An UHPLC-HRMS-Based Untargeted Metabolomics Approach to Explore the Effects of Bacterial Endophyte Co-Culture on Alkanna tinctoria (L.) Tausch Cell Suspension Metabolome
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Biological Material
2.2.1. A. tinctoria Cells Suspension
2.2.2. Bacterial Endophytes
2.3. Co-Culture Experimental Set Up
2.3.1. Preparation of Bacterial Endophyte Components
2.3.2. Co-Culture Experiment
2.4. Extraction of Secondary Metabolites
2.5. UHPLC-HRMS Analysis
2.5.1. LC System and Chromatographic Conditions
2.5.2. High-Resolution Mass Spectrometry Conditions
2.6. UHPLC-HRMS Data Processing
2.7. Statistical Analysis
3. Results
3.1. Total Suspension Dry Weight
3.2. A. tinctoria Metabolome Analysis Using UHPL-HRMS Untargeted Metabolomics
3.3. Putative Identification of Induced Secondary Metabolites
No | Rt (min) | Proposed Phytochemicals | Precursor Ion [M−H]− | m/z Calcd. | Mass Error (ppm) | Chemical Formula | MS/MS Fragment Ions m/z | Reference |
---|---|---|---|---|---|---|---|---|
1 | 0.434 | Gluconic acid | 195.0503 | 195.0505 | −1.0 | C6H12O7 | 177.0793, 160.8910, 129.0183 | [24] |
2 | 0.547 | p-hydroxybenzoic acid-O-glucoside | 299.0758 | 299.0767 | −3.0 | C13H16O8 | 137.0228 | [25] |
3 | 0.890 | 3,4-dihydroxy benzene propionic acid | 181.0490 | 181.0501 | −6.1 | C9H10O4 | 162.9812, 134.9859, 117.9341 | [25] |
4 | 1.053 | p-hydroxybenzoic acid | 137.0247 | 137.0239 | 5.8 | C7H6O3 | 134.9865 | [24] |
5 | 1.830 | 3′-hydroxy-14-hydroxyshikonofuran H * | 435.1660 | 435.1655 | 1.1 | C22H28O9 | 273.1096, 255.1003, 145.9320 | [26] |
6 | 2.194 | Prolithospermic acid | 357.0609 | 357.0610 | −0.3 | C18H14O8 | 313.0686, 269.8307, 159.8919 | [25] |
7 | 2.344 | Przewalskinic acid A | 357.0595 | 357.0610 | −4.2 | C18H14O8 | 313.0686, 269.0803, 178.9772 | [25] |
8 | 3.377 | Salvianolic acid G | 339.0506 | 339.0505 | 0.3 | C18H12O7 | 321.0781, 295.0620, 280.8622 | [25] |
9 | 3.378 | Rabdosiin | 717.1457 | 717.1456 | 0.1 | C36H30O16 | 537.1082, 519.0881, 475.1022, 339.0496 | [27] |
10 | 3.405 | Hydroxyshikinofuran A | 333.1325 | 333.1338 | −3.9 | C18H22O6 | 273.1096, 255.0654 | [26] |
11 | 3.663 | Salvianic acid A | 197.0449 | 197.0450 | −0.5 | C9H10O5 | 179.0340,135.0443, 123.0437 | [25] |
12 | 3.663 | Rosmarinic acid | 359.0774 | 359.0767 | 1.9 | C18H16O8 | 197.0448, 179.0340, 161.0240, 133.0288 | [25] |
13 | 3.834 | Didehydrosalvianolic acid B | 715.1301 | 715.1299 | 0.3 | C36H28O16 | 337.0334, 319.1210, 293.8187 | [28] |
14 | 4.034 | Salvianolic acid C | 491.0968 | 491.0978 | −2.0 | C26H20O10 | 311.0545, 293.8111, 267.0631, 231.8548 | [25] |
15 | 4.090 | Rosmarinic acid methyl ester | 373.0919 | 373.0923 | −1.1 | C19H18O8 | 179.0339, 135.0445 | [25] |
16 | 4.298 | Deoxyshikonofuran | 257.1169 | 257.1178 | −3.5 | C16H18O3 | 173.0292, 159.8986, 116.9277 | [26] |
17 | 4.325 | Caffeic acid | 179.0345 | 179.0344 | 0.6 | C9H8O4 | 135.8987 | [25] |
18 | 4.468 | 8′-decarboxy-rosmarinic acid * | 313.0698 | 313.0712 | −4.5 | C17H14O6 | 179.0334, 161.0240, 133.0286, 123.0416 | [29] |
19 | 4.518 | Lithospermidin C | 345.0980 | 345.0974 | 1.7 | C18H18O7 | 285.0727, 267.0626, 257.1180, 249.1110, 238.8891, 227.0691 | [26] |
20 | 4.589 | Alkannin/Shikonin | 287.0915 | 287.0919 | −1.4 | C16H16O5 | 218.8601, 190.9279, 189.9296, 173.0238, 161.0230 | [26] |
21 | 4.625 | Arnebin V | 289.1090 | 289.1076 | 4.8 | C16H18O5 | 245.1179, 179.0702, 151.0398 | [26] |
22 | 4.654 | Salvianolic acid F | 313.0698 | 313.0712 | −4.5 | C17H14O6 | 269.0815, 203.0359, 161.0220, 133.0264, 123.0429 | [30] |
23 | 4.803 | 8‴-decarboxy-salvianolic B * | 671.1400 | 671.1401 | −0.1 | C35H28O14 | 625.1328, 563.0319, 521.1053, 491.0969, 359.0759, 313.0711, 267.0643, 179.0338, 161.0237 | [31] |
24 | 4.853 | Arnebin VI | 347.1132 | 347.1131 | 0.3 | C18H20O7 | 288.0997, 181.0493, 151.0395 | [26] |
25 | 5.052 | Lithospermidin F | 385.1277 | 385.1287 | −2.6 | C21H22O7 | 303.1212, 267.0644, 257.1188, 238.8907 | [26] |
26 | 5.352 | 8″-8‴-didecarboxy-salvianolic acid B * | 625.1343 | 625.1346 | −0.5 | C34H26O12 | 339.1976, 313.0691, 238.8904, 149.0232, 133.0278, 116.9272 | [31] |
27 | 5.458 | Hydroxyshikonofuran D/G | 361.1636 | 361.1551 | −4.2 | C20H26O6 | 273.1121, 255.0974, 237.1086, 174.8651 | [26] |
28 | 5.765 | O-Methyl-1′-deoxyalkannin | 285.1118 | 285.1127 | −3.2 | C17H18O4 | 267.1491, 217.8558, 189.8500 | [26] |
29 | 5.808 | Echinofuran B | 255.1013 | 255.1021 | −3.1 | C16H16O3 | 173.0234, 159.0435, 116.9277, 100.9343 | [26] |
30 | 5.815 | Deoxyalkannin (Arnebin VII) | 271.0972 | 271.0970 | 0.7 | C16H16O4 | 238.8911, 202.0260, 175.8447, 174.8634 | [26] |
31 | 6.107 | Valerylshikonin | 371.1488 | 371.1495 | −1.9 | C21H24O6 | 271.0966, 241.0714, 225.7941, 100.9306 | [26] |
32 | 6.357 | Acetylalkannin | 329.1003 | 329.1025 | −6.7 | C18H18O6 | 271.0941, 241.0745, 225.7967, 223.7977 | [26] |
4. Discussion
4.1. Suitability of In Vitro Bacterial Endophyte–Plant Co-Culture for the Production of Bioactive Secondary Metabolites
4.2. Impact of Bacterial Endophytes on Secondary Metabolism of A. tinctoria In Vitro Culture System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
4CL | 4-courmaric acid coenzyme A-ligase |
ACAT | Acetyl-CoA acetyl transferase |
ACN | Acetonitrile |
Al | Allorhizobium sp. |
BaH | Biomass homogenate |
BAP | 6-benzylaminopurine |
BrCi | Brevibacillus sp. |
BrCt | Brevibacterium sp. |
C4M | Cinnamic acid-4-hydrolase |
Ch | Chitinophaga sp. |
DMSO | Dimethyl sulfoxide |
ECM | Bacterial endophyte culture supernatant |
EtoAC | Ethyl acetate |
EtOH abs | Ethanol absolute |
HMGR | 3-hydroxy-3-methylglutaryl-CoAsynthase |
HNQ | Hydroxynaphthoquinones |
HPPR | Hydroxyphenylpyruvate reductase |
IAA | Indole-3-acetic acid |
LC/MS | Liquid chromatography/mass spectrometry |
MeOH | Methanol |
Mn | Micromonospora sp. |
MPD | Mevalonate-PP decarboxylase |
MS/MS | Mass spectrometry/mass spectrometry |
MvK | Mevalonate kinase |
PAL | Phenylalanine ammonia-lyase |
PCA | Principal component analysis |
PMK | Phosphomevalonate kinase |
Ps | Pseudomonas sp. |
RAS | Rosmarinic acid synthase |
Rh | Rhizobium sp. |
SM | Secondary metabolite |
T-DW | Total suspension dry weight |
TAT | Tyrosine aminotransferase |
UHPLC-HRMS | Ultra-high-performance liquid chromatography high-resolution mass spectrometry |
Xa | Xanthomonas sp. |
References
- Taulé, C.; Vaz-Jauri, P.; Battistoni, F. Insights into the Early Stages of Plant-Endophytic Bacteria Interaction. World J. Microbiol. Biotechnol. 2021, 37, 13. [Google Scholar] [CrossRef] [PubMed]
- Chamkhi, I.; Benali, T.; Aanniz, T.; El Menyiy, N.; Guaouguaou, F.-E.; El Omari, N.; El-Shazly, M.; Zengin, G.; Bouyahya, A. Plant-Microbial Interaction: The Mechanism and the Application of Microbial Elicitor Induced Secondary Metabolites Biosynthesis in Medicinal Plants. Plant Physiol. Biochem. 2021, 167, 269–295. [Google Scholar] [CrossRef]
- Compant, S.; Cambon, M.; Vacher, C.; Mitter, B.; Samad, A.; Sessitsch, A. The Plant Endosphere World—Bacterial Life within Plants. Environ. Microbiol. 2021, 23, 1812–1829. [Google Scholar] [CrossRef]
- Wu, W.; Chen, W.; Liu, S.; Wu, J.; Zhu, Y.; Qin, L.; Zhu, B. Beneficial Relationships Between Endophytic Bacteria and Medicinal Plants. Front. Plant Sci. 2021, 12, 646146. [Google Scholar] [CrossRef] [PubMed]
- Brader, G.; Compant, S.; Mitter, B.; Trognitz, F.; Sessitsch, A. Metabolic Potential of Endophytic Bacteria. Curr. Opin. Biotechnol. 2014, 27, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wu, H.; Yin, Z.; Lian, M.; Yin, C. Endophytic Bacteria Isolated from Panax Ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture. Molecules 2017, 22, 837. [Google Scholar] [CrossRef]
- Traykova, B.D.; Grigorova, I.D.; Stanilova, M.I.; Molle, E.D.; Yankova-Tsvetkova, E.P. Alkanna Tinctoria: An Approach toward Ex Situ Cultivation. Ecol. Balk. 2020, 3, 107–115. [Google Scholar]
- Papageorgiou, V.P.; Assimopoulou, A.N.; Ballis, A.C. Alkannins and Shikonins: A New Class of Wound Healing Agents. Curr. Med. Chem. 2008, 15, 3248–3267. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, M.; Meghwal, P.; Sahu, P.; Singh, S. Anti-Inflammatory Activity of Shikonin Derivatives from Arnebia hispidissima. Phytomedicine 2003, 10, 375–380. [Google Scholar] [CrossRef]
- Sahakyan, N.; Petrosyan, M.; Trchounian, A. The Activity of Alkanna Species In Vitro Culture and Intact Plant Extracts against Antibiotic Resistant Bacteria. Curr. Pharm. Des. 2019, 25, 1861–1865. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, X.; Huang, G.; Zhang, Q.; Dong, J.; Sun, G.; Meng, Q.; Li, S. DMAKO-20 as a New Multitarget Anticancer Prodrug Activated by the Tumor Specific CYP1B1 Enzyme. Mol. Pharm. 2019, 16, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Sankawa, U.; Ebizuka, Y.; Miyazaki, T.; Isomura, Y.; Otsuka, H. Antitumor Activity of Shikonin and Its Derivatives. Chem. Pharm. Bull. 1977, 25, 2392–2395. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, R.; Zhou, W.; Xiao, S.; Meng, Q.; Li, S. Antitumor Activity of DMAKO-05, a Novel Shikonin Derivative, and Its Metabolism in Rat Liver Microsome. AAPS PharmSciTech 2015, 16, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Lim, L.; Loh, S.; Ying Lim, K.; Upton, Z.; Leavesley, D. Application of “Macromolecular Crowding” In Vitro to Investigate the Naphthoquinones Shikonin, Naphthazarin and Related Analogues for the Treatment of Dermal Scars. Chem.-Biol. Interact. 2019, 310, 108747. [Google Scholar] [CrossRef]
- Rat, A.; Naranjo, H.D.; Krigas, N.; Grigoriadou, K.; Maloupa, E.; Alonso, A.V.; Schneider, C.; Papageorgiou, V.P.; Assimopoulou, A.N.; Tsafantakis, N.; et al. Endophytic Bacteria From the Roots of the Medicinal Plant Alkanna Tinctoria Tausch (Boraginaceae): Exploration of Plant Growth Promoting Properties and Potential Role in the Production of Plant Secondary Metabolites. Front. Microbiol. 2021, 12, 633488. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Ng, J.; Shi, M.; Wu, S.-J. Enhanced Secondary Metabolite (Tanshinone) Production of Salvia miltiorrhiza Hairy Roots in a Novel Root-Bacteria Coculture Process. Appl. Microbiol. Biotechnol. 2007, 77, 543–550. [Google Scholar] [CrossRef]
- Husson, F.; Josse, J.; Le, S.; Mazet, J. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining; R Package Version 2.3; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://CRAN.R-project.org/package=FactoMineR (accessed on 24 September 2023).
- Wickham, H. Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics; R Package Version 3.3.2; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://CRAN.R-project.org/package=ggplot2 (accessed on 24 September 2023).
- Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research; R Package Version 1.3-3; R Foundation for Statistical Computing: Vienna, Austria, 2021; Volume 32, pp. 1180–1204. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 24 September 2023).
- Bertrand, S.; Bohni, N.; Schnee, S.; Schumpp, O.; Gindro, K.; Wolfender, J.-L. Metabolite Induction via Microorganism Co-Culture: A Potential Way to Enhance Chemical Diversity for Drug Discovery. Biotechnol. Adv. 2014, 32, 1180–1204. [Google Scholar] [CrossRef]
- Ho, T.-T.; Murthy, H.N.; Park, S.-Y. Methyl Jasmonate Induced Oxidative Stress and Accumulation of Secondary Metabolites in Plant Cell and Organ Cultures. Int. J. Mol. Sci. 2020, 21, 716. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed Minimum Reporting Standards for Chemical Analysis. Metabolomics 2021, 3, 211–221. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Hung, Y.C.; Hu, W.L. Polyphenols of Salvia miltiorrhiza in Aging-Associated Cardiovascular Diseases and Cancer; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Cartabia, A.; Tsiokanos, E.; Tsafantakis, N.; Lalaymia, I.; Termentzi, A.; Miguel, M.; Fokialakis, N.; Declerck, S. The Arbuscular Mycorrhizal Fungus Rhizophagus Irregularis MUCL 41833 Modulates Metabolites Production of Anchusa Officinalis L. Under Semi-Hydroponic Cultivation. Front. Plant Sci. 2021, 12, 724352. [Google Scholar] [CrossRef]
- Zhang, Q.-Q.; Dong, X.; Liu, X.-G.; Gao, W.; Li, P.; Yang, H. Rapid Separation and Identification of Multiple Constituents in Danhong Injection by Ultra-High Performance Liquid Chromatography Coupled to Electrospray Ionization Quadrupole Time-of-Flight Tandem Mass Spectrometry. Chin. J. Nat. Med. 2016, 14, 147–160. [Google Scholar] [CrossRef]
- Liao, M.; Li, A.; Chen, C.; Ouyang, H.; Zhang, Y.; Xu, Y.; Feng, Y.; Jiang, H. Systematic Identification of Shikonins and Shikonofurans in Medicinal Zicao Species Using Ultra-High Performance Liquid Chromatography Quadrupole Time of Flight Tandem Mass Spectrometry Combined with a Data Mining Strategy. J. Chromatogr. A 2015, 1425, 158–172. [Google Scholar] [CrossRef] [PubMed]
- Bedane, K.G.; Zühlke, S.; Spiteller, M. Bioactive Constituents of Lobostemon Fruticosus: Anti-Inflammatory Properties and Quantitative Analysis of Samples from Different Places in South Africa. S. Afr. J. Bot. 2020, 131, 174–180. [Google Scholar] [CrossRef]
- Bodalska, A.; Kowalczyk, A.; Włodarczyk, M.; Fecka, I. Analysis of Polyphenolic Composition of a Herbal Medicinal Product-Peppermint Tincture. Molecules 2019, 25, 69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, W.; Wang, P.; Huang, J.; Bai, J.; Huang, Z.; Liu, X.; Qiu, X. Chemical Analysis and Multi-Component Determination in Chinese Medicine Preparation Bupi Yishen Formula Using Ultra-High Performance Liquid Chromatography With Linear Ion Trap-Orbitrap Mass Spectrometry and Triple-Quadrupole Tandem Mass Spectrometry. Front. Pharmacol. 2018, 9, 568. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Kuźma, Ł.; Lisiecki, P.; Kiss, A. Accumulation of Phenolic Compounds in Different In Vitro Cultures of Salvia Viridis L. and Their Antioxidant and Antimicrobial Potential. Phytochem. Lett. 2019, 30, 324–332. [Google Scholar] [CrossRef]
- Liu, A.-H.; Guo, H.; Ye, M.; Lin, Y.-H.; Sun, J.-H.; Xu, M.; Guo, D.-A. Detection, Characterization and Identification of Phenolic Acids in Danshen Using High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization Mass Spectrometry. J. Chromatogr. A 2007, 1161, 170–182. [Google Scholar] [CrossRef]
- Malik, S.; Bhushan, S.; Sharma, M.; Ahuja, P.S. Biotechnological Approaches to the Production of Shikonins: A Critical Review with Recent Updates. Crit. Rev. Biotechnol. 2016, 36, 327–340. [Google Scholar] [CrossRef]
- Mahjouri, S.; Movafeghi, A.; Zare, K.; Kosari-Nasab, M.; Nazemiyeh, H. Production of Naphthoquinone Derivatives Using Two-Liquid-Phase Suspension Cultures of Alkanna Orientalis. Plant Cell Tissue Organ Cult. (PCTOC) 2016, 1, 201–207. [Google Scholar] [CrossRef]
- Mita, G.; Gerardi, C.; Miceli, A.; Bollini, R.; De Leo, P. Pigment Production from In Vitro Cultures of Alkanna Tinctoria Tausch. Plant Cell Rep. 1994, 13, 406–410. [Google Scholar] [CrossRef]
- Yaman, C.; Uranbey, S.; Ahmed, H.A.; Özcan, S.; Tugay, O.; Başalma, D. Callus Induction and Regeneration of Alkanna orientalis Var. Orientalis and A. Sieheana. Bangladesh J. Bot. 2019, 48, 633–640. [Google Scholar] [CrossRef]
- Ahmad, M.; Varela Alonso, A.; Koletti, A.E.; Rodić, N.; Reichelt, M.; Rödel, P.; Assimopoulou, A.N.; Paun, O.; Declerck, S.; Schneider, C.; et al. Dynamics of Alkannin/Shikonin Biosynthesis in Response to Jasmonate and Salicylic Acid in Lithospermum officinale. Sci. Rep. 2022, 12, 17093. [Google Scholar] [CrossRef] [PubMed]
- Urbanek, H.; Bergier, K.; Saniewski, M.; Patykowski, J. Effect of Jasmonates and Exogenous Polysaccharides on Production of Alkannin Pigments in Suspension Cultures of Alkanna tinctoria. Plant Cell Rep. 1996, 15, 637–641. [Google Scholar] [CrossRef]
- Varela Alonso, A.; Naranjo, H.D.; Rat, A.; Rodić, N.; Nannou, C.I.; Lambropoulou, D.A.; Assimopoulou, A.N.; Declerck, S.; Rödel, P.; Schneider, C.; et al. Root-Associated Bacteria Modulate the Specialised Metabolome of Lithospermum officinale L. Front Plant Sci. 2022, 13, 908669. [Google Scholar]
- Petersen, M. Rosmarinic Acid: New Aspects. Phytochem. Rev. 2013, 12, 207–227. [Google Scholar] [CrossRef]
Bacterial Phylum | Bacterial Genus | Strain | Bacterial Material Plant Modulator Type | Concentration | Code |
---|---|---|---|---|---|
Bacteroidota | Chitinophaga sp. * | R-73072 | Bacteria Homogenate | 0.04% | Ch BaH |
Extracellular medium | 4% | Ch ECM | |||
Pseudomonadota (class Gammaproteobacteria) | Xanthomonas sp. * | R-73098 | Bacteria Homogenate | 0.04% | Xa BaH |
Extracellular medium | 4% | Xa ECM | |||
Pseudomonas sp. * | R-71838 | Bacteria Homogenate | 0.04% | Ps BaH | |
Extracellular medium | 4% | Ps ECM | |||
Actinomycetota | Micromonospora sp. * | R-75348 | Bacteria Homogenate | 0.04% | Mn BaH |
Extracellular medium | 4% | Mn ECM | |||
Pseudomonadota (class Alphaproteobacteria | Allorhizobium sp. * | R-72379 | Bacteria Homogenate | 0.04% | Al BaH |
Extracellular medium | 4% | Al ECM | |||
Rhizobium sp. | R-72160 | Bacteria Homogenate | 0.04% | Rh BaH | |
Extracellular medium | 4% | Rh ECM | |||
Bacillota | Brevibacillus sp. | R-71971 | Bacteria Homogenate | 0.04% | BrCi BaH |
Extracellular medium | 4% | BrCi ECM | |||
Brevibacterium sp. | R-71875 | Bacteria Homogenate | 0.04% | BrCt BaH | |
Extracellular medium | 4% | BrCt ECM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bossard, E.; Cousy, A.; Grondin, A.; Tsafantakis, N.; Rat, A.; Aligiannis, N.; Willems, A.; Cattuzzato, L.; Nguyen, T.; Fokialakis, N. An UHPLC-HRMS-Based Untargeted Metabolomics Approach to Explore the Effects of Bacterial Endophyte Co-Culture on Alkanna tinctoria (L.) Tausch Cell Suspension Metabolome. Microorganisms 2025, 13, 1601. https://doi.org/10.3390/microorganisms13071601
Bossard E, Cousy A, Grondin A, Tsafantakis N, Rat A, Aligiannis N, Willems A, Cattuzzato L, Nguyen T, Fokialakis N. An UHPLC-HRMS-Based Untargeted Metabolomics Approach to Explore the Effects of Bacterial Endophyte Co-Culture on Alkanna tinctoria (L.) Tausch Cell Suspension Metabolome. Microorganisms. 2025; 13(7):1601. https://doi.org/10.3390/microorganisms13071601
Chicago/Turabian StyleBossard, Elodie, Adrien Cousy, Antonio Grondin, Nikolaos Tsafantakis, Angélique Rat, Nektarios Aligiannis, Anne Willems, Laetitia Cattuzzato, Thien Nguyen, and Nikolas Fokialakis. 2025. "An UHPLC-HRMS-Based Untargeted Metabolomics Approach to Explore the Effects of Bacterial Endophyte Co-Culture on Alkanna tinctoria (L.) Tausch Cell Suspension Metabolome" Microorganisms 13, no. 7: 1601. https://doi.org/10.3390/microorganisms13071601
APA StyleBossard, E., Cousy, A., Grondin, A., Tsafantakis, N., Rat, A., Aligiannis, N., Willems, A., Cattuzzato, L., Nguyen, T., & Fokialakis, N. (2025). An UHPLC-HRMS-Based Untargeted Metabolomics Approach to Explore the Effects of Bacterial Endophyte Co-Culture on Alkanna tinctoria (L.) Tausch Cell Suspension Metabolome. Microorganisms, 13(7), 1601. https://doi.org/10.3390/microorganisms13071601