Changes in Soil Microbial Community Structure and Assembly Process Under Different Forest Restoration Strategies in Cold Temperate Forests of Northeastern China
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Experimental Design and Sample Collection
2.3. Determination of Soil Chemical Properties
2.4. DNA Extraction
2.5. Bioinformatics Analysis
2.6. Statistical Analysis
3. Results
3.1. Soil Chemical Properties
3.2. Soil Microbial Diversity and Composition
3.3. Drivers Affecting Soil Microbial Communities
3.4. The Community Assembly Process of Soil Microbial Communities
4. Discussion
4.1. Effects on Microbial Diversity (α and β)
4.2. Relationship Between Microbiome and Soil Properties
4.3. Assembly Processes (Deterministic vs. Stochastic)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Ali, A. Linking forest ecosystem processes, functions and services under integrative social-ecological research agenda: Current knowledge and perspectives. Sci. Total Environ. 2023, 892, 164768. [Google Scholar] [CrossRef] [PubMed]
- Delang, C.; Wang, W. Chinese Forest Policy Reforms After 1998: The Case of the Natural Forest Protection Program and the Slope Land Conversion Program. Int. For. Rev. 2013, 15, 290–304. [Google Scholar] [CrossRef]
- Wang, H.; He, M.; Ran, N.; Xie, D.; Wang, Q.; Teng, M.; Wang, P. China’s Key Forestry Ecological Development Programs: Implementation, Environmental Impact and Challenges. Forests 2021, 12, 101. [Google Scholar] [CrossRef]
- Kang, D.; Lv, J.; Li, S.; Chen, X.; Wang, X.; Li, J. Integrating indices to evaluate the effect of artificial restoration based on different comparisons in the Wanglang Nature Reserve. Ecol. Indic. 2018, 91, 423–428. [Google Scholar] [CrossRef]
- van Oosten, C.; Gunarso, P.; Koesoetjahjo, I.; Wiersum, F. Governing Forest Landscape Restoration: Cases from Indonesia. Forests 2014, 5, 1143–1162. [Google Scholar] [CrossRef]
- Cheng, C.; Li, F. Ecosystem restoration and management based on nature-based solutions in China: Research progress and representative practices. Nat.-Based Solut. 2024, 6, 100176. [Google Scholar] [CrossRef]
- Ren, X.; Lv, Y.; Li, M. Evaluating, differences in forest fragmentation and restoration between western natural forests and southeastern plantation forests in the United States. J. Environ. Manag. 2017, 188, 268–277. [Google Scholar] [CrossRef]
- Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Peña-Arancibia, J.L.; et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 2022, 376, 839–844. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, Z.; Zhang, L.; Xiong, D. Effects of Different Regenerated Models on Soil Nitrogen Mineralization in Subtropical Evergreen Broad-Leaved Forest. Sci. Silvae Sin. 2021, 57, 24–31. [Google Scholar]
- Frac, M.; Hannula, S.E.; Belka, M.; Jedryczka, M. Fungal Biodiversity and Their Role in Soil Health. Front. Microbiol. 2018, 9, 707. [Google Scholar] [CrossRef] [PubMed]
- Nizamani, M.M.; Hughes, A.C.; Qureshi, S.; Zhang, Q.; Tarafder, E.; Das, D.; Acharya, K.; Wang, Y.; Zhang, Z.-G. Microbial biodiversity and plant functional trait interactions in multifunctional ecosystems. Appl. Soil Ecol. 2024, 201, 105515. [Google Scholar] [CrossRef]
- Yan, G.; Luo, X.; Huang, B.; Wang, H.; Sun, X.; Gao, H.; Zhou, M.; Xing, Y.; Wang, Q. Assembly processes, driving factors, and shifts in soil microbial communities across secondary forest succession. Land Degrad. Dev. 2023, 34, 3130–3143. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, Y.; Shen, L.; Wen, C.; Yan, Q.; Ning, D.; Qin, Y.; Xue, K.; Wu, L.; He, Z.; et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 2016, 7, 12083. [Google Scholar] [CrossRef] [PubMed]
- von Cossel, M.; Druecker, H.; Hartung, E. Low-Input Estimation of Site-Specific Lime Demand Based on Apparent Soil Electrical Conductivity and In Situ Determined Topsoil pH. Sensors 2019, 19, 5280. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Andrade, L.N.; Araujo, S.F.; Matos, A.T.; Henriques, A.B.; Oliveira, L.C.; Souza, P.P.; Chagas, P.; Leão, M.M.D.; Amorim, C.C. Performance of different oxidants in the presence of oxisol: Remediation of groundwater contaminated by gasoline/ethanol blend. Chem. Eng. J. 2017, 308, 428–437. [Google Scholar] [CrossRef]
- Naghizade, R.; Zandi, M.S.; Hosseini, S.M.A. Electrochemical noise analysis of corrosion behaviour of asymmetric electrodes made of mild steel in NaHCO3 solutions at different NaCl concentrations. Measurement 2020, 155, 107501. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sharma, A.; Rana, S.; Kumar, N. Evaluation of multi-nutrient extractants for determination of available P, K, and micronutrient cations in soil. J. Plant Nutr. 2018, 41, 782–792. [Google Scholar] [CrossRef]
- Wang, H.; Pijl, A.; Liu, B.; Wamelink, W.; Korthals, G.W.; Costa, O.Y.A.; Kuramae, E.E. A Comparison of Different Protocols for the Extraction of Microbial DNA Inhabiting Synthetic Mars Simulant Soil. Microorganisms 2024, 12, 760. [Google Scholar] [CrossRef]
- Wang, M.; Frey, B.; Li, D.; Liu, X.; Chen, C.; Liu, Y.; Zhang, R.; Sui, X.; Li, M.-H. Effects of organic nitrogen addition on soil microbial community assembly patterns in the Sanjiang Plain wetlands, northeastern China. Appl. Soil Ecol. 2024, 204, 105685. [Google Scholar] [CrossRef]
- Wynne, J.W.; Rigby, M.L.; Maynard, B.T.; Taylor, R.S. Improved environmental detection of Neoparamoeba perurans using sensitive RNA-based qPCR. J. Fish Dis. 2024, 47, e13879. [Google Scholar] [CrossRef] [PubMed]
- Halsey, C.; Fisher, C.; Gibson, B.; Vyas, P.; Graham, G. Analysis of GATA-1 Mutations in Chronic Myeloid Leukaemia. Blood 2006, 108, 4774. [Google Scholar] [CrossRef]
- Bravo, A.M.; Typas, A.; Veening, J.-W. 2FAST2Q: A general-purpose sequence search and counting program for FASTQ files. PeerJ 2022, 10, e14041. [Google Scholar] [CrossRef]
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014, 30, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Zito, A.; Rigon, T.; Dunson, D.B. Inferring taxonomic placement from DNA barcoding aiding in discovery of new taxa. Methods Ecol. Evol. 2023, 14, 529–542. [Google Scholar] [CrossRef]
- Korobeynikov, A.; Lapidus, A. Selected abstracts of Bioinformatics: From Algorithms to Applications 2021 Conference. BMC Bioinform. 2021, 22, 591. [Google Scholar] [CrossRef]
- Abbas, T.; Zhou, H.; Zhang, Q.; Li, Y.; Liang, Y.; Di, H.; Zhao, Y. Anammox co-fungi accompanying denitrifying bacteria are the thieves of the nitrogen cycle in paddy-wheat crop rotated soils. Environ. Int. 2019, 130, 104913. [Google Scholar] [CrossRef]
- de Lima, R.P.; Tormena, C.A.; Figueiredo, G.C.; da Silva, A.R.; Rolim, M.M. Least limiting water and matric potential ranges of agricultural soils with calculated physical restriction thresholds. Agric. Water Manag. 2020, 240, 106299. [Google Scholar] [CrossRef]
- Khomutovska, N.; Jasser, I.; Isidorov, V.A. Unraveling the Role of Bacteria in Nitrogen Cycling: Insights from Leaf Litter Decomposition in the Knyszyn Forest. Forests 2024, 15, 1065. [Google Scholar] [CrossRef]
- Zeng, Y.; Guo, X.; Lei, J.; Shi, Y.; Liu, X.; Dai, T.; Zhang, Q.; Gao, Q.; Chu, H.; Liu, Y.; et al. Regional microbial biogeography linked to soil respiration. Sci. Total Environ. 2024, 929, 172263. [Google Scholar] [CrossRef] [PubMed]
- Sloan, W.T.; Lunn, M.; Woodcock, S.; Head, I.M.; Nee, S.; Curtis, T.P. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 2006, 8, 732–740. [Google Scholar] [CrossRef]
- Xu, S.; Chen, M.; Feng, T.; Zhan, L.; Zhou, L.; Yu, G. Use ggbreak to Effectively Utilize Plotting Space to Deal With Large Datasets and Outliers. Front. Genet. 2021, 12, 774846. [Google Scholar] [CrossRef]
- Cui, Z.; Cui, Y.; Zang, T.; Wang, Y. Genome analysis interacCircos: An R package based on JavaScript libraries for the generation of interactive circos plots. Bioinformatics 2021, 37, 3642–3644. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.-H.; Yu, G.; Cai, P. ggVennDiagram: An Intuitive, Easy-to-Use, and Highly Customizable R Package to Generate Venn Diagram. Front. Genet. 2021, 12, 706907. [Google Scholar] [CrossRef]
- Foster, Z.S.L.; Sharpton, T.J.; Grunwald, N.J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 2017, 13, e1005404. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Li, Y.; Luo, Y.; Dai, Y.; Qin, J.; Liu, N.; Xu, R.; Li, X.; Zhang, P. Analysis of glutathione Stransferase mu class 5 gene methylation as a prognostic indicator in low-grade gliomas. Technol. Health Care 2024, 32, 3925–3942. [Google Scholar] [CrossRef]
- Hodges, C.B.; Stone, B.M.; Johnson, P.K.; Carter, J.H.; Sawyers, C.K.; Roby, P.R.; Lindsey, H.M. Researcher degrees of freedom in statistical software contribute to unreliable results: A comparison of nonparametric analyses conducted in SPSS, SAS, Stata, and R. Behav. Res. Methods 2023, 55, 2813–2837. [Google Scholar] [CrossRef]
- Sun, S.; Li, S.; Avera, B.N.; Strahm, B.D.; Badgley, B.D. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration. Appl. Environ. Microbiol. 2017, 83, e00966-17. [Google Scholar] [CrossRef]
- Yang, Y.; Li, T.; Wang, Y.; Cheng, H.; Chang, S.X.; Liang, C.; An, S. Negative effects of multiple global change factors on soil microbial diversity. Soil Biol. Biochem. 2021, 156, 108229. [Google Scholar] [CrossRef]
- Wang, C.; Kuzyakov, Y. Mechanisms and implications of bacterial-fungal competition for soil resources. ISME J. 2024, 18, wrae073. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, S.; Wang, C.; Lan, M.; Yang, S.; Luo, S.; Li, R.; Xia, J.; Xiao, B.; Xie, L.; et al. The Changes, Aggregation Processes, and Driving Factors for Soil Fungal Communities during Tropical Forest Restoration. J. Fungi 2024, 10, 27. [Google Scholar] [CrossRef]
- Zhu, P.; Hu, X.; Zou, Q.; Yang, X.; Jiang, B.; Zuo, J.; Bai, X.; Song, J.; Wu, N.; Hou, Y. Shifts in fungal community diversity and potential function under natural forest succession and planted forest restoration in the Kunyu Mountains, East China. Ecol. Evol. 2024, 14, e70055. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Xing, Y.; Liu, G.; Hu, C.; Wang, X.; Yan, G.; Wang, Q. Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests. Soil Biol. Biochem. 2021, 161, 108393. [Google Scholar] [CrossRef]
- Che, Y.; Jin, G. Plant–soil microbial diversity and structural attributes jointly dominate the multifunctionality of the temperate forest. Ecol. Indic. 2024, 166, 112282. [Google Scholar] [CrossRef]
- Wang, M.; Masoudi, A.; Wang, C.; Yang, J.; Zhai, Y.; Wu, C.; Yu, Z.; Liu, J. Plantation type and afforestation age disclose variable influences on soil microbial compositions in man-made forests in the Xiong’an New Area, China. Land Degrad. Dev. 2022, 33, 3058–3073. [Google Scholar] [CrossRef]
- Afzal, M.Y.; Das, B.K.; Valappil, V.T.; Scaria, J.; Brozel, V.S. Root exudate compounds change the bacterial community in bulk soil. Rhizosphere 2024, 30, 100885. [Google Scholar] [CrossRef]
- Wu, S.-H.; Huang, B.-H.; Huang, C.-L.; Li, G.; Liao, P.-C. The Aboveground Vegetation Type and Underground Soil Property Mediate the Divergence of Soil Microbiomes and the Biological Interactions. Microb. Ecol. 2018, 75, 434–446. [Google Scholar] [CrossRef]
- Banning, N.C.; Grant, C.D.; Jones, D.L.; Murphy, D.V. Recovery of soil organic matter, organic matter turnover and nitrogen cycling in a post-mining forest rehabilitation chronosequence. Soil Biol. Biochem. 2008, 40, 2021–2031. [Google Scholar] [CrossRef]
- Nadelhoffer, K.J.; Boone, R.D.; Bowden, R.D.; Canary, J.D.; Micks, P.; Ricca, A.; Aitkenhead, J.A.; Lajtha, K.; McDowell, W.H. Chapter 15. The DIRT experiment: Litter and root influences on forest soil organic matter stocks and function. In Forests in Time: The Environmental Consequences of 1000 Years of Change in New England; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Gunina, A.; Smith, A.R.; Godbold, D.L.; Jones, D.L.; Kuzyakov, Y. Response of soil microbial community to afforestation with pure and mixed species. Plant Soil 2017, 412, 357–368. [Google Scholar] [CrossRef]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H.; et al. Structure and function of the global topsoil microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 2024, 22, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Telagathoti, A.; Probst, M.; Mandolini, E.; Peintner, U. Mortierellaceae from subalpine and alpine habitats: New species of Entomortierella, Linnemannia, Mortierella, Podila and Tyroliella gen. nov. Stud. Mycol. 2022, 103, 25–58. [Google Scholar] [CrossRef]
- Napier, J.D.; Heckman, R.W.; Juenger, T.E. Gene-by-environment interactions in plants: Molecular mechanisms, environmental drivers, and adaptive plasticity. Plant Cell 2023, 35, 109–124. [Google Scholar] [CrossRef]
- Das, K.; Ghosh, A.; Bhatt, R.P.; Chakraborty, D.; Hofstetter, V.; Buyck, B. Fungal Biodiversity Profiles 41–50. Cryptogam. Mycol. 2017, 38, 527–547. [Google Scholar] [CrossRef]
- Shen, H.; Yang, B.; Wang, H.; Sun, W.; Jiao, K.; Qin, G. Changes in Soil Ectomycorrhizal Fungi Community in Oak Forests along the Urban-Rural Gradient. Forests 2022, 13, 675. [Google Scholar] [CrossRef]
- Heinonsalo, J.; Sun, H.; Santalahti, M.; Backlund, K.; Hari, P.; Pumpanen, J. Evidences on the Ability of Mycorrhizal Genus Piloderma to Use Organic Nitrogen and Deliver It to Scots Pine. PLoS ONE 2015, 10, e0131561. [Google Scholar] [CrossRef]
- Wang, H.; Kuang, S.; Lang, Q.; Yu, W. Effects of Aged Oil Sludge on Soil Physicochemical Properties and Fungal Diversity Revealed by High-Throughput Sequencing Analysis. Archaea 2018, 2018, 9264259. [Google Scholar] [CrossRef]
- Du, C.; Geng, Z.; Wang, Q.; Zhang, T.; He, W.; Hou, L.; Wang, Y. Variations in bacterial and fungal communities through soil depth profiles in a Betula albosinensis forest. J. Microbiol. 2017, 55, 684–693. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Ji, X. Effects of afforestation on soil fungi in rocky mountain areas of North China. Land Degrad. Dev. 2023, 34, 5454–5467. [Google Scholar] [CrossRef]
- Zhang, A.-Y.; Zhang, M.-L.; Zhu, J.-L.; Mei, Y.; Xu, F.-J.; Bai, H.-Y.; Sun, K.; Zhang, W.; Dai, C.-C.; Jia, Y. Endofungal Bacterial Microbiota Promotes the Absorption of Chelated Inorganic Phosphorus by Host Pine through the Ectomycorrhizal System. Microbiol. Spectr. 2023, 11, e0016223. [Google Scholar] [CrossRef]
- Courty, P.E.; Labbe, J.; Kohler, A.; Marcais, B.; Bastien, C.; Churin, J.L.; Garbaye, J.; Le Tacon, F. Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. J. Exp. Bot. 2011, 62, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Mayerhofer, M.S.; Fraser, E.; Kernaghan, G. Acid protease production in fungal root endophytes. Mycologia 2015, 107, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.; Kou, Y. Ectomycorrhizal Fungi: Participation in Nutrient Turnover and Community Assembly Pattern in Forest Ecosystems. Forests 2020, 11, 453. [Google Scholar] [CrossRef]
- Fan, D.; Smith, D.L. Mucilaginibacter sp. K Improves Growth and Induces Salt Tolerance in Nonhost Plants via Multilevel Mechanisms. Front. Plant Sci. 2022, 13, 938697. [Google Scholar] [CrossRef]
- Tian, L.; Song, J.; Ren, Y.; Zhao, Q.; Li, Y.; Luo, X.; Li, N.; Li, T.; Wang, X. Biosynthesis and recycling of magnetite nanocatalysts from Fe-rich sludge. Resour. Conserv. Recycl. 2022, 182, 106348. [Google Scholar] [CrossRef]
- Ma, L.; Yang, L.; Liu, W.; Zhang, Y.; Zhou, Q.; Wu, Z.; He, F. Effects of root exudates on rhizosphere bacteria and nutrient removal in pond-ditch circulation systems (PDCSs) for rural wastewater treatment. Sci. Total Environ. 2021, 785, 147282. [Google Scholar] [CrossRef]
- Shi, J.; Wang, X.; Wang, E. Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems. Annu. Rev. Plant Biol. 2023, 74, 569–607. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, Z.; Deane, D.C.; Luo, W.; Chen, Y.; Cao, Y.; Lin, Y.; Zhang, M. The Effects of Species Abundance, Spatial Distribution, and Phylogeny on a Plant-Ectomycorrhizal Fungal Network. Front. Plant Sci. 2022, 13, 784778. [Google Scholar] [CrossRef]
- Etienne, R.S.; Alonso, D.; McKane, A.J. The zero-sum assumption in neutral biodiversity theory. J. Theor. Biol. 2007, 248, 522–536. [Google Scholar] [CrossRef]
- Yao, L.; Xu, Y.; Wu, C.; Deng, F.; Yao, L.; Ai, X.; Zang, R. Community Assembly of Forest Vegetation along Compound Habitat Gradients across Different Climatic Regions in China. Forests 2022, 13, 1593. [Google Scholar] [CrossRef]
- Huo, X.; Ren, C.; Wang, D.; Wu, R.; Wang, Y.; Li, Z.; Huang, D.; Qi, H. Microbial community assembly and its influencing factors of secondary forests in Qinling Mountains. Soil Biol. Biochem. 2023, 184, 109075. [Google Scholar] [CrossRef]
- Sheng, M.; Hu, W.; Liu, C.-Q.; Niu, M.; Jin, R.; Deng, J.; Wu, L.; Li, P.; Yan, Z.; Zhu, Y.-G.; et al. Characteristics and assembly mechanisms of bacterial and fungal communities in soils from Chinese forests across different climatic zones. Catena 2024, 245, 108306. [Google Scholar] [CrossRef]
- Xie, L.; Chen, S.; Zhang, W.; Zheng, X.; Ding, H.; Fang, Y. Converse (deterministic and stochastic) ecological process drive soil bacterial and fungal community assembly in subtropical forest. Appl. Soil Ecol. 2024, 193, 105129. [Google Scholar] [CrossRef]
- Yang, T.; Tedersoo, L.; Liu, X.; Gao, G.-F.; Dong, K.; Adams, J.M.; Chu, H. Fungi stabilize multi-kingdom community in a high elevation timberline ecosystem. iMeta 2022, 1, e49. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Ali, A.; Loreau, M.; Ding, F.; Liu, S.; Sanaei, A.; Zhou, W.; Ye, J.; Lin, F.; Fang, S.; et al. Divergent above- and below-ground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality. Glob. Chang. Biol. 2021, 27, 2883–2894. [Google Scholar] [CrossRef]
- Lan, G.; Quan, F.; Yang, C.; Sun, R.; Chen, B.; Zhang, X.; Wu, Z. Driving factors for soil fungal and bacterial community assembly in topical forest of China. Appl. Soil Ecol. 2022, 177, 104520. [Google Scholar] [CrossRef]
- Peng, W.; Song, M.; Du, H.; Jiang, S.; Zeng, F.; Chen, H.; Song, T. Assembly processes and networks of soil microbial communities along karst forest succession. Catena 2025, 248, 108574. [Google Scholar] [CrossRef]
- Yang, B.; Yang, Z.; He, K.; Zhou, W.; Feng, W. Soil Fungal Community Diversity, Co-Occurrence Networks, and Assembly Processes under Diverse Forest Ecosystems. Microorganisms 2024, 12, 1915. [Google Scholar] [CrossRef]
- Koutika, L.-S. Influence of human activities on soil microbial diversity, carbon sequestration, and resilience in Central African Forest Ecosystems. Soil Adv. 2025, 3, 100026. [Google Scholar] [CrossRef]
- Pérez-Izquierdo, L.; Rincón, A.; Lindahl, B.D.; Buée, M. Chapter 13—Fungal community of forest soil: Diversity, functions, and services. In Forest Microbiology; Asiegbu, F.O., Kovalchuk, A., Eds.; Forest Microbiology; Academic Press: Cambridge, MA, USA, 2021; pp. 231–255. ISBN 978-0-12-822542-4. [Google Scholar]
- Yang, H.; Yao, B.; Lian, J.; Su, Y.; Li, Y. Tree species-dependent effects of afforestation on soil fungal diversity, functional guilds and co-occurrence networks in northern China. Environ. Res. 2024, 263, 120258. [Google Scholar] [CrossRef] [PubMed]
Sample | SOC (%) | DOC (g/kg) | TN (g/kg) | AN (mg/kg) | AP (mg/kg) | AK (mg/kg) | pH |
---|---|---|---|---|---|---|---|
CK | 11.05 ± 0.08 a | 87.79 ± 1.57 a | 5.15 ± 0.2 a | 399.5 ± 11.17 a | 10.52 ± 0.54 b | 12.59 ± 0.46 b | 5.74 ± 0.06 b |
NR | 2.28 ± 0.12 b | 27.99 ± 1.46 b | 1.87 ± 0.1 b | 186.61 ± 2.66 b | 9.31 ± 0.18 b | 11.07 ± 0.25 c | 6.09 ± 0.05 a |
AR | 2.02 ± 0.1 c | 24.7 ± 0.85 c | 1.39 ± 0.05 c | 124.76 ± 8.92 c | 37.14 ± 1.24 a | 17.7 ± 0.23 a | 5.54 ± 0.03 c |
Microbial Community | Sample | Shannon Index | Simpson Index | Ace Index | Chao1 Index |
---|---|---|---|---|---|
Bacteria | CK | 5.866 ± 0.066 a | 0.983 ± 0.003 a | 4301.782 ± 96.052 a | 4213.372 ± 98.843 a |
NR | 6 ± 0.137 a | 0.987 ± 0.003 a | 4932.454 ± 912.191 a | 4801.497 ± 1013.265 a | |
AR | 5.756 ± 0.135 a | 0.977 ± 0.007 a | 4285.922 ± 193.553 a | 4164.067 ± 239.993 a | |
Fungi | CK | 2.938 ± 0.172 b | 0.81 ± 0.04 b | 710.818 ± 30.715 a | 721.697 ± 37.061 a |
NR | 3.984 ± 0.259 a | 0.957 ± 0.01 a | 792.697 ± 96.283 a | 808.458 ± 95.75 a | |
AR | 3.084 ± 0.235 b | 0.843 ± 0.04 b | 684.046 ± 32.371 a | 704.565 ± 47.596 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, R.; Wang, M.; Zhang, Y.; Wang, H.; Meng, X.; Gao, X.; Zhang, Y.; Sui, X.; Li, M. Changes in Soil Microbial Community Structure and Assembly Process Under Different Forest Restoration Strategies in Cold Temperate Forests of Northeastern China. Microorganisms 2025, 13, 1339. https://doi.org/10.3390/microorganisms13061339
Luo R, Wang M, Zhang Y, Wang H, Meng X, Gao X, Zhang Y, Sui X, Li M. Changes in Soil Microbial Community Structure and Assembly Process Under Different Forest Restoration Strategies in Cold Temperate Forests of Northeastern China. Microorganisms. 2025; 13(6):1339. https://doi.org/10.3390/microorganisms13061339
Chicago/Turabian StyleLuo, Rongze, Mingyu Wang, Youjia Zhang, Hong Wang, Xiangyu Meng, Xin Gao, Yuhe Zhang, Xin Sui, and Maihe Li. 2025. "Changes in Soil Microbial Community Structure and Assembly Process Under Different Forest Restoration Strategies in Cold Temperate Forests of Northeastern China" Microorganisms 13, no. 6: 1339. https://doi.org/10.3390/microorganisms13061339
APA StyleLuo, R., Wang, M., Zhang, Y., Wang, H., Meng, X., Gao, X., Zhang, Y., Sui, X., & Li, M. (2025). Changes in Soil Microbial Community Structure and Assembly Process Under Different Forest Restoration Strategies in Cold Temperate Forests of Northeastern China. Microorganisms, 13(6), 1339. https://doi.org/10.3390/microorganisms13061339