Bacterial Metabolic Activity of High-Mountain Lakes in a Context of Increasing Regional Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. Environmental Parameters
- SUVA254—indicative of DOC aromaticity [38], calculated according to Equation (1):
- E2/E3: The ratio of absorbencies at 250 nm to 365 nm indicating the molecular weight of DOC. The increase of E2/E3 values correlates with the decrease of DOC aromaticity and molecular weight [39];
- DOC/TN: The ratio was determined according to [41], showing the DOC origin; DOC/TN ≤10: algal origin; DOC/TN >20: terrestrial origin, and 12 < DOC/TN < 17: multiple DOC sources.
2.3. Bacterial Metabolic Profiles
- AWCD was calculated as
- The Shannon–Weaver (H′) and Pilou’s (E) indices were calculated as
2.4. Statistical Analyses
3. Results
3.1. Lake Environments
3.2. Bacterial Metabolic Activity and Functional Profiles
3.2.1. AWCD
3.2.2. CLPPs
4. Discussion
4.1. Temporal Changes in Lake Environments
4.2. Bacterial Response to Environmental Changes over Time
4.2.1. Bacterial Metabolic Activity (AWCD)
4.2.2. Bacterial Community Functional Profiles (CLPPs)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | Area under the curve |
AWCD | Average well color development |
Bub | Lake Bubreka |
CA | Cluster analysis |
Chl-a | Chlorophyll-a |
CLPP | Community level physiological profile |
CSs | Carbon sources |
DO | Dissolved oxygen |
DOC | Dissolved organic carbon |
EC | Electrical conductivity |
NH4-N | Ammonium nitrogen |
NO3-N | Nitrate nitrogen |
Oko | Lake Okoto |
PO4-P | Phosphate phosphorus |
RDA | Redundancy analysis |
Sul | Lake Sulzata |
SUVA254 | Specific ultraviolet absorbance at 254 nm |
T | Temperature |
TN | Total nitrogen |
TP | Total phosphorus |
References
- Moser, K.A.; Baron, J.S.; Brahney, J.; Oleksy, I.A.; Saros, J.E.; Hundey, E.J.; Sadro, S.; Kopáček, J.; Sommaruga, R.; Kainz, M.J.; et al. Mountain Lakes: Eyes on Global Environmental Change. Glob. Planet. Chang. 2019, 178, 77–95. [Google Scholar] [CrossRef]
- Pastorino, P.; Prearo, M. High-Mountain Lakes, Indicators of Global Change: Ecological Characterization and Environmental Pressures. Diversity 2020, 12, 260. [Google Scholar] [CrossRef]
- Pepin, N.C.; Arnone, E.; Gobiet, A.; Haslinger, K.; Kotlarski, S.; Notarnicola, C.; Palazzi, E.; Seibert, P.; Serafin, S.; Schöner, W.; et al. Climate Changes and Their Elevational Patterns in the Mountains of the World. Rev. Geophys. 2022, 60, e2020RG000730. [Google Scholar] [CrossRef]
- Rangwala, I.; Miller, J.R. Climate Change in Mountains: A Review of Elevation-Dependent Warming and Its Possible Causes. Clim. Chang. 2012, 114, 527–547. [Google Scholar] [CrossRef]
- Schreder, S.; Sommaruga, R.; Psenner, R.; Chimani, B.; Ganekind, M.; Koinig, K.A. Changes in Air Temperature, but Not in Precipitation, Determine Long-Term Trends in Water Chemistry of High Mountain Lakes of the Alps with and Without Rock Glacier Influence. Sci. Total Environ. 2023, 905, 167750. [Google Scholar] [CrossRef]
- Preston, D.L.; Caine, N.; McKnight, D.M.; Williams, M.W.; Hell, K.; Miller, M.P.; Hart, S.J.; Johnson, P.T.J. Climate Regulates Alpine Lake Ice Cover Phenology and Aquatic Ecosystem Structure. Geophys. Res. Lett. 2016, 43, 5353–5360. [Google Scholar] [CrossRef]
- Kafash, A.; Ashrafi, S.; Ohler, A.; Yousefi, M.; Malakoutikhah, S.; Koehler, G.; Schmidt, B.R. Climate Change Produces Winners and Losers: Differential Responses of Amphibians in Mountain Forests of the Near East. Glob. Ecol. Conserv. 2018, 16, e00471. [Google Scholar] [CrossRef]
- Hinder, B.; Baur, I.; Hanselmann, K.; Schanz, F. Microbial Food Web in an Oligotrophic High Mountain Lake (Jöri Lake III, Switzerland). J. Limnol. 1999, 58, 162. [Google Scholar] [CrossRef]
- Hinder, B.; Gabathuler, M.; Steiner, B.; Hanselmann, K.; Presig, H.R. Seasonal Dynamics and Phytoplankton Diversity in High Mountain Lakes (Jöri Lakes, Swiss Alps). J. Limnol. 1999, 58, 152. [Google Scholar] [CrossRef]
- Callieri, C.; Pugnetti, A.; Manca, M. Carbon Partitioning in the Food Web of a High Mountain Lake: From Bacteria to Zooplankton. J. Limnol. 1999, 58, 144. [Google Scholar] [CrossRef]
- Adams, H.E.; Crump, B.C.; Kling, G.W. Temperature Controls on Aquatic Bacterial Production and Community Dynamics in Arctic Lakes and Streams. Environ. Microbiol. 2010, 12, 1319–1333. [Google Scholar] [CrossRef] [PubMed]
- Niño-García, J.P.; Ruiz-González, C.; del Giorgio, P.A. Interactions Between Hydrology and Water Chemistry Shape Bacterioplankton Biogeography Across Boreal Freshwater Networks. ISME J. 2016, 10, 1755–1766. [Google Scholar] [CrossRef]
- Glasl, B.; Bourne, D.G.; Frade, P.R.; Thomas, T.; Schaffelke, B.; Webster, N.S. Microbial Indicators of Environmental Perturbations in Coral Reef Ecosystems. Microbiome 2019, 7, 94. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Srivastava, D.S.; Emmett Duffy, J.; Wright, J.P.; Downing, A.L.; Sankaran, M.; Jouseau, C. Effects of Biodiversity on the Functioning of Trophic Groups and Ecosystems. Nature 2006, 443, 989–992. [Google Scholar] [CrossRef]
- Picazo, A.; Villaescusa, J.A.; Rochera, C.; Miralles-Lorenzo, J.; Quesada, A.; Camacho, A. Functional Metabolic Diversity of Bacterioplankton in Maritime Antarctic Lakes. Microorganisms 2021, 9, 2077. [Google Scholar] [CrossRef]
- Navarro, M.B.; Balseiro, E.; Modenutti, B. Bacterial Community Structure in Patagonian Andean Lakes Above and Below Timberline: From Community Composition to Community Function. Microb. Ecol. 2014, 68, 528–541. [Google Scholar] [CrossRef] [PubMed]
- Allison, S.D.; Martiny, J.B.H. Resistance, Resilience, and Redundancy in Microbial Communities. Proc. Natl. Acad. Sci. USA 2008, 105, 11512–11519. [Google Scholar] [CrossRef]
- Comte, J.; Fauteux, L.; del Giorgio, P.A. Links between Metabolic Plasticity and Functional Redundancy in Freshwater Bacterioplankton Communities. Front. Microbiol. 2013, 4, 112. [Google Scholar] [CrossRef] [PubMed]
- Leflaive, J.; Danger, M.; Lacroix, G.; Lyautey, E.; Oumarou, C.; Ten-Hage, L. Nutrient Effects on the Genetic and Functional Diversity of Aquatic Bacterial Communities. FEMS Microbiol. Ecol. 2008, 66, 379–390. [Google Scholar] [CrossRef]
- Fellman, J.B.; Hood, E.; D’Amore, D.V.; Edwards, R.T.; White, D. Seasonal Changes in the Chemical Quality and Biodegradability of Dissolved Organic Matter Exported from Soils to Streams in Coastal Temperate Rainforest Watersheds. Biogeochemistry 2009, 95, 277–293. [Google Scholar] [CrossRef]
- Jin, X.; Ma, Y.; Kong, Z.; Kou, W.; Wu, L. The Variation of Sediment Bacterial Community in Response to Anthropogenic Disturbances of Poyang Lake, China. Wetlands 2019, 39, 63–73. [Google Scholar] [CrossRef]
- Christian, B.W.; Lind, O.T. Multiple Carbon Substrate Utilization by Bacteria at the Sediment–Water Interface: Seasonal Patterns in a Stratified Eutrophic Reservoir. Hydrobiologia 2007, 586, 43–56. [Google Scholar] [CrossRef]
- Melita, M.; Amalfitano, S.; Preziosi, E.; Ghergo, S.; Frollini, E.; Parrone, D.; Zoppini, A. Physiological Profiling and Functional Diversity of Groundwater Microbial Communities in a Municipal Solid Waste Landfill Area. Water 2019, 11, 2624. [Google Scholar] [CrossRef]
- Kenarova, A.; Radeva, G.; Traykov, I.; Boteva, S. Community Level Physiological Profiles of Bacterial Communities Inhabiting Uranium Mining Impacted Sites. Ecotoxicol. Environ. Saf. 2014, 100, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Garland, J.L.; Mills, A.L. Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization. Appl. Environ. Microbiol. 1991, 57, 2351–2359. [Google Scholar] [CrossRef]
- Insam, H. A New Set of Substrates Proposed for Community Characterization in Environmental Samples. In Microbial Communities; Springer: Berlin/Heidelberg, Germany, 1997; pp. 259–260. [Google Scholar]
- Preston-Mafham, J.; Boddy, L.; Randerson, P.F. Analysis of Microbial Community Functional Diversity Using Sole-Carbon-Source Utilisation Profiles—A Critique. FEMS Microbiol. Ecol. 2002, 42, 1–14. [Google Scholar] [CrossRef]
- Weber, K.P.; Grove, J.A.; Gehder, M.; Anderson, W.A.; Legge, R.L. Data Transformations in the Analysis of Community-Level Substrate Utilization Data from Microplates. J. Microbiol. Methods 2007, 69, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Garland, J.L.; Mills, A.L.; Young, J.S. Relative Effectiveness of Kinetic Analysis vs Single Point Readings for Classifying Environmental Samples Based on Community-Level Physiological Profiles (CLPP). Soil Biol. Biochem. 2001, 33, 1059–1066. [Google Scholar] [CrossRef]
- Mondini, C.; Insam, H. Community Level Physiological Profiling as a Tool to Evaluate Compost Maturity: A Kinetic Approach. Eur. J. Soil Biol. 2003, 39, 141–148. [Google Scholar] [CrossRef]
- ISO 5814:1990; Water Quality—Determination of Dissolved Oxygen. Electrotechnical Probe Method. The International Organization for Standardization: Geneva, Switzerland, 1990.
- ISO 10523:2008; Water Quality—Determination of PH. The International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 7888:1985; Water Quality—Determination of Electrical Conductivity. The International Organization for Standardization: Geneva, Switzerland, 1985.
- ISO 7150-2:1986; Water Quality—Determination of Ammonium. Part 2: Automated Spectrometric Method. The International Organization for Standardization: Geneva, Switzerland, 1986.
- Merck Nitrate Test. Available online: https://www.merckmillipore.com/INTL/en/product/Nitrate-Test,MDA_CHEM-114773 (accessed on 14 May 2025).
- ISO 6878:2004; Water Quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method. The International Organization for Standardization: Geneva, Switzerland, 2004.
- BDS ISO 10260:2002; Water Quality—Measurement of Biochemical Parameters—Spectrometric Determination of the Chlorophyll-a Concentration. The International Organization for Standardization: Geneva, Switzerland, 2002.
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef]
- Peuravuori, J.; Pihlaja, K. Molecular Size Distribution and Spectroscopic Properties of Aquatic Humic Substances. Anal. Chim Acta 1997, 337, 133–149. [Google Scholar] [CrossRef]
- Battin, T.J. Dissolved Organic Matter and Its Optical Properties in a Blackwater Tributary of the Upper Orinoco River, Venezuela. Org. Geochem. 1998, 28, 561–569. [Google Scholar] [CrossRef]
- Ortiz, J.E.; Sánchez-Palencia, Y.; López-Cilla, I.; Morales-Molino, C.; Gardoki, J.; Torres, T.; Morellón, M. Lipid Biomarkers in High Mountain Lakes from the Cantabrian Range (Northern Spain): Coupling the Interplay Between Natural and Anthropogenic Drivers. Anthropocene 2024, 46, 100431. [Google Scholar] [CrossRef]
- Available online: https://www.biolog.com/wp-content/uploads/2023/08/00A-068-Rev-C-EcoPlate.pdf (accessed on 11 May 2025).
- Weber, K.P.; Legge, R.L. One-Dimensional Metric for Tracking Bacterial Community Divergence Using Sole Carbon Source Utilization Patterns. J. Microbiol. Methods 2009, 79, 55–61. [Google Scholar] [CrossRef]
- Magurran, A.E. Diversity Indices and Species Abundance Models. In Ecological Diversity and Its Measurement; Springer: Dordrecht, The Netherlands, 1988; pp. 7–45. [Google Scholar]
- Hintze, J.L. User’s Guide II Descriptive Statistics, Means, Quality Control, and Design of Experiments NCSS Statistical System; NCSS: Kaysville, UT, USA, 2007. [Google Scholar]
- Hammer, D.A.T.; Ryan, P.D.; Hammer, Ø.; Harper, D.A.T. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- NIMH 2015–2024. Available online: https://www.stringmeteo.com/synop/bg_climate.php (accessed on 29 April 2025).
- Nikolova, M.; Nojarov, P.; Nedkov, S. National Natural Heritage at Risk: The Seven Rila Lakes. J. Bulg. Geogr. Soc. 2021, 45, 67–80. [Google Scholar] [CrossRef]
- Battarbee, R.W.; Grytnes, J.; Thompson, R.; Appleby, P.G.; Catalan, J.; Korhola, A.; Birks, H.J.B.; Heegaard, E.; Lami, A. Comparing Palaeolimnological and Instrumental Evidence of Climate Change for Remote Mountain Lakes over the Last 200 Years. J. Paleolimnol. 2002, 28, 161–179. [Google Scholar] [CrossRef]
- Gudasz, C.; Bastviken, D.; Steger, K.; Premke, K.; Sobek, S.; Tranvik, L.J. Temperature-Controlled Organic Carbon Mineralization in Lake Sediments. Nature 2010, 466, 478–481. [Google Scholar] [CrossRef]
- Moran, M.A.; Covert, J.S. Photochemically Mediated Linkages between Dissolved Organic Matter and Bacterioplankton. In Aquatic Ecosystems; Elsevier: Amsterdam, The Netherland, 2003; pp. 243–262. [Google Scholar]
- Bertilsson, S.; Tranvik, L.J. Photochemical Transformation of Dissolved Organic Matter in Lakes. Limnol. Oceanogr. 2000, 45, 753–762. [Google Scholar] [CrossRef]
- Sommaruga, R.; Augustin, G. Seasonality in UV Transparency of an Alpine Lake Is Associated to Changes in Phytoplankton Biomass. Aquat. Sci. 2006, 68, 129–141. [Google Scholar] [CrossRef]
- Ivanov, K.; Sotirov, A.; Rozhdestvenski, A.; Vodenicharov, D. (Eds.) Lakes in Bulgaria. In Proceedings of the Institute of Hydrology and Meteorology; The Institute of Hydrology and Meteorology: Stara Zagora, Bulgaria, 1964; p. 242. [Google Scholar]
- Boteva, S.; Traykov, I.; Kenarova, A.; Bogoev, V. Abundance and Spatial Dynamics of Bacterioplankton in the Seven Rila Lakes, Bulgaria. Chin. J. Oceanol. Limnol. 2010, 28, 451–458. [Google Scholar] [CrossRef]
- Li, Y.; Gal, G.; Makler-Pick, V.; Waite, A.M.; Bruce, L.C.; Hipsey, M.R. Examination of the Role of the Microbial Loop in Regulating Lake Nutrient Stoichiometry and Phytoplankton Dynamics. Biogeosciences 2014, 11, 2939–2960. [Google Scholar] [CrossRef]
- Clarke, A.; Fraser, K.P.P. Why Does Metabolism Scale with Temperature? Funct. Ecol. 2004, 18, 243–251. [Google Scholar] [CrossRef]
- Smith, T.P.; Clegg, T.; Bell, T.; Pawar, S. Systematic Variation in the Temperature Dependence of Bacterial Carbon Use Efficiency. Ecol. Lett. 2021, 24, 2123–2133. [Google Scholar] [CrossRef]
- Nedwell, D.B.; Rutter, M. Influence of Temperature on Growth Rate and Competition between Two Psychrotolerant Antarctic Bacteria: Low Temperature Diminishes Affinity for Substrate Uptake. Appl. Environ. Microbiol. 1994, 60, 1984–1992. [Google Scholar] [CrossRef]
- Dory, F.; Cavalli, L.; Franquet, E.; Claeys-Bruno, M.; Misson, B.; Tatoni, T.; Bertrand, C. Summer Dynamics Drive the Microbial Response to Carbon and Nutrient Additions in a High-Altitude Lake. Limnol. Oceanogr. 2022, 67, 1142–1156. [Google Scholar] [CrossRef]
- Powers, S.M.; Fradkin, S.C.; Baccus, W.; Archambault, C.; Boetsch, J.R.; Brousil, M.R.; Lofgren, R.; Rawhouser, A.; Hampton, S.E. Summer Ecosystem Structure in Mountain Lakes Linked to Interannual Variability of Lake Ice, Snowpack, and Landscape Attributes. Limnol. Oceanogr. 2022, 67, 2073–2087. [Google Scholar] [CrossRef]
- Laybourn-Parry, J.; Marshall, W.A. Photosynthesis, Mixotrophy and Microbial Plankton Dynamics in Two High Arctic Lakes during Summer. Polar Biol. 2003, 26, 517–524. [Google Scholar] [CrossRef]
- Christoffersen, K.; Andersen, N.; Søndergaard, M.; Liboriussen, L.; Jeppesen, E. Implications of Climate-Enforced Temperature Increases on Freshwater Pico- and Nanoplankton Populations Studied in Artificial Ponds During 16 Months. Hydrobiologia 2006, 560, 259–266. [Google Scholar] [CrossRef]
- Boteva, S.; Stanachkova, M.; Traykov, I.; Angelova, B.; Kenarova, A. Bacterial Functional Responses to Environmental Variability: A Case Study in Three Distinct Mountain Lakes Within a Single Watershed. Biotechnol. Biotechnol. Equip. 2024, 38, 2418549. [Google Scholar] [CrossRef]
- Weiss, M.; Simon, M. Consumption of Labile Dissolved Organic Matter by Limnetic Bacterioplankton: The Relative Significance of Amino Acids and Carbohydrates. Aquat. Microb. Ecol. 1999, 17, 1–12. [Google Scholar] [CrossRef]
- Thornton, D.C.O. Dissolved Organic Matter (DOM) Release by Phytoplankton in the Contemporary and Future Ocean. Eur. J. Phycol. 2014, 49, 20–46. [Google Scholar] [CrossRef]
- Zhao, Y.; Shen, J.; Feng, J.; Wang, X. Relative Contributions of Different Sources to DOM in Erhai Lake as Revealed by PLS-PM. Chemosphere 2022, 299, 134377. [Google Scholar] [CrossRef]
- He, J.; Wu, X.; Zhi, G.; Yang, Y.; Wu, L.; Zhang, Y.; Zheng, B.; Qadeer, A.; Zheng, J.; Deng, W.; et al. Fluorescence Characteristics of DOM and Its Influence on Water Quality of Rivers and Lakes in the Dianchi Lake Basin. Ecol. Indic. 2022, 142, 109088. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, Y.; Tang, X.; Zhang, Y.; Zhu, G.; Székely, A.J.; Jeppesen, E. Eutrophication Alters Bacterial Co-Occurrence Networks and Increases the Importance of Chromophoric Dissolved Organic Matter Composition. Limnol. Oceanogr. 2021, 66, 2319–2332. [Google Scholar] [CrossRef]
- Beliaev, A.S.; Romine, M.F.; Serres, M.; Bernstein, H.C.; Linggi, B.E.; Markillie, L.M.; Isern, N.G.; Chrisler, W.B.; Kucek, L.A.; Hill, E.A.; et al. Inference of Interactions in Cyanobacterial–Heterotrophic Co-Cultures via Transcriptome Sequencing. ISME J. 2014, 8, 2243–2255. [Google Scholar] [CrossRef]
- Roth-Rosenberg, D.; Aharonovich, D.; Omta, A.W.; Follows, M.J.; Sher, D. Dynamic Macromolecular Composition and High Exudation Rates in Prochlorococcus. Limnol. Oceanogr. 2021, 66, 1759–1773. [Google Scholar] [CrossRef]
- Hanisch, H.-M.; Kölbel, S.; Rausch, M. A Modular Modelling, Controller Synthesis and Automatic Control Code Generation Framework. IFAC Proc. Vol. 1996, 29, 4917–4922. [Google Scholar] [CrossRef]
- Grover, J.; Chrzanowski, T. Seasonal Patterns of Substrate Utilization by Bacterioplankton: Case Studies in Four Temperate Lakes of Different Latitudes. Aquat. Microb. Ecol. 2000, 23, 41–54. [Google Scholar] [CrossRef]
- Rocha, A.C.S.; Almeida, C.M.R.; Basto, M.C.P.; Vasconcelos, M.T.S.D. Marsh Plant Response to Metals: Exudation of Aliphatic Low Molecular Weight Organic Acids (ALMWOAs). Estuar. Coast. Shelf Sci. 2016, 171, 77–84. [Google Scholar] [CrossRef]
- Nigam, R.; Srivastava, S.; Prakash, S.; Srivastava, M.M. Cadmium Mobilisation and Plant Availability—The Impact of Organic Acids Commonly Exuded from Roots. Plant Soil 2001, 230, 107–113. [Google Scholar] [CrossRef]
- Ficko, S.A.; Rutter, A.; Zeeb, B.A. Effect of Pumpkin Root Exudates on Ex Situ Polychlorinated Biphenyl (PCB) Phytoextraction by Pumpkin and Weed Species. Environ. Sci. Pollut. Res. 2011, 18, 1536–1543. [Google Scholar] [CrossRef] [PubMed]
- Ling, W.; Ren, L.; Gao, Y.; Zhu, X.; Sun, B. Impact of Low-Molecular-Weight Organic Acids on the Availability of Phenanthrene and Pyrene in Soil. Soil Biol. Biochem. 2009, 41, 2187–2195. [Google Scholar] [CrossRef]
- Boteva, S.; Kenarova, A.; Kancheva, V.; Aleksova, M.; Dimitrov, R.; Radeva, G. Long-Term Heavy Metal Pollution of Soils and Its Impact on Bacterial Carbon Metabolism. For. Ideas 2021, 27, 245–255. [Google Scholar]
- Petkova, M.; Kenarova, A.; Boteva, S.; Georgieva, S.; Chanev, C.; Radeva, G. Differences in Bacterial Functional Profiles from Loamy Sand and Clay Loam Textured Soils Under Fungicide QuadrisR Impact. BioRisk 2022, 17, 31–43. [Google Scholar] [CrossRef]
- Craig Maclean, R. Adaptive Radiation in Microbial Microcosms. J. Evol. Biol. 2005, 18, 1376–1386. [Google Scholar] [CrossRef]
Carbohydrates | Carboxylic Acids | Amino Acids | Polymers |
---|---|---|---|
G1: D-Cellobiose | B1: Pyruvic acid methyl ester | A4: L-Arginine | C1: Tween 40 |
H1: α-D-Lactose | F2: D-Glucosaminic acid | B4: L-Asparagine | D1: Tween 80 |
A2: β-Methyl-D-Glucoside | A3: D-Galactonic acid γ-lactone | C4: L-Phenylalanine | E1: α-Cyclodextrin |
B2: D-Xylose | B3: D-Galacturonic acid | D4: L-Serine | F1: Glycogen |
C2: i-Erythritol | C3: 2-Hydroxy benzoic acid | E4: L-Threonine | |
D2: D-Mannitol | D3: 4-Hydroxy benzoic acid | F4: β-Hydroxy-Glycyl-L-Glutamic acid | |
E2: N-Acetyl-D-Glucosamine | E3: γ-Amino butyric acid | ||
G2: Glucose-1-Phosphate | F3: Itaconic acid | Amines/amides | |
H2: D, L-α-Glycerol phosphate | G3: α-Keto butyric acid | G4: Phenylethylamine | |
H3: D-Malic acid | H4: Putrescine |
Lake | Index | June 2015 | August 2015 | October 2022 | August 2023 | October 2023 | June 2024 | August 2024 | October 2024 |
---|---|---|---|---|---|---|---|---|---|
Sul | H′ | 2.98 (0.12) | 3.02 (0.14) | 3.09 (0.15) | 3.16 (0.09) | 3.09 (0.16) | 3.23 (0.09) | 2.70 (0.23) | 3.14 (0.06) |
E | 0.63 (0.02) | 0.66 (0.04) | 0.71 (0.02) | 0.76 (0.03) | 0.71 (0.03) | 0.81 (0.03) | 0.48 (0.03) | 0.74 (0.10) | |
Oko | H′ | 3.12 (0.00) | 3.17 (0.00) | 3.00 (0.14) | 3.24 (0.09) | 3.15 (0.12) | 3.05 (0.01) | 2.86 (0.16) | 2.76 (0.16) |
E | 0.73 (0.00) | 0.76 (0.00) | 0.65 (0.02) | 0.83 (0.03) | 0.75 (0.03) | 0.68 (0.04) | 0.56 (0.03) | 0.51 (0.04) | |
Bub | H′ | 2.55 (0.17) | 2.76 (0.16) | 3.02 (0.17) | 3.29 (0.10) | 3.08 (0.18) | 3.16 (0.10) | 2.87 (0.19) | 2.58 (0.08) |
E | 0.41 (0.02) | 0.51 (0.02) | 0.66 (0.02) | 0.87 (0.03) | 0.70 (0.03) | 0.76 (0.04) | 0.57 (0.03) | 0.42 (0.03) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, B.; Traykov, I.; Boteva, S.; Tsvetkov, M.; Kenarova, A. Bacterial Metabolic Activity of High-Mountain Lakes in a Context of Increasing Regional Temperature. Microorganisms 2025, 13, 1375. https://doi.org/10.3390/microorganisms13061375
Angelova B, Traykov I, Boteva S, Tsvetkov M, Kenarova A. Bacterial Metabolic Activity of High-Mountain Lakes in a Context of Increasing Regional Temperature. Microorganisms. 2025; 13(6):1375. https://doi.org/10.3390/microorganisms13061375
Chicago/Turabian StyleAngelova, Boyanka, Ivan Traykov, Silvena Boteva, Martin Tsvetkov, and Anelia Kenarova. 2025. "Bacterial Metabolic Activity of High-Mountain Lakes in a Context of Increasing Regional Temperature" Microorganisms 13, no. 6: 1375. https://doi.org/10.3390/microorganisms13061375
APA StyleAngelova, B., Traykov, I., Boteva, S., Tsvetkov, M., & Kenarova, A. (2025). Bacterial Metabolic Activity of High-Mountain Lakes in a Context of Increasing Regional Temperature. Microorganisms, 13(6), 1375. https://doi.org/10.3390/microorganisms13061375