [CrossRef]
- Sharma, B.; Brown, A.V.; Matluck, N.E.; Hu, L.T.; Lewis, K. Borrelia burgdorferi, the Causative Agent of Lyme Disease, Forms Drug-Tolerant Persister Cells. Antimicrob. Agents Chemother. 2015, 59, 4616–4624. [Google Scholar] [CrossRef]
- Lin, Y.P.; Diuk-Wasser, M.A.; Stevenson, B.; Kraiczy, P. Complement Evasion Contributes to Lyme Borreliae-Host Associations. Trends Parasitol. 2020, 36, 634–645. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.R.; Moore, M.W.; La Vake, C.J.; Eggers, C.H.; Salazar, J.C.; Radolf, J.D. Phagocytosis of Borrelia burgdorferi, the Lyme Disease Spirochete, Potentiates Innate Immune Activation and Induces Apoptosis in Human Monocytes. Infect. Immun. 2008, 76, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Hardin, J.A.; Steere, A.C.; Malawista, S.E. Immune complexes and the evolution of Lyme arthritis. Dissemination and localization of abnormal C1q binding activity. N. Engl. J. Med. 1979, 301, 1358–1363. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.J.; Glickstein, L.J.; Steere, A.C. High levels of inflammatory chemokines and cytokines in joint fluid and synovial tissue throughout the course of antibiotic-refractory Lyme arthritis. Arthritis Rheumatol. 2007, 56, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Olson, C.M., Jr.; Bates, T.C.; Izadi, H.; Radolf, J.D.; Huber, S.A.; Boyson, J.E.; Anguita, J. Local production of IFN-gamma by invariant NKT cells modulates acute Lyme carditis. J. Immunol. 2009, 182, 3728–3734. [Google Scholar] [CrossRef]
- Petzke, M.M.; Brooks, A.; Krupna, M.A.; Mordue, D.; Schwartz, I. Recognition of Borrelia burgdorferi, the Lyme disease spirochete, by TLR7 and TLR9 induces a type I IFN response by human immune cells. J. Immunol. 2009, 183, 5279–5292. [Google Scholar] [CrossRef]
- Gautam, A.; Dixit, S.; Philipp, M.T.; Singh, S.R.; Morici, L.A.; Kaushal, D.; Dennis, V.A. Interleukin-10 Alters Effector Functions of Multiple Genes Induced by Borrelia burgdorferi in Macrophages To Regulate Lyme Disease Inflammation. Infect. Immun. 2021, 79, 4876–4892. [Google Scholar] [CrossRef]
- Potter, M.R.; Noben-Trauth, N.; Eis, J.H.; Teuscher, C.; Weis, J.J. Interleukin-4 (IL-4) and IL-13 Signaling Pathways Do Not Regulate Borrelia burgdorferi-Induced Arthritis in Mice: IgG1 Is Not Required for Host Control of Tissue Spirochetes. Infect. Immun. 2000, 68, 5603–5609. [Google Scholar] [CrossRef]
- Jones, K.L.; McHugh, G.A.; Glickstein, L.J.; Steere, A.C. Analysis of Borrelia burgdorferi genotypes in patients with Lyme arthritis. Arthritis Rheumatol. 2009, 60, 2174–2182. [Google Scholar] [CrossRef]
- Weis, J.J.; McCracken, B.A.; Ma, Y.; Fairbairn, D.; Roper, R.J.; Morrison, T.B.; Weis, J.H.; Zachary, J.F.; Doerge, R.W.; Teuscher, C. Identification of Quantitative Trait Loci Governing Arthritis Severity and Humoral Responses in the Murine Model of Lyme Disease. J. Immunol. 1999, 162, 948–956. [Google Scholar] [CrossRef]
- Miller, J.C.; Ma, Y.; Crandall, H.; Wang, X.; Weis, J.J. Gene expression profiling provides insights into the pathways involved in inflammatory arthritis development: Murine model of Lyme disease. Exp. Mol. Pathol. 2008, 85, 20–27. [Google Scholar] [CrossRef]
- Potter, M.R.; Rittling, S.R.; Denhardt, D.T.; Roper, R.J.; Weis, J.H.; Teuscher, C.; Weis, J.J. Role of Osteopontin in Murine Lyme Arthritis and Host Defense against Borrelia burgdorferi. Infect. Immun. 2002, 70, 1372–1381. [Google Scholar] [CrossRef] [PubMed]
- Munson, E.L.; DeCoster, D.J.; Nardelli, D.T.; England, D.M.; Callister, S.M.; Schell, R.F. Neutralization of gamma interferon augments borreliacidal antibody production and severe destructive Lyme arthritis in C3H/HeJ mice. Clin. Diagn. Lab. Immunol. 2004, 11, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Melicherčík, P.; Mazura, M.; Hodík, M.; Dundrová, K.; Landor, I.; Jahoda, D.; Horváth, R.; Barták, V.; Kizek, R.; Klapková, E. Synovial fluid alpha-defensins in Lyme arthritis—A useful marker. Folia Microbiol. 2024, 69, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Strle, K.; Shin, J.J.; Glickstein, L.J.; Steere, A.C. A Toll-like Receptor 1 Polymorphism Is Associated with Heightened T-helper 1 Inflammatory Responses and Antibiotic-Refractory Lyme Arthritis. Arthritis Rheumatol. 2012, 64, 1497–1507. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schröder, N.W.J.; Diterich, I.; Zinke, A.; Eckert, J.; Draing, C.; von Baehr, V.; Hassler, D.; Priem, S.; Hahn, K.; Michelsen, K.S.; et al. Heterozygous Arg753Gln Polymorphism of Human TLR-2 Impairs Immune Activation by Borrelia burgdorferi and Protects from Late Stage Lyme Disease. J. Immunol. 2005, 175, 2534–2540. [Google Scholar] [CrossRef]
- Ma, Y.; Bramwell, K.K.C.; Lochhead, R.B.; Paquette, J.K.; Zachary, J.F.; Weis, J.H.; Teuscher, C.; Weis, J.J. Borrelia burgdorferi Arthritis-Associated Locus Bbaa1 Regulates Lyme Arthritis and K/B3N Serum Transfer Arthritis through Intrinsic Control of Type I IFN Production. J. Immunol. 2014, 193, 6050–6060. [Google Scholar] [CrossRef]
- Davis, M.M.; Brock, A.M.; DeHart, T.G.; Boribong, B.P.; Lee, K.; McClune, M.E.; Chang, Y.; Cramer, N.; Liu, J.; Jones, C.N.; et al. The peptidoglycan-associated protein NapA plays an important role in the envelope integrity and in the pathogenesis of the lyme disease spirochete. PLoS Pathog. 2021, 17, e1009546. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Codolo, G.; Amedei, A.; Steere, A.C.; Papinutto, E.; Cappon, A.; Polenghi, A.; Benagiano, M.; Paccani, S.R.; Sambri, V.; Del Prete, G.; et al. Borrelia burgdorferi NapA-driven Th17 cell inflammation in Lyme arthritis. Arthritis Rheumatol. 2008, 58, 3609–3617. [Google Scholar] [CrossRef]
- Codolo, G.; Bossi, F.; Durigutto, P.; Della Bella, C.; Fischetti, F.; Amedei, A.; Tedesco, F.; D’Elios, S.; Cimmino, M.; Micheletti, A.; et al. Orchestration of Inflammation and Adaptive Immunity in Borrelia burgdorferi-Induced Arthritis by Neutrophil-Activating Protein A. Arthritis Rheumatol. 2013, 65, 1232–1242. [Google Scholar] [CrossRef]
- Strle, K.; Sulka, K.B.; Pianta, A.; Crowley, J.T.; Arvikar, S.L.; Anselmo, A.; Sadreyev, R.; Steere, A.C. T-Helper 17 Cell Cytokine Responses in Lyme Disease Correlate with Borrelia burgdorferi Antibodies During Early Infection and with Autoantibodies Late in the Illness in Patients with Antibiotic-Refractory Lyme Arthritis. Clin. Infect. Dis. 2017, 64, 930–938. [Google Scholar] [CrossRef]
- Hansen, E.S.; Medić, V.; Kuo, J.; Warner, T.F.; Schell, R.F.; Nardelli, D.T. Interleukin-10 (IL-10) inhibits Borrelia burgdorferi-induced IL-17 production and attenuates IL-17-mediated Lyme arthritis. Infect. Immun. 2013, 81, 4421–4430. [Google Scholar] [CrossRef]
- Shin, J.J.; Strle, K.; Glickstein, L.J.; Luster, A.D.; Steere, A.C. Borrelia burgdorferi stimulation of chemokine secretion by cells of monocyte lineage in patients with Lyme arthritis. Arthritis Res. Ther. 2010, 12, R168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sahay, B.; Singh, A.; Gnanamani, A.; Patsey, R.L.; Blalock, J.E.; Sellati, T.J. CD14 Signaling Reciprocally Controls Collagen Deposition and Turnover to Regulate the Development of Lyme Arthritis. Am. J. Pathol. 2011, 178, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Snik, M.E.; Stouthamer, N.E.I.M.; Hovius, J.W.; van Gool, M.M.J. Bridging the gap: Insights in the immunopathology of Lyme borreliosis. Eur. J. Immunol. 2024, 54, e2451063. [Google Scholar] [CrossRef] [PubMed]
- Woitzik, P.; Linder, S. Molecular Mechanisms of Borrelia burgdorferi Phagocytosis and Intracellular Processing by Human Macrophages. Biology 2021, 10, 567. [Google Scholar] [CrossRef]
- Duchateau, B.K.; Jensen, J.R.; England, D.M.; Callister, S.M.; Schell, R.F. Macrophages and Enriched Populations of T Lymphocytes Interact Synergistically for the Induction of Severe, Destructive Lyme Arthritis. Infect. Immun. 1997, 65, 2829–2836. [Google Scholar] [CrossRef]
- Katchar, K.; Drouin, E.E.; Steere, A.C. Natural killer cells and natural killer T cells in Lyme arthritis. Arthritis Res. Ther. 2013, 15, R183. [Google Scholar] [CrossRef]
- Rafii-El-Idrissi Benhni, M.; Wroblewski, D.; Akhtar, M.N.; Patel, R.A.; Lavezzi, W.; Gangloff, S.C.; Goyert, S.M.; Caimano, M.J.; Radolf, J.D.; Sellati, T.J. Signaling through CD14 Attenuates the Inflammatory Response to Borrelia burgdorferi, the Agent of Lyme Disease. J. Immunol. 2005, 174, 1539–1548. [Google Scholar]
- Rafii-El-Idrissi Benhni, M.; Kinjo, Y.; Patsey, R.; Lena, C.J.; Haller, M.C.; Caimano, M.J.; Imamura, M.; Wong, C.-H.; Crotty, S.; Radolf, J.D.; et al. NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 2008, 105, 19863–19868. [Google Scholar]
- Lochhead, R.B.; Ordoñez, D.; Arvikar, S.L.; Aversa, J.M.; Oh, L.S.; Heyworth, B.; Sadreyev, R.; Steere, A.C.; Strle, K. Interferon-gamma production in Lyme arthritis synovial tissue promotes differentiation of fibroblast-like synoviocytes into immune effector cells. Cell. Microbiol. 2019, 21, e12992. [Google Scholar] [CrossRef]
- Lochhead, R.B.; Arvikar, S.L.; Aversa, J.M.; Sadreyev, R.I.; Strle, M.; Steere, A.C. Robust interferon signature and suppressed tissue repair gene expression in synovial tissue from patients with postinfectious, Borrelia burgdorferi-induced Lyme arthritis. Cell. Microbiol. 2019, 21, e12954. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hedrick, M.N.; Olson, C.M.; Conze, D.B., Jr.; Bates, T.C.; Rinco’n, M.; Anguita, J. Control of Borrelia burgdorferi-Specific CD4 -T-Cell Effector Function by Interleukin-12- and T-Cell Receptor-Induced p38 Mitogen-Activated Protein Kinase Activity. Infect. Immun. 2006, 74, 5713–5717. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Girardi, E.; Wang, J.; Yu, E.D.; Painter, G.F.; Kronenberg, M.; Zajonc, D.M. The Vα14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. J. Exp. Med. 2010, 207, 2383–2393. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.L.; Seward, R.J.; Ben-Menachem, G.; Glickstein, L.J.; Costello, C.E.; Steere, A.C. Strong IgG Antibody Responses to Borrelia burgdorferi Glycolipids in Patients with Lyme Arthritis, a Late Manifestation of the Infection. Clin. Immunol. 2009, 132, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Szamosvár, D.; Bae, J.M.; Bang, J.S.; Tusi, J.N.K.; Cassilly, C.D.; Park, S.-M.; Graham, D.B.; Xavier, R.J.; Clardy, J. Lyme Disease, Borrelia burgdorferi, and Lipid Immunogens. J. Am. Chem. Soc. 2022, 144, 2474–2478. [Google Scholar] [CrossRef]
- Sigal, L.H.; Steere, A.C.; Dwyer, J.M. In vivo and in vitro evidence of B cell hyperactivity during Lyme disease. J. Rheumatol. 1988, 15, 648–654. [Google Scholar]
- Lochhead, R.B.; Strle, K.; Kim, N.D.; Kohler, M.J.; Arvikar, S.L.; Aversa, J.M.; Steere, A.C. MicroRNA expression shows inflammatory dysregulation and tumor-like proliferative response in joints of patients with postinfectious Lyme arthritis. Arthritis Rheumatol. 2017, 69, 1100–1110. [Google Scholar] [CrossRef]
- Lochhead, R.B.; Zachary, J.F.; Dalla Rosa, L.; Ma, Y.; Weis, J.H.; O’Connell, R.M.; Weis, J.J. Antagonistic Interplay between MicroRNA-155 and IL-10 during Lyme Carditis and Arthritis. PLoS ONE 2015, 10, e0135142. [Google Scholar] [CrossRef]
- Petersel, D.; Sigal, L.H. Reactive arthritis. Infect. Dis. Clin. N. Am. 2005, 19, 863–883. [Google Scholar]
- Bowman, K.A.; Wiggins, C.D.; DeRiso, E.; Paul, S.; Strle, K.; Branda, J.A.; Steere, A.C.; Lauffenburger, D.A.; Alter, G. Borrelia-specific antibody profiles and complement deposition in joint fluid distinguish antibiotic-refractory from -responsive Lyme arthritis. iScience 2024, 27, 108804. [Google Scholar] [CrossRef]
- Dirks, J.; Fischer, J.; Klaussner, J.; Hofmann, C.; Holl-Wieden, A.; Buck, V.; Klemann, C.; Girschick, H.J.; Caruana, I.; Erhard, F.; et al. Disease-specific T cell receptors maintain pathogenic T helper cell responses in postinfectious Lyme arthritis. J. Clin. Investig. 2024, 134, e179391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yssel, H.; Shanafelt, M.C.; Soderbreg, C.; Schneider, P.V.; Anzola, J.; Peltz, G. Borrelia burgdorferi activates a T helper cell type-1-like T cell subset in Lyme arthritis. J. Exp. Med. 1991, 174, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Nardelli, D.T.; Callister, S.M.; Schell, R.F. Lyme arthritis: Current concepts and a change in paradigm. Clin. Vaccine Immunol. 2008, 15, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Nardelli, D.T.; Luk, K.H.K.; Kotloski, N.J.; Warner, T.F.; Torrealba, J.R.; Callister, S.M.; Schell, R.F. Role of interleukin-17, transforming growth factor-β, and IL-6 in the development of arthritis and production of anti-outer surface protein A borreliacidal antibodies in Borrelia-vaccinated and -challenged mice. FEMS Immunol. Med. Microbiol. 2008, 53, 265–274. [Google Scholar] [CrossRef]
- Nardelli, D.T.; Schell, R.D. Expanded role for interleukin-17 in Lyme arthritis: Comment on article by Codolo et al. Arthritis Rheumatol. 2009, 60, 1202. [Google Scholar] [CrossRef]
- Kotloski, N.J.; Nardelli, D.T.; Peterson, S.H.; Torrealba, J.R.; Warner, T.F.; Callister, S.M.; Schell, R.F. Interleukin-23 is required for development of arthritis in mice vaccinated and challenged with Borrelia species. Clin. Vaccine Immunol. 2008, 15, 1199–1207. [Google Scholar] [CrossRef]
- Nardelli, D.T.; Burchill, M.A.; England, D.M.; Torrealba, J.; Callister, S.M.; Schell, R.F. Association of CD4+ CD25+ T cells with prevention of severe destructive arthritis in Borrelia burgdorferi-vaccinated and challenged gamma interferon-deficient mice treated with anti-interleukin-17 antibody. Clin. Diag Lab. Immunol. 2004, 11, 1075–1084. [Google Scholar]
- Nardelli, D.T.; Cloute, J.P.; Luk, K.H.K.; Torrealba, J.; Warner, T.F.; Callister, S.M.; Schell, R.F. CD4+ CD25+ T cells prevent arthritis associated with Borrelia vaccination and infection. Clin. Diag Lab. Immunol. 2005, 12, 786–792. [Google Scholar]
- Shen, S.; Shin, J.J.; Strle, K.; McHugh, G.; Li, X.; Glickstein, L.J.; Drouin, E.E.; Steere, A.C. T Regulatory Cell Numbers and Function in Patients with Antibiotic-Refractory or Antibiotic-Responsive Lyme Arthritis. Arthritis Rheumatol. 2010, 62, 2127–2137. [Google Scholar] [CrossRef]
- Singh, S.K.; Girschick, H.J. Lyme borreliosis: From infection to autoimmunity. Clin. Microbiol. Infect. 2004, 10, 598–614. [Google Scholar] [CrossRef]
- Roessner, K.; Trivedi, H.; Gaur, L.; Howard, D.; Aversa, J.; Cooper, S.M.; Sigal, L.H.; Budd, R.C. Biased T-cell antigen receptor repertoire in Lyme arthritis. Infect. Immun. 1998, 66, 1092–1099. [Google Scholar] [CrossRef]
- Gross, D.M.; Forsthuber, T.; Tary-Lehmann, M.; Etling, C.; Ito, K.; Nagy, Z.A.; Field, J.A.; Steere, A.C.; Huber, B.T. Identification of LFA-1 as a candidate autoantigen in treatment-resistant Lyme arthritis. Science 1998, 281, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Field, J.A.; Glickstein, L.; Molloy, P.J.; Huber, B.T.; Steere, A.C. Association of antibiotic treatment-resistant Lyme arthritis with T cell responses to dominant epitopes of outer surface protein A of Borrelia burgdorferi. Arthritis Rheumatol. 1999, 42, 1813–1822. [Google Scholar] [CrossRef]
- Steere, A.C.; Falk, B.; Drouin, E.E.; Baxter-Lowe, L.E.; Hammer, J.; Nepom, G.T. Binding of outer surface protein A and human lymphocyte function-associated antigen 1 peptides to HLA-DR molecules associated with antibiotic treatment-resistant Lyme arthritis. Arthritis Rheumatol. 2003, 48, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Ball, R.; Shadomy, S.V.; Meyer, A.; Huber, B.T.; Leffell, M.S.; Zachary, A.; Belotto, M.; Hilton, E.; Bryant-Genevier, M.; Schriefer, M.E.; et al. HLA type and immune response to Borrelia burgdorferi outer surface A protein in people in whom arthritis developed after Lyme disease vaccination. Arthritis Rheumatol. 2009, 60, 1179–1186. [Google Scholar] [CrossRef]
- Iliopoulou, B.P.; Guerau-de-Arellano, M.; Huber, B.T. HLA-DR alleles determine responsiveness to Borrelia burgdorferi antigens in a mouse model of self-perpetuating arthritis. Arthritis Rheumatol. 2009, 60, 3831–3840. [Google Scholar] [CrossRef]
- Steere, A.C.; Gross, D.; Meyer, A.L.; Huber, B.T. Autoimmune mechanisms in antibiotic treatment-resistant Lyme arthritis. J. Autoimmun. 2001, 16, 263–268. [Google Scholar] [CrossRef]
- Steere, A.C.; Drouin, E.E.; Glickstein, L.J. Relationship between immunity to Borrelia burgdorferi outer-surface protein A (OspA) and Lyme arthritis. Clin. Infect. Dis. 2011, 52 (Suppl. S3), S259–S265. [Google Scholar] [CrossRef]
- Kannian, P.; Drouin, E.E.; Glickstein, L.; Kwok, W.W.; Nepom, G.T.; Steere, A.C. Decline in the Frequencies of Borrelia burgdorferi OspA 161–175-Specific T Cells after Antibiotic Therapy in HLA-DRB1*0401-Positive Patients with Antibiotic-Responsive or Antibiotic-Refractory Lyme Arthritis. J. Immunol. 2007, 179, 6336–6342. [Google Scholar] [CrossRef]
- Kalish, R.S.; Wood, J.A.; Golde, W.; Bernard, R.; Davis, L.E.; Grimson, R.C.; Coyle, P.K.; Luft, B.J. Human T lymphocyte response to Borrelia burgdorferi infection: No correlation between human leukocyte function antigen type 1 peptide response and clinical status. J. Infect. Dis. 2003, 187, 102–108. [Google Scholar] [CrossRef]
- Maier, B.; Molinger, M.; Cope, A.P.; Fugger, L.; Schneider-Mergener, J.; Sønderstrup, G.; Kamradt, T.; Kramer, A. Multiple cross-reactive self-ligands for Borrelia burgdorferi-specific HLA-DR4-restricted T cells. Eur. J. Immunol. 2000, 30, 448–457. [Google Scholar] [CrossRef]
- Steere, A.C.; Sikand, V.K.; Meurice, F.; Parenti, D.L.; Fikrig, E.; Schoen, R.T.; Nowakowski, J.; Schmid, C.H.; Laukamp, S.; Buscarino, C.; et al. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N. Engl. J. Med. 1998, 339, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Sigal, L.H.; Zahradnik, J.M.; Lavin, P.; Patella, S.J.; Bryant, G.; Haselby, R.; Hilton, E.; Kunkel, M.; Adler-Klein, D.; Doherty, T.; et al. A vaccine consisting of recombinant Borrelia burgdorferi outer-surface protein A to prevent Lyme disease. N. Engl. J. Med. 1998, 339, 216–222. [Google Scholar] [CrossRef]
- Keshtkarjahromi, M.; Rebman, A.W.; Antar, A.A.R.; Manabe, Y.C.; Gutierrez-Alamillo, L.; Casciola-Rosen, L.A.; Aucott, J.N.; Miller, J.B. Autoantibodies in post-treatment Lyme disease and association with clinical symptoms. Clin. Exp. Rheumatol. 2024, 42, 1487–1490. [Google Scholar] [CrossRef] [PubMed]
- Danner, R.; Prochniak, L.M.; Pereckas, M.; Rouse, J.R.; Wahhab, A.; Hackner, L.G.; Lochhead, R.B. Identification of Major Histocompatibility Complex Class II Epitopes From Lyme Autoantigen Apolipoprotein B-100 and Borrelia burgdorferi Mcp4 in Murine Lyme Arthritis. J. Infect. Dis. 2024, 230 (Suppl. S1), S27–S39. [Google Scholar] [CrossRef] [PubMed]
- Drouin, E.E.; Glickstein, L.; Kwok, W.W.; Nepom, G.T.; Steere, A.C. Human homologues of a Borrelia T cell epitope associated with antibiotic-refractory Lyme arthritis. Mol. Immunol. 2008, 45, 180–189. [Google Scholar] [CrossRef]
- Raveche, E.S.; Schutzer, S.E.; Fernandes, H.; Bateman, H.; McCarthy, B.A.; Nickell, S.P.; Cunningham, M.W. Evidence of Borrelia autoimmunity-induced component of Lyme carditis and arthritis. J. Clin. Microbiol. 2005, 43, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Sigal, L.H.; Tatum, A.H. Molecular mimicry in Lyme neurologic disease: Cross-reactivity between Borrelia burgdorferi and neuronal antigens. Neurology 1988, 38, 1439–1442. [Google Scholar] [CrossRef]
- Sigal, L.H.; Tatum, A.H. IgM in the serum of patients with Lyme neurologic disease binds to cross-reacting neuronal (NAg) and Borrelia burgdorferi (BAg) antigens. Ann. N. Y. Acad. Sci. 1988, 539, 422–424. [Google Scholar] [CrossRef]
- Fikrig, E.; Berland, R.; Chen, M.; Williams, S.; Sigal, L.H.; Flavell, R. Fine mapping of the serologic response to the Borrelia burgdorferi flagellin demonstrates an epitope common to neural tissue. Proc. Natl. Acad. Sci. USA 1993, 90, 183–187. [Google Scholar] [CrossRef]
- Dai, Z.Z.; Lackland, H.; Stein, S.; Li, Q.; Radziewicz, R.; Williams, S.; Sigal, L.H. Molecular mimicry in Lyme disease: Monoclonal antibody H9724 to Borrelia burgdorferi flagellin specifically detects chaperonin-HSP60. Biochim. Biophys. Acta 1993, 1181, 97–100. [Google Scholar] [CrossRef]
- Sigal, L.H. The flagellin of Borrelia burgdorferi, the causative agent of Lyme disease, cross-reacts with a human axonal 64,000 molecular weight protein. J. Infect. Dis. 1993, 167, 1372–1378. [Google Scholar] [CrossRef]
- Sigal, L.H.; Williams, S.; Soltys, B.; Gupta, R.S. H9724, a monoclonal antibody to Borrelia burgdorferi’s flagellin, binds to heat shock protein 60 (HSP60) within live neuroblastoma cells: A potential role for HSP60 in peptide hormone signaling and in an auto-immune pathogenesis of the neuropathy of Lyme disease. Cell. Mol. Neurobiol. 2002, 21, 477–495. [Google Scholar]
- Drouin, E.E.; Seward, R.J.; Strle, K.; McHugh, G.; Katchar, K.; Londoño, D.; Yao, C.; Costello, C.E.; Steere, A.C. A novel human autoantigen, endothelial cell growth factor, is a target of T and B cell responses in patients with Lyme disease. Arthritis Rheumatol. 2013, 65, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Crowley, J.T.; Strle, K.; Drouin, E.E.; Pianta, A.; Arvikar, S.L.; Wang, Q.; Costello, C.E.; Steere, A.C. Matrix metalloproteinase-10 is a target of T and B cell responses that correlate with synovial pathology in patients with antibiotic-refractory Lyme arthritis. J. Autoimmun. 2016, 69, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Drouin, E.E.; Yao, C.; Zhang, J.; Huang, Y.; Leon, D.R.; Steere, A.C.; Costello, C.E. Immunogenic HLA-DR-Presented Self-Peptides Identified Directly from Clinical Samples of Synovial Tissue, Synovial Fluid, or Peripheral Blood in Patients with Rheumatoid Arthritis or Lyme Arthritis. J. Proteome Res. 2017, 16, 122–136. [Google Scholar] [CrossRef]
- Kanjana, K.; Strle, K.; Lochhead, R.B.; Pianta, A.; Mateyka, L.M.; Wang, Q.; Arvikar, S.L.; Kling, D.E.; Deangelo, C.A.; Curham, L.; et al. Autoimmunity to synovial extracellular matrix proteins in patients with postinfectious Lyme arthritis. J. Clin. Investig. 2023, 133, e161170. [Google Scholar] [CrossRef]
- Arvikar, S.L.; Crowley, J.T.; Sulka, K.B.; Steere, A.C. Autoimmune arthritides, rheumatoid arthritis, psoriatic arthritis, or peripheral spondyloarthritis following Lyme disease. Arthritis Rheumatol. 2017, 69, 194–202. [Google Scholar] [CrossRef]
- Brunner, M.; Stein, S.; Mitchell, P.D.; Sigal, L.H. IgM capture assay for the serologic confirmation of early Lyme disease: Analyzing immune complexes with biotinylated Borrelia burgdorferi sonicate enhanced with flagellin peptide epitope. J. Clin. Microbiol. 1998, 36, 1074–1080. [Google Scholar] [CrossRef]
- Brunner, M.; Sigal, L.H. Immune complexes from Lyme disease sera contain Borrelia burgdorferi antigen and antigen-specific antibodies: Potential use for improved testing. J. Infect. Dis. 2000, 182, 534–539. [Google Scholar] [CrossRef]
- Brunner, M.; Sigal, L.H. Use of serum immune complexes in a new test that accurately confirms early Lyme disease and active infection with Borrelia burgdorferi. J. Clin. Microbiol. 2001, 39, 3213–3321. [Google Scholar] [CrossRef]
- Steere, A.C.; Hardin, J.A.; Malawista, S.E. Erythema chronicum migrans and Lyme arthritis: Cryoimmunoglobulins and clinical activity of skin and joints. Science 1977, 196, 1121–1122. [Google Scholar] [CrossRef] [PubMed]
- Steere, A.C.; Hardin, J.A.; Ruddy, S.; Mummaw, J.G.; Malawista, S.E. Lyme arthritis: Correlation of serum and cryoglobulin IgM with activity, and serum IgG with remission. Arthritis Rheumatol. 1979, 22, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Hardin, J.A.; Walker, L.C.; Steere, A.C.; Trumble, T.C.; Tung, K.S.; Williams, R.C., Jr.; Ruddy, S.; Malawista, S.E. Circulating immune complexes in Lyme arthritis. Detection by the 125I-C1q binding, C1q solid phase, and Raji cell assays. J. Clin. Investig. 1979, 63, 468–477. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigal, L.H. Aspects of the Immunopathogenesis of Lyme Arthritis. Microorganisms 2025, 13, 1602. https://doi.org/10.3390/microorganisms13071602
Sigal LH. Aspects of the Immunopathogenesis of Lyme Arthritis. Microorganisms. 2025; 13(7):1602. https://doi.org/10.3390/microorganisms13071602
Chicago/Turabian StyleSigal, Leonard H. 2025. "Aspects of the Immunopathogenesis of Lyme Arthritis" Microorganisms 13, no. 7: 1602. https://doi.org/10.3390/microorganisms13071602
APA StyleSigal, L. H. (2025). Aspects of the Immunopathogenesis of Lyme Arthritis. Microorganisms, 13(7), 1602. https://doi.org/10.3390/microorganisms13071602