A Comprehensive Safety Assessment of Ralstonia eutropha H16 for Food Applications: Integrating Genomic, Phenotypic, and Toxicological Analyzes
Abstract
1. Introduction
2. Materials and Methods
2.1. Genomic Properties of R. eutropha H16
2.2. The Physiological Features Analysis of R. eutropha H16
2.2.1. Bacterial Cultivation Conditions
2.2.2. Antibiotic Susceptibility Testing
2.2.3. Acid and Bile Salt Tolerance
2.2.4. Simulated Digestive Fluid Survival
2.2.5. Antioxidant Activity Assays
2.2.6. Biofilm Formation Quantification
2.2.7. Self-Aggregation and Hydrophobicity Evaluation
2.3. Animals’ Experiment
2.3.1. Animal Husbandry
2.3.2. Acute Toxicity Assessment
2.3.3. Subacute Toxicity Evaluation
2.3.4. Blood and Serum Collection
2.3.5. Organ Coefficient Calculation
2.3.6. Histopathological Analysis
2.4. Statistical Analysis
3. Results and Analysis
3.1. Genomic Features and Functional Annotation
3.2. Virulence and Resistance Analysis
3.3. Antibiotic Susceptibility Test Results
3.4. The Gastrointestinal Tolerance and Colonization Ability of R. eutropha H16
3.4.1. Tolerance to Low pH, Bile Salts, SGF, and SIF
3.4.2. Antioxidant Capacity
3.4.3. Surface Adhesion Properties
3.5. Acute Toxicity Assessment Results
3.6. Subacute Toxicity Evaluation Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.; Yang, X.; Zeng, D.; Su, Y.; Zhang, Y. Microbial conversion of syngas to single cell protein: The role of carbon monoxide. Chem. Eng. J. 2022, 450, 138041. [Google Scholar] [CrossRef]
- Pohlmann, A.; Fricke, W.F.; Reinecke, F.; Kusian, B.; Liesegang, H.; Cramm, R.; Eitinger, T.; Ewering, C.; Pötter, M.; Schwartz, E.; et al. Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat. Biotechnol. 2006, 24, 1257–1262. [Google Scholar] [CrossRef]
- Hanko, E.K.R.; Sherlock, G.; Minton, N.P.; Malys, N. Biosensor-informed engineering of Cupriavidus necator H16 for autotrophic D-mannitol production. Metab. Eng. 2022, 72, 24–34. [Google Scholar] [CrossRef]
- Raberg, M.; Volodina, E.; Lin, K.; Steinbüchel, A. Ralstonia eutropha H16 in progress: Applications beside PHAs and establishment as production platform by advanced genetic tools. Crit. Rev. Biotechnol. 2017, 38, 494–510. [Google Scholar] [CrossRef]
- Lee, Y.J.; Moon, B.C.; Lee, D.K.; Ahn, J.H.; Gong, G.; Um, Y.; Lee, S.-M.; Kim, K.H.; Ko, J.K. Sustainable production of microbial protein from carbon dioxide in the integrated bioelectrochemical system using recycled nitrogen sources. Water Res. 2025, 268, 122576. [Google Scholar] [CrossRef]
- Yu, J. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products. World J. Microbiol. Biotechnol. 2018, 34, 89. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Ahmadi, F.; Kariman, K.; Lackner, M. Recent advances and challenges in single cell protein (SCP) technologies for food and feed production. NPJ Sci. Food 2024, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Jiang, Y.; Huang, J.; Luo, K.; Fan, X.; Guo, R.; Liu, T.; Zhang, Y.; Fu, S. Simultaneous biogas upgrading and single cell protein production using hydrogen oxidizing bacteria. Chem. Eng. J. 2024, 490, 151576. [Google Scholar] [CrossRef]
- Wang, L.; Yao, J.; Tu, T.; Yao, B.; Zhang, J. Heterotrophic and autotrophic production of L-isoleucine and L-valine by engineered Cupriavidus necator H16. Bioresour. Technol. 2024, 398, 130538. [Google Scholar] [CrossRef]
- Tang, R.; Xu, R.; Gao, X.; Dai, C.; Qin, X.; Yang, J. Production of α-amylase from gluconate and carbon dioxide by protein synthesis and secretion optimization in Cupriavidus necator H16. Bioresour. Technol. 2025, 416, 131744. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Ng, I.S. Biofabrication of polyhydroxybutyrate (PHB) in engineered Cupriavidus necator H16 from waste molasses. J. Taiwan. Inst. Chem. Eng. 2025, 167, 105843. [Google Scholar] [CrossRef]
- Sirohi, R.; Prakash Pandey, J.; Kumar Gaur, V.; Gnansounou, E.; Sindhu, R. Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresour. Technol. 2020, 311, 123536. [Google Scholar] [CrossRef] [PubMed]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; Lindqvist, R.; et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 11: Suitability of taxonomic units notified to EFSA until September 2019. EFSA J. 2020, 18, e05965. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, D.; Mallappa, R.H.; Grover, S. Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control 2020, 108, 106872. [Google Scholar] [CrossRef]
- Liu, H.; Ma, J.; Yang, P.; Geng, F.; Li, X.; Lü, J.; Wang, Y. Comparative analysis of biofilm characterization of probiotic Escherichia coli. Front. Microbiol. 2024, 15, 1365562. [Google Scholar] [CrossRef]
- Peng, Y.-Y.; Zhong, S.-Y.; Xu, X.-L.; Liu, D.-M. Analysis of the safety and probiotic properties of Bifidobacterium longum B2-01 by complete genome sequencing combined with corresponding phenotypes. LWT 2023, 189, 115445. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, K.; Nie, K.; Deng, M.; Luo, W.; Wu, X.; Huang, Y.; Wang, X. Assessment of the safety and probiotic properties of Roseburia intestinalis: A potential “Next Generation Probiotic”. Front. Microbiol. 2022, 13, 973046. [Google Scholar] [CrossRef]
- Feng, S.; Wang, H.; Lin, X.; Liang, H.; Zhang, S.; Chen, Y.; Ji, C. Probiotic properties of Lactobacillus plantarum and application in prebiotic gummies. LWT 2023, 174, 114357. [Google Scholar] [CrossRef]
- Gu, X.; Wang, H.; Wang, L.; Zhang, K.; Tian, Y.; Wang, X.; Xu, G.; Guo, Z.; Ahmad, S.; Egide, H.; et al. The antioxidant activity and metabolomic analysis of the supernatant of Streptococcus alactolyticus strain FGM. Sci. Rep. 2024, 14, 8413. [Google Scholar] [CrossRef]
- Cozzolino, A.; Vergalito, F.; Tremonte, P.; Iorizzo, M.; Lombardi, S.J.; Sorrentino, E.; Luongo, D.; Coppola, R.; Di Marco, R.; Succi, M. Preliminary Evaluation of the Safety and Probiotic Potential of Akkermansia muciniphila DSM 22959 in Comparison with Lactobacillus rhamnosus GG. Microorganisms 2020, 8, 189. [Google Scholar] [CrossRef]
- Alizadeh Behbahani, B.; Jooyandeh, H.; Hojjati, M.; Ghodsi Sheikhjan, M. Evaluation of probiotic, safety, and anti-pathogenic properties of Levilactobacillus brevis HL6, and its potential application as bio-preservatives in peach juice. LWT 2024, 191, 115601. [Google Scholar] [CrossRef]
- Tarique, M.; Abdalla, A.; Masad, R.; Al-Sbiei, A.; Kizhakkayil, J.; Osaili, T.; Olaimat, A.; Liu, S.-Q.; Fernandez-Cabezudo, M.; al-Ramadi, B.; et al. Potential probiotics and postbiotic characteristics including immunomodulatory effects of lactic acid bacteria isolated from traditional yogurt-like products. LWT 2022, 159, 113207. [Google Scholar] [CrossRef]
- GB 15193.3–2014; National Food Safety Standard—Acute Toxicity Test. National Standard of the People’s Republic of China: Beijing, China, 2014.
- GB 15193.22–2014; National Food Safety Standard—28 Days Oral Toxicity Test. National Standard of the People’s Republic of China: Beijing, China, 2014.
- Papadimitriou, K.; Alegría, Á.; Bron Peter, A.; de Angelis, M.; Gobbetti, M.; Kleerebezem, M.; Lemos José, A.; Linares Daniel, M.; Ross, P.; Stanton, C.; et al. Stress Physiology of Lactic Acid Bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 837–890. [Google Scholar] [CrossRef] [PubMed]
- Saboktakin-Rizi, M.; Alizadeh Behbahani, B.; Hojjati, M.; Noshad, M. Identification of Lactobacillus plantarum TW29-1 isolated from Iranian fermented cereal-dairy product (Yellow Zabol Kashk): Probiotic characteristics, antimicrobial activity and safety evaluation. J. Food Meas. Charact. 2021, 15, 2615–2624. [Google Scholar] [CrossRef]
- Lou, H.; Wang, J.; Wang, Y.; Gao, Y.; Wang, W. Comprehensive assessment of Enterococcus faecalis SN21-3: Probiotic features and safety evaluation for potential animal use. Food Biosci. 2024, 58, 103688. [Google Scholar] [CrossRef]
- Cong, S.; Zhang, X.; Ji, J.; Liu, X.; Hu, N. Isolation and identification of blueberry-derived lactic acid bacteria and their probiotic, antioxidant, and fermentation properties. Food Biosci. 2024, 62, 104497. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Montoro, B.P.; Benomar, N.; Lavilla Lerma, L.; Castillo Gutiérrez, S.; Gálvez, A.; Abriouel, H. Fermented Aloreña Table Olives as a Source of Potential Probiotic Lactobacillus pentosus Strains. Front. Microbiol. 2016, 7, 1583. [Google Scholar] [CrossRef]
- Maione, A.; Imparato, M.; Buonanno, A.; Salvatore, M.M.; Carraturo, F.; de Alteriis, E.; Guida, M.; Galdiero, E. Evaluation of Potential Probiotic Properties and In Vivo Safety of Lactic Acid Bacteria and Yeast Strains Isolated from Traditional Home-Made Kefir. Foods 2024, 13, 1013. [Google Scholar] [CrossRef]
- Chantanawilas, P.; Pahumunto, N.; Teanpaisan, R. Aggregation and adhesion ability of various probiotic strains and Candida species: An in vitro study. J. Dent. Sci. 2024, 19, 2163–2171. [Google Scholar] [CrossRef]
- Rocha-Mendoza, D.; Kosmerl, E.; Miyagusuku-Cruzado, G.; Giusti, M.M.; Jiménez-Flores, R.; García-Cano, I. Growth of lactic acid bacteria in milk phospholipids enhances their adhesion to Caco-2 cells. J. Dairy Sci. 2020, 103, 7707–7718. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Stewart Iv, J.H. Platelet’s plea to Immunologists: Please do not forget me. Int. Immunopharmacol. 2024, 143, 113599. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Eissa, E.-S.H.; Tawfik, W.A.; Abd Elnabi, H.E.; Saadony, S.; Bazina, W.K.; Ahmed, R.A. Dietary curcumin nanoparticles promoted the performance, antioxidant activity, and humoral immunity, and modulated the hepatic and intestinal histology of Nile tilapia fingerlings. Fish Physiol. Biochem. 2022, 48, 585–601. [Google Scholar] [CrossRef] [PubMed]
- Tamber, S.S.; Bansal, P.; Sharma, S.; Singh, R.B.; Sharma, R. Biomarkers of liver diseases. Mol. Biol. Rep. 2023, 50, 7815–7823. [Google Scholar] [CrossRef]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.d.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; Gropp, J.; et al. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018, 16, e05206. [Google Scholar] [CrossRef]
- Rasheed, H.; Ijaz, M.; Ahmed, A.; Javed, M.U.; Shah, S.F.A.; Anwaar, F. Discrepancies between phenotypic and genotypic identification methods of antibiotic resistant genes harboring Staphylococcus aureus. Microb. Pathog. 2023, 184, 106342. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, E.; Chaloin, L.; Guichou, J.-F.; Berrou, K.; Rahimova, R.; Labesse, G.; Lionne, C. APH Inhibitors that Reverse Aminoglycoside Resistance in Enterococcus casseliflavus. ChemMedChem 2025, 20, e202400842. [Google Scholar] [CrossRef]
- Song, D.; Jia, A.; Liu, B.; Liu, S.; Dong, K.; Man, C.; Yang, X.; Jiang, Y. Whole-transcriptome analysis after the acquisition of antibiotic resistance of Cronobacter sakazakii: Mechanisms of antibiotic resistance and virulence changes. Food Res. Int. 2023, 174, 113664. [Google Scholar] [CrossRef]
- Chen, Q.; Gong, X.; Zheng, F.; Ji, G.; Li, S.; Stipkovits, L.; Szathmary, S.; Liu, Y. Interplay Between the Phenotype and Genotype, and Efflux Pumps in Drug-Resistant Strains of Riemerella anatipestifer. Front. Microbiol. 2018, 9, 2136. [Google Scholar] [CrossRef]
- Ganjo, A.R.; Balaky, S.T.J.; Mawlood, A.H.; Smail, S.B.; Shabila, N.P. Characterization of genes related to the efflux pump and porin in multidrug-resistant Escherichia coli strains isolated from patients with COVID-19 after secondary infection. BMC Microbiol. 2024, 24, 122. [Google Scholar] [CrossRef]
- Sparbrod, M.; Gager, Y.; Koehler, A.-K.; Jentsch, H.; Stingu, C.-S. Relationship between Phenotypic and Genotypic Resistance of Subgingival Biofilm Samples in Patients with Periodontitis. Antibiotics 2023, 12, 68. [Google Scholar] [CrossRef]
- Li, M.; Li, L.; Zhang, X.; Yuan, Q.; Bao, B.; Tang, Y. A Conjugated Oligomer with Drug Efflux Pump Inhibition and Photodynamic Therapy for Synergistically Combating Resistant Bacteria. ACS Appl. Mater. Interfaces 2025, 17, 4675–4688. [Google Scholar] [CrossRef] [PubMed]
- Vougiouklaki, D.; Tsironi, T.; Tsantes, A.G.; Tsakali, E.; Van Impe, J.F.M.; Houhoula, D. Probiotic Properties and Antioxidant Activity In Vitro of Lactic Acid Bacteria. Microorganisms 2023, 11, 1264. [Google Scholar] [CrossRef] [PubMed]
- Ali, U.; Saeed, M.; Ahmad, Z.; Shah, F.-u.-H.; Rehman, M.A.; Mehmood, T.; Waseem, M.; Hafeez, H.; Azam, M.; Rahman, A. Stability and Survivability of Alginate Gum-Coated Lactobacillus rhamnosus GG in Simulated Gastrointestinal Conditions and Probiotic Juice Development. J. Food Qual. 2023, 2023, 3660968. [Google Scholar] [CrossRef]
- Keleszade, E.; Kolida, S.; Costabile, A. The cholesterol lowering efficacy of Lactobacillus plantarum ECGC 13110402 in hypercholesterolemic adults: A double-blind, randomized, placebo controlled, pilot human intervention study. J. Funct. Foods 2022, 89, 104939. [Google Scholar] [CrossRef]
- Singhal, N.; Maurya, A.K.; Mohanty, S.; Kumar, M.; Virdi, J.S. Evaluation of Bile Salt Hydrolases, Cholesterol-Lowering Capabilities, and Probiotic Potential of Enterococcus faecium Isolated From Rhizosphere. Front. Microbiol. 2019, 10, 1567. [Google Scholar] [CrossRef]
- Sengun, I.Y.; Yalcin, H.T.; Kilic, G.; Ozturk, B.; Peker, A.K.; Terzi, Y.; Atlama, K. Identification of lactic acid bacteria found in traditional Shalgam juice using 16S rRNA sequencing and evaluation of their probiotic potential in vitro. Food Biosci. 2024, 60, 104300. [Google Scholar] [CrossRef]
- Bartram, E.; Asai, M.; Gabant, P.; Wigneshweraraj, S. Enhancing the antibacterial function of probiotic Escherichia coli Nissle: When less is more. Appl. Environ. Microbiol. 2023, 89, e0097523. [Google Scholar] [CrossRef]
- Papavasileiou, K.; Papavasileiou, E.; Tseleni-Kotsovili, A.; Bersimis, S.; Nicolaou, C.; Ioannidis, A.; Chatzipanagiotou, S. Comparative antimicrobial susceptibility of biofilm versus planktonic forms of Salmonella enterica strains isolated from children with gastroenteritis. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1401–1405. [Google Scholar] [CrossRef]
- Perswani, P.; Ismail, S.M.; Mumtaz, H.; Uddin, N.; Asfand, M.; Bin Khalil, A.B.; Ijlal, A.; Khan, S.E.; Usman, M.; Younas, H.; et al. Rethinking HDL-C: An In-Depth Narrative Review of Its Role in Cardiovascular Health. Curr. Probl. Cardiol. 2024, 49, 102152. [Google Scholar] [CrossRef]
- Hakkak, R.; Gauss, C.H.; Bell, A.; Korourian, S. Short-Term Soy Protein Isolate Feeding Prevents Liver Steatosis and Reduces Serum ALT and AST Levels in Obese Female Zucker Rats. Biomedicines 2018, 6, 55. [Google Scholar] [CrossRef]
- Herrera, M.D.; Pérez-Ramírez, I.F.; Reynoso-Camacho, R.; Reveles-Torres, L.R.; Servín-Palestina, M.; Granados-López, A.J.; Reyes-Estrada, C.A.; López, J.A. Chemometric Evaluation of RI-Induced Phytochemicals in Phaseolus vulgaris Seeds Indicate an Improvement on Liver Enzymes in Obese Rats. Molecules 2023, 28, 7983. [Google Scholar] [CrossRef]
- Schauss, A.G.; Merkel, D.J.; Glaza, S.M.; Sorenson, S.R. Acute and subchronic oral toxicity studies in rats of a hydrolyzed chicken sternal cartilage preparation. Food Chem. Toxicol. 2007, 45, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, J.; Tuo, Q.; Zhang, D.; Wanapat, M.; Xin, G. The effect of dietary supplementation of Lycium barbarum leaves on the growth performance, organ indexes and intestinal microflora of rats. Front. Vet. Sci. 2024, 11, 1416793. [Google Scholar] [CrossRef] [PubMed]
Antibiotic | Concentration (μg/Piece) | Inhibition Zone (mm) | Sensitivity |
---|---|---|---|
Kanamycin | 30 | 0 | R |
Ampicillin | 10 | 0 | R |
Gentamicin | 10 | 0 | R |
Streptomycin | 10 | 0 | R |
Chloramphenicol | 30 | 9.09 ± 0.49 | R |
Tetracycline | 30 | 10.19 ± 0.87 | R |
Clindamycin | 2 | 17.03 ± 0.83 | I |
Ciprofloxacin | 5 | 30.49 ± 1.04 | S |
Erythromycin | 15 | 34.73 ± 0.83 | S |
Vancomycin | 30 | 25.66 ± 0.33 | S |
Parameters | Control-Male | RL-Male | RM-Male | RH-Male | Control-Female | RL-Female | RM-Female | RH-Female |
---|---|---|---|---|---|---|---|---|
WBC (109/L) | 12.84 ± 2.28 | 10.88 ± 2.81 | 11.08 ± 2.12 | 11.96 ± 3.09 | 9.16 ± 2.5 | 9.78 ± 1.67 | 9.81 ± 2.29 | 10.46 ± 2.54 |
Lymph (109/L) | 9.95 ± 1.57 | 8.87 ± 2.05 | 8.79 ± 1.37 | 9.28 ± 1.95 | 7.50 ± 2.02 | 7.88 ± 1.49 | 7.69 ± 2.11 | 8.04 ± 2.33 |
Mon (109/L) | 0.36 ± 0.14 | 0.25 ± 0.11 | 0.25 ± 0.08 | 0.26 ± 0.16 | 0.18 ± 0.06 | 0.23 ± 0.05 | 0.24 ± 0.07 | 0.22 ± 0.08 |
Gran (109/L) | 2.53 ± 0.86 | 1.76 ± 0.85 | 2.04 ± 1.39 | 2.42 ± 1.73 | 1.48 ± 0.54 | 1.67 ± 0.48 | 1.88 ± 0.68 | 2.2 ± 1.48 |
Lymph% (%) | 77.77 ± 4.74 | 82.03 ± 4.48 | 80.03 ± 7.95 | 78.71 ± 9.34 | 81.95 ± 2.83 | 80.54 ± 4.26 | 77.92 ± 6.71 | 77.27 ± 11.5 |
Mon% (%) | 2.85 ± 0.52 | 2.33 ± 0.47 | 2.31 ± 0.44 | 2.38 ± 0.71 | 2.05 ± 0.35 | 2.24 ± 0.30 | 2.49 ± 0.48 | 2.20 ± 0.50 |
Gran% (%) | 19.38 ± 4.41 | 15.64 ± 4.06 | 17.66 ± 7.82 | 18.91 ± 8.71 | 16 ± 2.74 | 17.22 ± 4.14 | 19.59 ± 6.42 | 20.53 ± 11.29 |
RBC (1012/L) | 7.58 ± 0.33 | 7.69 ± 0.51 | 7.34 ± 0.24 | 7.38 ± 0.49 | 7.39 ± 0.33 | 7.42 ± 0.21 | 7.38 ± 0.36 | 7.34 ± 0.36 |
HGB (g/L) | 148.2 ± 8.0 | 149.1 ± 7.4 | 144.8 ± 3.39 | 143.3 ± 10.38 | 143.0 ± 8.67 | 142.7 ± 3.50 | 141.6 ± 6.47 | 140.4 ± 6.26 |
HCT (%) | 46.78 ± 2.54 | 46.85 ± 2.68 | 45.99 ± 1.28 | 45.81 ± 2.64 | 44.79 ± 2.87 | 44.43 ± 1.22 | 44.6 ± 1.77 | 44.41 ± 2.26 |
MCV (fL) | 61.8 ± 2.21 | 61.0 ± 1.79 | 62.78 ± 1.86 | 62.21 ± 1.88 | 60.63 ± 2.11 | 60.02 ± 1.94 | 60.58 ± 1.02 | 60.6 ± 1.73 |
MCH (pg) | 19.52 ± 0.9 | 19.35 ± 0.61 | 19.70 ± 0.54 | 19.39 ± 0.85 | 19.28 ± 0.44 | 19.2 ± 0.45 | 19.15 ± 0.49 | 19.10 ± 0.48 |
MCHC (g/L) | 316.3 ± 6.8 | 317.8 ± 3.99 | 314.2 ± 4.89 | 312.1 ± 7.17 | 318.9 ± 5.59 | 320.7 ± 5.19 | 316.8 ± 4.08 | 315.8 ± 8.09 |
RDW (%) | 11.21 ± 0.54 | 11.33 ± 0.38 | 11.43 ± 0.52 | 11.35 ± 0.53 | 10.31 ± 0.2 | 10.62 ± 0.36 | 10.54 ± 0.53 | 10.79 ± 0.57 |
PLT (109/L) | 1305.5 ± 166.06 | 1229.6 ± 149.34 | 1084.9 ± 190.57 | 1130.8 ± 224.75 | 1212.3 ± 210.49 | 1303.5 ± 178.61 | 1223.5 ± 112.56 | 1136.6 ± 223.02 |
MPV (fL) | 6.14 ± 0.20 | 6.11 ± 0.40 | 5.91 ± 0.27 | 5.99 ± 0.31 | 5.96 ± 0.34 | 5.78 ± 0.2 | 5.72 ± 0.26 | 5.84 ± 0.24 |
PDW | 16.13 ± 0.18 | 16.22 ± 0.19 | 16.27 ± 0.25 | 16.23 ± 0.16 | 15.92 ± 0.17 | 16 ± 0.11 | 15.99 ± 0.19 | 16.11 ± 0.19 |
PCT (%) | 0.66 ± 0.04 | 0.63 ± 0.02 | 0.61 ± 0.06 | 0.6 ± 0.06 | 0.64 ± 0.07 | 0.65 ± 0.03 | 0.64 ± 0.04 | 0.61 ± 0.10 |
Parameters | Control-Male | RL-Male | RM-Male | RH-Male | Control-Female | RL-Female | RM-Female | RH-Female |
---|---|---|---|---|---|---|---|---|
ALT (U/L) | 44.29 ± 6.8 | 50.22 ± 13.74 | 48.3 ± 8.88 | 47.6 ± 9.7 | 57.1 ± 16.58 | 53.8 ± 6.01 | 51.56 ± 12.95 | 46.44 ± 9.89 |
AST (U/L) | 282 ± 70.28 | 230.89 ± 91.12 | 242.3 ± 87.5 | 179.5 ± 60.25 * | 271.6 ± 69.15 | 243.3 ± 68.26 | 248.33 ± 38.33 | 209.67 ± 61.86 |
TBIL (μmol/L) | 4.59 ± 1.53 | 4.88 ± 1.95 | 5.40 ± 3.25 | 3.98 ± 1.71 | 3.58 ± 1.55 | 3.36 ± 0.92 | 3.66 ± 1.11 | 2.93 ± 0.71 |
IBIL (μmol/L) | 4.40 ± 1.45 | 4.29 ± 1.68 | 4.88 ± 2.87 | 3.30 ± 1.61 | 3.25 ± 1.5 | 2.93 ± 0.66 | 3.12 ± 1.27 | 2.46 ± 0.88 |
TP (g/L) | 65.31 ± 7.59 | 68.59 ± 7.32 | 75.79 ± 10.94 | 74.43 ± 8.45 | 86.25 ± 6.82 | 87.98 ± 12.23 | 84.94 ± 12.12 | 83.74 ± 9.68 |
ALB (g/L) | 24.14 ± 2.98 | 24.89 ± 2.72 | 26.75 ± 8.96 | 26.99 ± 3.14 | 40.13 ± 5.56 | 41.53 ± 10.64 | 33.86 ± 13.45 | 31.8 ± 9.84 |
GLO (g/L) | 41.17 ± 4.88 | 43.38 ± 4.65 | 48.95 ± 6.95 * | 47.62 ± 5.77 | 48.8 ± 2.98 | 48.54 ± 7.3 | 55.11 ± 12.62 | 52.11 ± 18.57 |
UREA (mmol/L) | 4.79 ± 0.38 | 5.42 ± 1.38 | 5.96 ± 0.85 | 5.46 ± 0.89 | 7.68 ± 1.84 | 7.89 ± 1.61 | 7.02 ± 1.48 | 6.75 ± 0.83 |
CRE (μmol/L) | 45.57 ± 6.50 | 47.22 ± 10.34 | 50.40 ± 8.13 | 47.1 ± 5.63 | 67.0 ± 8.89 | 65.8 ± 8.89 | 62.89 ± 6.21 | 58.78 ± 7.64 |
GLU (mmol/L) | 8.06 ± 1.45 | 11.71 ± 4.19 | 11.40 ± 2.56 | 11.56 ± 2.35 | 13.01 ± 4.72 | 11.74 ± 2.58 | 10.7 ± 1.31 | 11.33 ± 2.39 |
TG (mmol/L) | 3.36 ± 0.96 | 3.03 ± 1.57 | 3.28 ± 1.56 | 2.87 ± 1.47 | 1.99 ± 0.66 | 1.88 ± 0.30 | 1.83 ± 0.49 | 1.57 ± 0.37 |
CHOL (mmol/L) | 2.61 ± 0.86 | 3.13 ± 0.74 | 3.19 ± 0.39 | 2.86 ± 0.42 | 3.20 ± 0.27 | 3.30 ± 0.41 | 2.97 ± 0.26 | 3.03 ± 0.42 |
HDL-C (mmol/L) | 1.05 ± 0.41 | 1.54 ± 0.48 | 1.62 ± 0.23 * | 1.42 ± 0.37 | 1.95 ± 0.44 | 2.12 ± 0.49 | 1.62 ± 0.21 | 1.61 ± 0.51 |
LDL-C (mmol/L) | 0.33 ± 0.22 | 0.47 ± 0.28 | 0.28 ± 0.19 | 0.41 ± 0.24 | 0.58 ± 0.22 | 0.49 ± 0.13 | 0.58 ± 0.1 | 0.59 ± 0.19 |
Parameters | RC-Male | RL-Male | RM-Male | RH-Male | RC-Female | RL-Female | RM-Female | RH-Female |
---|---|---|---|---|---|---|---|---|
Heart | 0.38 ± 0.06 | 0.42 ± 0.09 | 0.34 ± 0.02 | 0.35 ± 0.05 | 0.37 ± 0.04 | 0.4 ± 0.06 | 0.38 ± 0.05 | 0.36 ± 0.04 |
Thymus | 0.17 ± 0.03 | 0.17 ± 0.03 | 0.17 ± 0.02 | 0.17 ± 0.03 | 0.20 ± 0.04 | 0.20 ± 0.04 | 0.18 ± 0.04 | 0.20 ± 0.04 |
Liver | 3.98 ± 0.37 | 3.99 ± 0.33 | 4.11 ± 0.23 | 3.95 ± 0.44 | 3.45 ± 0.22 | 3.50 ± 0.26 | 3.39 ± 0.29 | 3.52 ± 0.27 |
Spleen | 0.18 ± 0.02 | 0.17 ± 0.03 | 0.19 ± 0.02 | 0.18 ± 0.02 | 0.22 ± 0.03 | 0.23 ± 0.04 | 0.23 ± 0.05 | 0.21 ± 0.03 |
Pancreas | 0.18 ± 0.04 | 0.21 ± 0.04 | 0.19 ± 0.03 | 0.20 ± 0.04 | 0.23 ± 0.02 | 0.22 ± 0.04 | 0.21 ± 0.04 | 0.19 ± 0.03 * |
Kidney | 0.73 ± 0.05 | 0.70 ± 0.08 | 0.72 ± 0.05 | 0.74 ± 0.04 | 0.59 ± 0.04 | 0.66 ± 0.13 | 0.65 ± 0.07 | 0.65 ± 0.08 |
Testis | 0.79 ± 0.05 | 0.80 ± 0.06 | 0.77 ± 0.06 | 0.76 ± 0.09 | — | — | — | — |
Ovary | — | — | — | — | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.06 ± 0.01 | 0.06 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, X.; Song, S.; Li, B.; Wang, H.; Zhang, L.; Li, X.; Chen, J.; Zhu, Z.; Zhao, G. A Comprehensive Safety Assessment of Ralstonia eutropha H16 for Food Applications: Integrating Genomic, Phenotypic, and Toxicological Analyzes. Microorganisms 2025, 13, 1323. https://doi.org/10.3390/microorganisms13061323
You X, Song S, Li B, Wang H, Zhang L, Li X, Chen J, Zhu Z, Zhao G. A Comprehensive Safety Assessment of Ralstonia eutropha H16 for Food Applications: Integrating Genomic, Phenotypic, and Toxicological Analyzes. Microorganisms. 2025; 13(6):1323. https://doi.org/10.3390/microorganisms13061323
Chicago/Turabian StyleYou, Xiaoyan, Shuxia Song, Bing Li, Hui Wang, Le Zhang, Xiangyang Li, Junliang Chen, Zhiguang Zhu, and Guoping Zhao. 2025. "A Comprehensive Safety Assessment of Ralstonia eutropha H16 for Food Applications: Integrating Genomic, Phenotypic, and Toxicological Analyzes" Microorganisms 13, no. 6: 1323. https://doi.org/10.3390/microorganisms13061323
APA StyleYou, X., Song, S., Li, B., Wang, H., Zhang, L., Li, X., Chen, J., Zhu, Z., & Zhao, G. (2025). A Comprehensive Safety Assessment of Ralstonia eutropha H16 for Food Applications: Integrating Genomic, Phenotypic, and Toxicological Analyzes. Microorganisms, 13(6), 1323. https://doi.org/10.3390/microorganisms13061323