Quorum-Quenching Activity of Myrtus communis Corsican Essential Oil Against the Marine Bacterium Aliivibrio fischeri
Abstract
1. Introduction
2. Materials and Methods
2.1. Bioactive Substances
2.2. Column Chromatography of Myrtus communis EO
2.3. GC-FID Analysis
2.4. GC-MS Analysis
2.5. Identification of Individual Components
2.6. Bacterial Strains and Growth Conditions
2.7. Minimal Inhibitory Concentration Test
2.8. Swimming Mobility Test
2.9. Bioluminescence Perturbation Assay
2.10. Relative Antibiofilm Quantification
2.11. Statistical Analyses
3. Results
3.1. Selection of Essential Oils and Identification of Their Major Compounds
3.2. Chemical Composition of Myrtus communis EO and Its Chromatographic Fractions
3.3. Swimming Assay
3.4. Bioluminescence Assay
3.5. Biofilm Assay
3.6. Quorum-Quenching Activity of Myrtus communis EO and Its Chromatographic Fractions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinoj, G.; Vaseeharan, B.; Thomas, S.; Spiers, A.J.; Shanthi, S. Quorum-Quenching Activity of the AHL-Lactonase from Bacillus Licheniformis DAHB1 Inhibits Vibrio Biofilm Formation In Vitro and Reduces Shrimp Intestinal Colonisation and Mortality. Mar. Biotechnol. 2014, 16, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Defoirdt, T. Quorum-Sensing Systems as Targets for Antivirulence Therapy. Trends Microbiol. 2018, 26, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Fuqua, W.C.; Winans, S.C.; Greenberg, E.P. Quorum Sensing in Bacteria: The LuxR-LuxI Family of Cell Density-Responsive Transcriptional Regulators. J. Bacteriol. 1994, 176, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Nealson, K.H.; Platt, T.; Hastings, J.W. Cellular Control of the Synthesis and Activity of the Bacterial Luminescent System. J. Bacteriol. 1970, 104, 313–322. [Google Scholar] [CrossRef]
- Spacapan, M.; Bez, C.; Venturi, V. Quorum Sensing Going Wild. iScience 2023, 26, 108000. [Google Scholar] [CrossRef]
- Fung, B.L.; Visick, K.L. LitR and Its Quorum-Sensing Regulators Modulate Biofilm Formation by Vibrio fischeri. J. Bacteriol. 2025, 207, e00476-24. [Google Scholar] [CrossRef]
- Septer, A.N.; Visick, K.L. Lighting the Way: How the Vibrio fischeri Model Microbe Reveals the Complexity of Earth’s “Simplest” Life Forms. J. Bacteriol. 2024, 206, e0003524. [Google Scholar] [CrossRef]
- Fung, B.L.; Esin, J.J.; Visick, K.L. Vibrio fischeri: A Model for Host-Associated Biofilm Formation. J. Bacteriol. 2024, 206, e00370-23. [Google Scholar] [CrossRef]
- Frans, I.; Michiels, C.W.; Bossier, P.; Willems, K.A.; Lievens, B.; Rediers, H. Vibrio anguillarum as a Fish Pathogen: Virulence Factors, Diagnosis and Prevention. J. Fish Dis. 2011, 34, 643–661. [Google Scholar] [CrossRef]
- Lorenzoni, G.; Tedde, G.; Mara, L.; Bazzoni, A.M.; Esposito, G.; Salza, S.; Piras, G.; Tedde, T.; Bazzardi, R.; Arras, I.; et al. Presence, Seasonal Distribution, and Biomolecular Characterization of Vibrio parahaemolyticus and Vibrio vulnificus in Shellfish Harvested and Marketed in Sardinia (Italy) between 2017 and 2018. J. Food Prot. 2021, 84, 1549–1554. [Google Scholar] [CrossRef]
- Leighton, R.E.; Correa Vélez, K.E.; Xiong, L.; Creech, A.G.; Amirichetty, K.P.; Anderson, G.K.; Cai, G.; Norman, R.S.; Decho, A.W. Vibrio parahaemolyticus and Vibrio vulnificus In Vitro Colonization on Plastics Influenced by Temperature and Strain Variability. Front. Microbiol. 2023, 13, 1099502. [Google Scholar] [CrossRef] [PubMed]
- Kovács, J.K.; Felső, P.; Makszin, L.; Pápai, Z.; Horváth, G.; Ábrahám, H.; Palkovics, T.; Böszörményi, A.; Emődy, L.; Schneider, G. Antimicrobial and Virulence-Modulating Effects of Clove Essential Oil on the Foodborne Pathogen Campylobacter jejuni. Appl. Environ. Microbiol. 2016, 82, 6158–6166. [Google Scholar] [CrossRef]
- Poli, J.-P.; Guinoiseau, E.; Luciani, A.; Yang, Y.; Battesti, M.-J.; Paolini, J.; Costa, J.; Quilichini, Y.; Berti, L.; Lorenzi, V. Key Role of Hydrogen Peroxide in Antimicrobial Activity of Spring, Honeydew maquis and Chestnut Grove Corsican Honeys on Pseudomonas aeruginosa DNA. Lett. Appl. Microbiol. 2018, 66, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Bavarsad, N.; Kouchak, M.; Mohamadipour, P.; Sadeghi-Nejad, B. Preparation and Physicochemical Characterization of Topical Chitosan-Based Film Containing Griseofulvin-Loaded Liposomes. J. Adv. Pharm. Technol. Res. 2016, 7, 91. [Google Scholar] [CrossRef] [PubMed]
- Basavegowda, N.; Baek, K.-H. Synergistic Antioxidant and Antibacterial Advantages of Essential Oils for Food Packaging Applications. Biomolecules 2021, 11, 1267. [Google Scholar] [CrossRef]
- Bouzabata, A.; Castola, V.; Bighelli, A.; Abed, L.; Casanova, J.; Tomi, F. Chemical Variability of Algerian Myrtus communis L. Chem. Biodivers. 2013, 10, 129–137. [Google Scholar] [CrossRef]
- Barbosa, L.; Filomeno, C.; Teixeira, R. Chemical Variability and Biological Activities of Eucalyptus Spp. Essential Oils. Molecules 2016, 21, 1671. [Google Scholar] [CrossRef]
- Da Cruz, E.D.N.S.; Peixoto, L.D.S.; Da Costa, J.S.; Mourão, R.H.V.; Do Nascimento, W.M.O.; Maia, J.G.S.; Setzer, W.N.; Da Silva, J.K.; Figueiredo, P.L.B. Seasonal Variability of a Caryophyllane Chemotype Essential Oil of Eugenia patrisii Vahl Occurring in the Brazilian Amazon. Molecules 2022, 27, 2417. [Google Scholar] [CrossRef]
- De Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; De Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef]
- Couic-Marinier, F.; Lobstein, A. Composition chimique des huiles essentielles. Actual. Pharm. 2013, 52, 22–25. [Google Scholar] [CrossRef]
- Wijesundara, N.M.; Lee, S.F.; Cheng, Z.; Davidson, R.; Langelaan, D.N.; Rupasinghe, H.P.V. Bactericidal Activity of Carvacrol against Streptococcus pyogenes Involves Alteration of Membrane Fluidity and Integrity through Interaction with Membrane Phospholipids. Pharmaceutics 2022, 14, 1992. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.; Tambor, K.; Herman, A. Linalool Affects the Antimicrobial Efficacy of Essential Oils. Curr. Microbiol. 2016, 72, 165–172. [Google Scholar] [CrossRef]
- Wagle, B.R.; Upadhyay, A.; Upadhyaya, I.; Shrestha, S.; Arsi, K.; Liyanage, R.; Venkitanarayanan, K.; Donoghue, D.J.; Donoghue, A.M. Trans-Cinnamaldehyde, Eugenol and Carvacrol Reduce Campylobacter jejuni Biofilms and Modulate Expression of Select Genes and Proteins. Front. Microbiol. 2019, 10, 1837. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.J.; Nychas, G.-J.E. A Study of the Minimum Inhibitory Concentration and Mode of Action of Oregano Essential Oil, Thymol and Carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef]
- Asfour, H. Anti-Quorum Sensing Natural Compounds. J. Microsc. Ultrastruct. 2018, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Aljaafari, M.N.; AlAli, A.O.; Baqais, L.; Alqubaisy, M.; AlAli, M.; Molouki, A.; Ong-Abdullah, J.; Abushelaibi, A.; Lai, K.-S.; Lim, S.-H.E. An Overview of the Potential Therapeutic Applications of Essential Oils. Molecules 2021, 26, 628. [Google Scholar] [CrossRef]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Assessment of Factors Influencing Antimicrobial Activity of Carvacrol and Cymene against Vibrio cholerae in Food. J. Biosci. Bioeng. 2010, 110, 614–619. [Google Scholar] [CrossRef]
- Guinoiseau, E.; Luciani, A.; Rossi, P.G.; Quilichini, Y.; Ternengo, S.; Bradesi, P.; Berti, L. Cellular Effects Induced by Inula graveolens and Santolina corsica Essential Oils on Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 873–879. [Google Scholar] [CrossRef]
- Guinoiseau, E.; Lorenzi, V.; Luciani, A.; Tomi, F.; Casanova, J.; Berti, L. Susceptibility of the Multi-Drug Resistant Strain of Enterobacter aerogenes EA289 to the Terpene Alcohols from Cistus ladaniferus Essential Oil. Nat. Prod. Commun. 2011, 6, 1159–1162. [Google Scholar] [CrossRef]
- Poli, J.-P.; Guinoiseau, E.; De Rocca Serra, D.; Sutour, S.; Paoli, M.; Tomi, F.; Quilichini, Y.; Berti, L.; Lorenzi, V. Anti-Quorum Sensing Activity of 12 Essential Oils on Chromobacterium violaceum and Specific Action of Cis-Cis-p-Menthenolide from Corsican Mentha suaveolens ssp. Insularis. Molecules 2018, 23, 2125. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.-X.; Zeng, Y.-H.; Chen, H.-M.; Zhang, N.; Han, Y.; Long, H.; Xie, Z.-Y. Bioinformatic and Functional Characterization of Cyclic-Di-GMP Metabolic Proteins in Vibrio Alginolyticus Unveils Key Diguanylate Cyclases Controlling Multiple Biofilm-Associated Phenotypes. Front. Microbiol. 2023, 14, 1258415. [Google Scholar] [CrossRef] [PubMed]
- Miladinović, D.L.; Dimitrijević, M.V.; Mihajilov-Krstev, T.M.; Marković, M.S.; Ćirić, V.M. The Significance of Minor Components on the Antibacterial Activity of Essential Oil via Chemometrics. LWT 2021, 136, 110305. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Chibane, E.M.; Ouknin, M.; Renucci, F.; Costa, J.; Majidi, L. Chemical Profile, Antioxidant and Antifungal Activity of Essential Oil from Cladanthus eriolepis. J. Essent. Oil Bear. Plants 2020, 23, 1296–1305. [Google Scholar] [CrossRef]
- Afifi, S.M.; El-Mahis, A.; Heiss, A.G.; Farag, M.A. Gas Chromatography–Mass Spectrometry-Based Classification of 12 Fennel (Foeniculum vulgare Miller) Varieties Based on Their Aroma Profiles and Estragole Levels as Analyzed Using Chemometric Tools. ACS Omega 2021, 6, 5775–5785. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology. The NIST/EPA/NIH Mass Spectral Library; PC Version 2.1.2.19; Perkin-Elmer Corporation, NIST, U.S. Department of Commerce: Norwalk, CT, USA, 2014. [Google Scholar]
- Christensen, D.G.; Visick, K.L. Vibrio fischeri: Laboratory Cultivation, Storage, and Common Phenotypic Assays. CP Microbiol. 2020, 57, e103. [Google Scholar] [CrossRef]
- Čabarkapa, I.; Čolović, R.; Đuragić, O.; Popović, S.; Kokić, B.; Milanov, D.; Pezo, L. Anti-Biofilm Activities of Essential Oils Rich in Carvacrol and Thymol against Salmonella Enteritidis. Biofouling 2019, 35, 361–375. [Google Scholar] [CrossRef]
- Datta, S.; Singh, V.; Nag, S.; Roy, D.N. Carvacrol, a Monoterpenoid, Binds Quorum Sensing Proteins (LasI and LasR) and Swarming Motility Protein BswR of Pseudomonas aeruginosa, Resulting in Loss of Pathogenicity: An In Silico Approach. Can. J. Microbiol. 2025, 71, 1–15. [Google Scholar] [CrossRef]
- Lu, L.; Wang, J.; Qin, T.; Chen, K.; Xie, J.; Xi, B. Carvacrol Inhibits Quorum Sensing in Opportunistic Bacterium Aeromonas hydrophila. Microorganisms 2023, 11, 2027. [Google Scholar] [CrossRef]
- Abbas, A.; Anwar, F.; Alqahtani, S.M.; Ahmad, N.; Al-Mijalli, S.H.; Shahid, M.; Iqbal, M. Hydro-Distilled and Supercritical Fluid Extraction of Eucalyptus camaldulensis Essential Oil: Characterization of Bioactives Along with Antioxidant, Antimicrobial and Antibiofilm Activities. Dose-Response 2022, 20, 15593258221125477. [Google Scholar] [CrossRef] [PubMed]
- Qaralleh, H. Limonene as a Multi-Target Antibiofilm and Quorum Sensing Inhibitor Against Pseudomonas Aeruginosa. J. Basic Appl. Res. Biomed. 2024, 10, 80–88. [Google Scholar] [CrossRef]
- Wei, S.-Y.; Li, Y.-L.; Wang, L.; Chu, Z.-Y.; Qin, Y.-C.; Zeng, H. α-Pinene: Inhibitor of Acinetobacter Baumannii Biofilms and Potential Therapeutic Agent for Pneumonia. Int. Immunopharmacol. 2025, 151, 114287. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Baindara, P.; Sharma, P.; Jose, T.A.; V, K.; Manoharan, R.; Mandal, S.M. Anti-Biofilm Action of Cineole and Hypericum perforatum to Combat Pneumonia-Causing Drug-Resistant P. aeruginosa. Antibiotics 2024, 13, 689. [Google Scholar] [CrossRef]
- Karuppiah, V.; Thirunanasambandham, R.; Thangaraj, G. Anti-Quorum Sensing and Antibiofilm Potential of 1,8-Cineole Derived from Musa paradisiaca against Pseudomonas aeruginosa Strain PAO1. World J. Microbiol. Biotechnol. 2021, 37, 66. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef]
- Khwaza, V.; Aderibigbe, B.A. Antibacterial Activity of Selected Essential Oil Components and Their Derivatives: A Review. Antibiotics 2025, 14, 68. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The Phenolic Hydroxyl Group of Carvacrol Is Essential for Action against the Food-Borne Pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, A.; Jayasree, T.; Valliammai, A.; Pandian, S.K. Myrtenol Attenuates MRSA Biofilm and Virulence by Suppressing sarA Expression Dynamism. Front. Microbiol. 2019, 10, 2027. [Google Scholar] [CrossRef]
- Maione, A.; La Pietra, A.; De Alteriis, E.; Mileo, A.; De Falco, M.; Guida, M.; Galdiero, E. Effect of Myrtenol and Its Synergistic Interactions with Antimicrobial Drugs in the Inhibition of Single and Mixed Biofilms of Candida Auris and Klebsiella Pneumoniae. Microorganisms 2022, 10, 1773. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.H.; Choi, U.-L.; Chung, M.-S.; Yun, C.-H.; Shim, Y.; Oh, J.; Lee, S.; Lee, G.W. Molecular and Phenotypic Investigation on Antibacterial Activities of Limonene Isomers and Its Oxidation Derivative against Xanthomonas oryzae Pv. Oryzae. J. Microbiol. Biotechnol. 2024, 34, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Kanekar, S.; Fathima, F.; Rekha, P.-D. Carvone—A Quorum Sensing Inhibitor Blocks Biofilm Formation in Chromobacterium violaceum. Nat. Prod. Res. 2022, 36, 4540–4545. [Google Scholar] [CrossRef]
- Li, T.; Mei, Y.; He, B.; Sun, X.; Li, J. Reducing Quorum Sensing-Mediated Virulence Factor Expression and Biofilm Formation in Hafnia alvei by Using the Potential Quorum Sensing Inhibitor L-Carvone. Front. Microbiol. 2019, 9, 3324. [Google Scholar] [CrossRef] [PubMed]
- Sybiya Vasantha Packiavathy, I.A.; Agilandeswari, P.; Musthafa, K.S.; Karutha Pandian, S.; Veera Ravi, A. Antibiofilm and Quorum Sensing Inhibitory Potential of Cuminum cyminum and Its Secondary Metabolite Methyl Eugenol against Gram Negative Bacterial Pathogens. Food Res. Int. 2012, 45, 85–92. [Google Scholar] [CrossRef]
- Wang, W.; Lin, X.; Yang, H.; Huang, X.; Pan, L.; Wu, S.; Yang, C.; Zhang, L.; Li, Y. Anti-Quorum Sensing Evaluation of Methyleugenol, the Principal Bioactive Component, from the Melaleuca bracteata Leaf Oil. Front. Microbiol. 2022, 13, 970520. [Google Scholar] [CrossRef]
- Milton, D.L. Quorum Sensing in Vibrios: Complexity for Diversification. Int. J. Med. Microbiol. 2006, 296, 61–71. [Google Scholar] [CrossRef]
- Lupp, C.; Urbanowski, M.; Greenberg, E.P.; Ruby, E.G. The Vibrio fischeri Quorum-sensing Systems Ain and Lux. Sequentially Induce Luminescence Gene Expression and Are Important for Persistence in the Squid Host. Mol. Microbiol. 2003, 50, 319–331. [Google Scholar] [CrossRef]
- Dial, C.N.; Eichinger, S.J.; Foxall, R.; Corcoran, C.J.; Tischler, A.H.; Bolz, R.M.; Whistler, C.A.; Visick, K.L. Quorum Sensing and Cyclic Di-GMP Exert Control Over Motility of Vibrio fischeri KB2B1. Front. Microbiol. 2021, 12, 690459. [Google Scholar] [CrossRef] [PubMed]
- Lupp, C.; Ruby, E.G. Vibrio fischeri Uses Two Quorum-Sensing Systems for the Regulation of Early and Late Colonization Factors. J. Bacteriol. 2005, 187, 3620–3629. [Google Scholar] [CrossRef]
- Hu, J.-Y.; Zhang, X.-K.; Xin, C.-Q.; Zhang, L.; Kang, J.; Gong, P. Severe Infection by Vibrio anguillarum Following a Bite by a Marine Fish: A Case Report. Emerg. Microbes Infect. 2023, 12, 2204145. [Google Scholar] [CrossRef]
- Ng, Y.-K.; Grasso, M.; Wright, V.; Garcia, V.; Williams, P.; Atkinson, S. The Quorum Sensing System of Yersinia enterocolitica 8081 Regulates Swimming Motility, Host Cell Attachment, and Virulence Plasmid Maintenance. Genes 2018, 9, 307. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Patel, S.K.S.; Kharga, K.; Kumar, R.; Kumar, P.; Pandohee, J.; Kulshresha, S.; Harjai, K.; Chhibber, S. Molecular Mechanisms and Applications of N-Acyl Homoserine Lactone-Mediated Quorum Sensing in Bacteria. Molecules 2022, 27, 7584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, H.; Xie, Y.; Guo, Y.; Cheng, Y.; Yao, W. Inhibitory Effects of Hexanal on Acylated Homoserine Lactones (AHLs) Production to Disrupt Biofilm Formation and Enzymes Activity in Erwinia carotovora and Pseudomonas fluorescens. J. Food Sci. Technol. 2023, 60, 372–381. [Google Scholar] [CrossRef] [PubMed]
EOs | Major Compounds (>5%) |
---|---|
Eucalyptus globulus | 1,8-cineole 56.7%; α-Pinene 15%; Limonene 5.7% |
Eucalyptus polybractea | 1,8-cineole 25.6%; p-Cymene 19%; Spathulenol 6.2%; Crypton 6% |
Myrtus communis | α-Pinene 43%; 1,8-cineole 28.8%; Limonene 8.7% |
Rosmarinus officinalis | α-Pinene 42.5%; 1,8-cineole 9.8%; Camphene 8.6%; Bornyl acetate 7.5% |
Cymbopogon winterianus | Geranial 41.7%; Neral 31.5%; Geraniol 4.8% |
Lippia citriodora | Limonene 23.1%; Geranial 13.5%; Neral 9.9%; 1,8-cineole 8%; β-Caryophyllene 5.7%; Ar-curcumene 5% |
Pelargonium asperum | Citronellol 24.5%; Geraniol 15.1%; Citronellyl formate 10.5%; Linalol 6.8%; Isomenthone 6.7%; Geranyl formate 6.1% |
Lavandula hybrida | Linalol 37.3%; Linalyl acetate 34.4% |
Mentha piperita | Menthol 42.7%; Menthone 25.2%; 1,8-cineole 6%; Menthyl acetate 5% |
Inula graveolens | Bornyl acetate 53%; Borneol 19.3%; Camphene 6.4% |
Pistacia lentiscus | α-Pinene 25.9%; Myrcene 17.5%; α-Phellandrene 6.4% |
Origanum vulgaris | Carvacrol 62%; Terpinolene 10.1%; γ-Terpinene 8.3% |
No. | Components a,b | RIaLit | RIa BP-1 | RIp BP-20 | % EO | % F1 | % F2 | % F3 | % F4 |
---|---|---|---|---|---|---|---|---|---|
1 | Isobutyl isobutyrate a | 901 | 900 | 1094 | 0.4 | 0.3 | |||
2 | α-Thujene | 926 | 923 | 1019 | 0.4 | 0.6 | |||
3 | α-Pinene | 934 | 932 | 1019 | 43.0 | 70.4 | |||
4 | Sabinene | 968 | 966 | 1120 | 0.1 | 0.1 | |||
5 | β-Pinene | 973 | 971 | 1114 | 0.4 | 0.8 | |||
6 | Myrcene | 983 | 981 | 1163 | 0.1 | 0.2 | |||
7 | Isobutyl 2-methylbutyrate a | 988 | 988 | 1178 | 0.5 | 1.1 | |||
8 | 2-Methylbutyl isobutyrate a | 1003 | 1001 | 1200 | 0.2 | 0.5 | |||
9 | δ-3-Carene | 1007 | 1006 | 1151 | 0.4 | 0.8 | |||
10 | p-Cymene | 1015 | 1012 | 1274 | 2.3 | 5.6 | |||
11 | Limonene * | 1023 | 1022 | 1204 | 8.7 | 20.1 | |||
12 | 1,8-Cineole * | 1022 | 1022 | 1213 | 28.8 | 80.8 | |||
13 | Linalool oxyde | 1065 | 1059 | 1442 | 0.1 | 0.9 | |||
14 | Linalool | 1086 | 1087 | 1544 | 3.8 | 27.5 | |||
15 | 2-Methylbutyl 2-methylbutyrate a | 1090 | 1089 | 1282 | 0.6 | 1.8 | |||
16 | α-Campholenal | 1107 | 1105 | 1491 | tr | 0.8 | |||
17 | Cis-limonene oxide | 1118 | 1117 | 1459 | 0.1 | 0.3 | |||
18 | Trans-pinocarveol | 1126 | 1124 | 1654 | 0.3 | 0.2 | 2.3 | ||
19 | Trans-verbenol | 1133 | 1129 | 1677 | 0.4 | 3.6 | |||
20 | Pinocarvone | 1140 | 1139 | 1568 | tr | 0.5 | |||
21 | p-Cymen-8-ol | 1164 | 1160 | 1847 | 0.2 | 2.4 | |||
22 | Terpinene-4-ol | 1164 | 1162 | 1601 | 0.2 | 1.8 | |||
23 | Myrtenal | 1171 | 1169 | 1627 | tr | 0.7 | |||
24 | α-Terpineol | 1175 | 1172 | 1696 | 1.7 | 17.6 | |||
25 | Estragole b | 1175 | 1174 | 1687 | 0.1 | 0.4 | |||
26 | Myrtenol | 1182 | 1179 | 1792 | 0.1 | 0.2 | 0.7 | ||
27 | Verbenone | 1184 | 1182 | 1702 | 0.1 | 1.6 | |||
28 | Trans-carveol | 1201 | 1197 | 1834 | 0.1 | 0.3 | 1.7 | ||
29 | Carvone | 1218 | 1215 | 1739 | 0.1 | 4.2 | 0.3 | ||
30 | Geraniol | 1238 | 1234 | 1849 | 0.3 | 2.1 | |||
31 | Linalyl acetate | 1239 | 1239 | 1556 | 0.7 | 2.9 | 1.6 | ||
32 | Geranial | 1247 | 1243 | 1725 | 0.1 | 1.4 | |||
33 | α-Terpinyl acetate | 1333 | 1332 | 1696 | 0.5 | 2.0 | |||
34 | Neryl acetate | 1344 | 1339 | 1727 | 0.1 | 0.3 | |||
35 | Geranyl acetate | 1361 | 1359 | 1758 | 1.6 | 7.1 | |||
36 | Methyl eugenol | 1376 | 1369 | 2013 | 0.2 | 10.4 | 0.6 | ||
37 | E-β-caryophyllene | 1419 | 1417 | 1595 | 0.2 | 0.4 | |||
38 | α-Humulene | 1449 | 1455 | 1666 | tr | 0.2 | |||
39 | Caryophyllene oxide | 1570 | 1568 | 1975 | 0.3 | 33.5 | |||
40 | Humulene epoxide II | 1597 | 1593 | 2031 | 0.1 | 8.1 | |||
41 | Epicubenol | 1614 | 1616 | 2033 | tr | 0.2 | |||
Monoterpene hydrocarbons | 55.4 | 98.6 | |||||||
Oxygenated monoterpenes | 39.3 | 94.2 | 9.1 | 62.5 | |||||
Sesquiterpene hydrocarbons | 0.2 | 0.6 | |||||||
Oxygenated sesquiterpenes | 0.4 | 41.6 | 0.2 | ||||||
Others | 2.0 | 4.1 | 10.4 | 0.6 | |||||
Total | 97.3 | 99.2 | 98.3 | 61.1 | 63.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hardy, E.; Poli, J.-P.; Bighelli, A.; Paoli, M.; Maroselli, T.; Berti, L.; Guinoiseau, E. Quorum-Quenching Activity of Myrtus communis Corsican Essential Oil Against the Marine Bacterium Aliivibrio fischeri. Microorganisms 2025, 13, 1325. https://doi.org/10.3390/microorganisms13061325
Hardy E, Poli J-P, Bighelli A, Paoli M, Maroselli T, Berti L, Guinoiseau E. Quorum-Quenching Activity of Myrtus communis Corsican Essential Oil Against the Marine Bacterium Aliivibrio fischeri. Microorganisms. 2025; 13(6):1325. https://doi.org/10.3390/microorganisms13061325
Chicago/Turabian StyleHardy, Elisa, Jean-Pierre Poli, Ange Bighelli, Mathieu Paoli, Thomas Maroselli, Liliane Berti, and Elodie Guinoiseau. 2025. "Quorum-Quenching Activity of Myrtus communis Corsican Essential Oil Against the Marine Bacterium Aliivibrio fischeri" Microorganisms 13, no. 6: 1325. https://doi.org/10.3390/microorganisms13061325
APA StyleHardy, E., Poli, J.-P., Bighelli, A., Paoli, M., Maroselli, T., Berti, L., & Guinoiseau, E. (2025). Quorum-Quenching Activity of Myrtus communis Corsican Essential Oil Against the Marine Bacterium Aliivibrio fischeri. Microorganisms, 13(6), 1325. https://doi.org/10.3390/microorganisms13061325