Variations in the Structure and Composition of Soil Microbial Communities of Different Forests in the Daxing’anling Mountains, Northeastern China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Soil Sample Collection
2.3. Measurement of the Soil’s Chemical Properties
2.4. DNA Extraction, PCR Amplification, and MiSeq Sequencing
2.5. Bioinformatics and Statistical Analyses
3. Results
3.1. Soil’s Chemical Characteristics
3.2. Microbial Diversity in Soils of Different Forest Types
3.3. Soil’s Microbial Community Compositions in Different Forest Types
3.4. Relationships Between the Soil’s Microbial Communities and Environmental Factors
4. Discussion
4.1. Soil’s Microbial Community Diversity in Different Forest Types
4.2. Soil’s Microbial Community Compositions in Different Forest Types
4.3. Key Factors Driving Changes in the Soil’s Microbial Communities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hurteau, M.D. Chapter 27—The Role of Forests in the Carbon Cycle and in Climate Change. In Climate Change, 3rd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 561–579. ISBN 978-0-12-821575-3. [Google Scholar]
- Ali, A. Forest Stand Structure and Functioning: Current Knowledge and Future Challenges. Ecol. Indic. 2019, 98, 665–677. [Google Scholar] [CrossRef]
- Schroeter, S.A.; Eveillard, D.; Chaffron, S.; Zoppi, J.; Kampe, B.; Lohmann, P.; Jehmlich, N.; Von Bergen, M.; Sanchez-Arcos, C.; Pohnert, G.; et al. Microbial Community Functioning during Plant Litter Decomposition. Sci. Rep. 2022, 12, 7451. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Wang, L.; Zhai, C.; Jiang, L.; Yang, Y.; Huang, X.; Ru, J.; Song, J.; Zhang, L.; Wan, S. Root Carbon Inputs Outweigh Litter in Shaping Grassland Soil Microbiomes and Ecosystem Multifunctionality. npj Biofilms Microbiomes 2024, 10, 150. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Gong, L. Compared with Pure Forest, Mixed Forest Alters Microbial Diversity and Increases the Complexity of Interdomain Networks in Arid Areas. Microbiol. Spectr. 2024, 12, e02642-23. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, D.; Li, F.; Dong, Y.; Jin, Z.; Liao, Y.; Li, X.; Peng, S.; Delgado-Baquerizo, M.; Li, X. Superiority of Native Soil Core Microbiomes in Supporting Plant Growth. Available online: https://www.nature.com/articles/s41467-024-50685-3 (accessed on 16 April 2025).
- Kowalchuk, G.A.; Buma, D.S.; de Boer, W.; Klinkhamer, P.G.L.; van Veen, J.A. Effects of Above-Ground Plant Species Composition and Diversity on the Diversity of Soil-Borne Microorganisms. Antonie Leeuwenhoek 2002, 81, 509–520. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, K.; Wurzburger, N.; Zhang, J. Relationships between Plant Diversity and Soil Microbial Diversity Vary across Taxonomic Groups and Spatial Scales. Ecosphere 2020, 11, e02999. [Google Scholar] [CrossRef]
- Lange, M.; Eisenhauer, E.; Sierra, A.C.; Bessler, H. Plant Diversity Increases Soil Microbial Activity and Soil Carbon Storage|Nature Communications. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef]
- Hu, A. Ecological Networks of Dissolved Organic Matter and Microorganisms under Global Change|Nature Communications. Available online: https://www.nature.com/articles/s41467-022-31251-1 (accessed on 16 April 2025).
- Mayer, M.; Rewald, B.; Matthews, B.; Sandén, H.; Rosinger, C.; Katzensteiner, K.; Gorfer, M.; Berger, H.; Tallian, C.; Berger, T.W.; et al. Soil Fertility Relates to Fungal-Mediated Decomposition and Organic Matter Turnover in a Temperate Mountain Forest. New Phytol. 2021, 231, 777–790. [Google Scholar] [CrossRef]
- Pellitier, P.T.; Zak, D.R. Ectomycorrhizal Fungal Decay Traits along a Soil Nitrogen Gradient. New Phytol. 2021, 232, 2152–2164. [Google Scholar] [CrossRef]
- Zhou, J.; Li, L.; Wei, S.; Lian, J.; Ye, W. Distribution Pattern of Functional Traits and Mechanisms in Different Forest Types of South Subtropics. J. Trop. Subtrop. Bot. 2024, 32, 187–197. [Google Scholar]
- Hu, E.; Wang, X.; Zhang, W.; Hai, L.; Zhang, L.; Zhang, S.; Xv, P. Age structure and point pattern of Butula platyphylla in Wulashan Natural Reserve of Inner Mongolia. Acta Ecol. Sin. 2013, 33, 2867–2876. [Google Scholar] [CrossRef]
- Wu, F.; Gao, Z.; Zhang, R.; Shi, R.; Liu, M.; Hu, J.; Wang, H.; Zhou, Q. Effects of warming on soil microbial diversity and functional potential in alpine meadows. J. Beijing For. Univ. 2025, 47, 29–38. [Google Scholar] [CrossRef]
- de Gannes, V.; Bekele, I.; Dipchansingh, D.; Wuddivira, M.N.; De Cairies, S.; Boman, M.; Hickey, W.J. Microbial Community Structure and Function of Soil Following Ecosystem Conversion from Native Forests to Teak Plantation Forests. Front. Microbiol. 2016, 7, 1976. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Li, S.; Zhong, Z.; Hu, X.; Wang, W. Characteristics of Plant Diversity and Community Structure in Shuanghe Nature Reserve in Daxing’anling Area of Northeastern China. Available online: http://j.bjfu.edu.cn/article/doi/10.12171/j.1000-1522.20200029 (accessed on 17 April 2025).
- Qiu, J.; Wang, H.; Shen, W.; Zhang, Y.; Su, H.; Li, M. Quantifying Forest Fire and Post-Fire Vegetation Recovery in the Daxin’anling Area of Northeastern China Using Landsat Time-Series Data and Machine Learning. Remote. Sens. 2021, 13, 792. [Google Scholar] [CrossRef]
- Yu, X.; Pang, Y.; Zhuang, D.; Hou, X. Forest Fire Disturbance and Its Effect on Forest Biomass in Daxinganling Region. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 4, pp. 2310–2313. [Google Scholar]
- Wen, L.; Guo, M.; Huang, S.; Yu, F.; Zhong, C.; Zhou, F. The response of vegetation to the change of active layer thickness in permafrost region of the north Greater Khingan Mountains. J. Glaciol. Geocryol. 2021, 43, 1531–1541. [Google Scholar]
- Liu, D.; Yu, C.L. Effects of climate change on the distribution of main vegetation types in Northeast China. Acta Ecol. Sin. 2017, 37, 6511–6522. [Google Scholar] [CrossRef]
- Zhu, J.; Man, X.; Wang, F. Journal Of Nanjing Ferestry University Natural-Sciences Edition; Nanjing Forestry University: Nanjing, China, 2025. [Google Scholar]
- Mosley, L.M.; Rengasamy, P.; Fitzpatrick, R. Soil pH: Techniques, Challenges and Insights from a Global Dataset. Available online: https://bsssjournals.onlinelibrary.wiley.com/doi/full/10.1111/ejss.70021 (accessed on 17 April 2025).
- Wang, M.; Frey, B.; Li, D.; Liu, X.; Chen, C.; Liu, Y.; Zhang, R.; Sui, X.; Li, M.-H. Effects of Organic Nitrogen Addition on Soil Microbial Community Assembly Patterns in the Sanjiang Plain Wetlands, Northeastern China. Appl. Soil Ecol. 2024, 204, 105685. [Google Scholar] [CrossRef]
- Dodor, D.; Tabatabai, M. Alkaline Hydrolyzable Organic Nitrogen as an Index of Nitrogen Mineralization in Soils: Relationship with Activities of Arylamidase and Amidohydrolases. Commun. Soil Sci. Plant Anal. 2020, 51, 1757–1766. [Google Scholar] [CrossRef]
- Shen, Z.Q.; Zhang, Q.; Liu, L.J.; Qiu, Y. Determination of Available Phosphorus in Soil by Sodium Bicarbonate Extraction Mo-SbAnti-spectrophotometry Method. Environ. Monit. Forewarn. 2011, 3, 12–15. [Google Scholar]
- Ziadi, N.; Whalen, J.K.; Messiga, A.J.; Morel, C. Chapter Two—Assessment and Modeling of Soil Available Phosphorus in Sustainable Cropping Systems. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2013; Volume 122, pp. 85–126. [Google Scholar]
- Vitor, H. ‘SRS’ R Package and ‘Q2-Srs’ QIIME 2 Plugin: Normalization of Microbiome Data Using Scaling with Ranked Subsampling (SRS). Available online: https://www.mdpi.com/2076-3417/11/23/11473 (accessed on 17 April 2025).
- Amelia, T.S.M.; Lau, N.-S.; Amirul, A.-A.A.; Bhubalan, K. Metagenomic Data on Bacterial Diversity Profiling of High-Microbial-Abundance Tropical Marine Sponges Aaptos Aaptos and Xestospongia Muta from Waters off Terengganu, South China Sea. Data Brief 2020, 31, 105971. [Google Scholar] [CrossRef]
- Mohamed, M. From Reads to Operational Taxonomic Units: An Ensemble Processing Pipeline for MiSeq Amplicon Sequencing Data—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/28369460/ (accessed on 17 April 2025).
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Tanunchai, B.; Ji, L.; Schroeter, S.A.; Wahdan, S.F.M.; Hossen, S.; Delelegn, Y.; Buscot, F.; Lehnert, A.-S.; Alves, E.G.; Hilke, I.; et al. FungalTraits vs. FUNGuild: Comparison of Ecological Functional Assignments of Leaf- and Needle-Associated Fungi across 12 Temperate Tree Species. Microb. Ecol. 2023, 85, 411–428. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Liu, L.; Zhang, X.; Qu, J.; Wan, Q. The Simulation of Five Tropical Cyclones by Sample Optimization of Ensemble Forecasting Based on the Observed Track and Intensity|Advances in Atmospheric Sciences. Available online: https://link.springer.com/article/10.1007/s00376-021-0353-2 (accessed on 17 April 2025).
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package; University of Helsinki: Helsinki, Finland, 2024. [Google Scholar]
- Martinez Arbizu, P. pairwiseAdonis: Pairwise Multilevel Comparison Using Adonis; GitHub: San Francisco, CA, USA, 2017. [Google Scholar]
- Liu, C.; Cui, Y.; Li, X.; Yao, M. Microeco: An R Package for Data Mining in Microbial Community Ecology. FEMS Microbiol. Ecol. 2021, 97, fiaa255. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.V.; Pereira, H. Lignin Monomeric Composition of Corks from the Barks of Betula Pendula, Quercus Suber and Quercus Cerris Determined by Py–GC–MS/FID. J. Anal. Appl. Pyrolysis 2013, 100, 88–94. [Google Scholar] [CrossRef]
- Ku, Y.-S.; Cheng, S.-S.; Luk, C.-Y.; Leung, H.-S.; Chan, T.-Y.; Lam, H.-M. Deciphering Metabolite Signalling between Plant Roots and Soil Pathogens to Design Resistance. BMC Plant Biol. 2025, 25, 308. [Google Scholar] [CrossRef] [PubMed]
- Sui, J. Microecological Shifts in the Rhizosphere of Perennial Large Trees and Seedlings in Continuous Cropping of Poplar. Available online: https://www.mdpi.com/2076-2607/12/1/58 (accessed on 17 April 2025).
- Zhu, P.; Liu, W.; Liu, Z.; Jiang, B.; Xv, J.; Qu, Y.; Sun, Z.; Bai, X.; Hou, Y. Community structure and diversity of soil bacteria in different common forest types in Kunyu Mountain. Acta Sci. Nat. Univ. Sunyatseni 2024, 63, 132–140. [Google Scholar] [CrossRef]
- Liu, J.; Wang, N.; Cui, D.; Lu, L.; Zhao, M. Community structure and diversity of soil bacteria in different habitats of Da Liangzihe National Forest Park in the Lesser Khinggan Mountains. Biodivers. Sci. 2019, 27, 911–918. [Google Scholar]
- Lu, Y.; Li, K.; Liang, Q.; Li, C.; Zhang, C. Effects of leaf litter decomposition on bacterial community structure in the leaf litter of four dominant tree species in Mount Tai. Acta Ecol. Sin. 2019, 39, 3175–3186. [Google Scholar]
- Yan, W.; Chen, X.; Tian, D.; Peng, Y.; Wang, G.; Zheng, W. Impacts of Changed Litter Inputs on Soil CO2 Efflux in Three Forest Types in Central South China. Chin. Sci. Bull. 2013, 58, 750–757. [Google Scholar] [CrossRef]
- Fitch, A.A.; Lang, A.K.; Whalen, E.D.; Helmers, E.M.; Goldsmith, S.G.; Hicks Pries, C. Mycorrhiza Better Predict Soil Fungal Community Composition and Function than Aboveground Traits in Temperate Forest Ecosystems. Ecosystems 2023, 26, 1411–1427. [Google Scholar] [CrossRef]
- Qiao, R.; Song, Z.; Chen, Y.; Xu, M.; Yang, Q.; Shen, X.; Yu, D.; Zhang, P.; Ding, C.; Guo, H. Planting Density Effect on Poplar Growth Traits and Soil Nutrient Availability, and Response of Microbial Community, Assembly and Function|BMC Plant Biology|Full Text. Available online: https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-024-05648-7 (accessed on 17 April 2025).
- Canini, F.; Zucconi, L.; Pacelli, C.; Selbmann, L.; Onofri, S.; Geml, J. Vegetation, pH and Water Content as Main Factors for Shaping Fungal Richness, Community Composition and Functional Guilds Distribution in Soils of Western Greenland. Front. Microbiol. 2019, 10, 2348. [Google Scholar] [CrossRef] [PubMed]
- Chomel, M.; Guittonny-Larchevêque, M.; DesRochers, A.; Baldy, V. Effect of Mixing Herbaceous Litter with Tree Litters on Decomposition and N Release in Boreal Plantations. Plant Soil 2016, 398, 229–241. [Google Scholar] [CrossRef]
- Ren, Y.; Gao, G.L.; Ding, G.D.; Zhang, Y.; Zhao, P.S.; Liu, Y. Species composition and driving factors of the ectomycorrhizal fungal community associated with Pinus sylvestris var. mongolica at different growth periods. Chin. J. Plant Ecol. 2023, 47, 1298. [Google Scholar] [CrossRef]
- Dyshko, V.; Hilszczańska, D.; Davydenko, K.; Matić, S.; Moser, W.K.; Borowik, P.; Oszako, T. An Overview of Mycorrhiza in Pines: Research, Species, and Applications. Plants 2024, 13, 506. [Google Scholar] [CrossRef]
- Wang, M.; Sui, X.; Wang, X.; Zhang, X.; Zeng, X. Soil Fungal Community Differences in Manual Plantation Larch Forest and Natural Larch Forest in Northeast China. Microorganisms 2024, 12, 1322. [Google Scholar] [CrossRef] [PubMed]
- Duan, B. Understory Species Composition Mediates Soil Greenhouse Gas Fluxes by Affecting Bacterial Community Diversity in Boreal Forests. Available online: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.1090169/full (accessed on 17 April 2025).
- Vialle, A. Poplar Rust Systematics and Refinement of Melampsora Species Delineation|Fungal Diversity. Available online: https://link.springer.com/article/10.1007/s13225-011-0129-6 (accessed on 17 April 2025).
- Meidl, P.; Furneaux, B.; Tchan, K.I.; Kluting, K.; Ryberg, M.; Guissou, M.-L.; Soro, B.; Traoré, A.; Konomou, G.; Yorou, N.S.; et al. Soil Fungal Communities of Ectomycorrhizal Dominated Woodlands across West Africa. MycoKeys 2021, 81, 45–68. [Google Scholar] [CrossRef]
- Gong, M.; Wang, J.; Li, M. Plant Species Shaping Rhizosphere Fungal Community Structure in the Subalpine Forest Steppe Belt. Rhizosphere 2025, 33, 100999. [Google Scholar] [CrossRef]
- Li, Q.; Wu, Q.; Zhang, T.; Xiang, P.; Bao, Z.; Tu, W.; Li, L.; Wang, Q. Phosphate Mining Activities Affect Crop Rhizosphere Fungal Communities. Sci. Total Environ. 2022, 838, 156196. [Google Scholar] [CrossRef]
- Boonchuen, P.; Piromyou, P.; Songwattana, P. Differential Responses of Bradyrhizobium sp. SUTN9-2 to Plant Extracts and Implications for Endophytic Interactions Within Different Host Plants. Available online: https://www.nature.com/articles/s41598-025-87488-5 (accessed on 17 April 2025).
- Li, Z.; Liang, R.; Yu, F. Soil Fungal Diversity and Community Structure of Russula Griseocarnosa from Different Sites. Microorganisms 2025, 13, 490. [Google Scholar] [CrossRef]
- Liu, Y.; Yong, T.; Cai, M.; Wu, X.; Guo, H.; Xie, Y.; Hu, H.; Wu, Q. Exploring the Potential of Russula Griseocarnosa: A Molecular Ecology Perspective. Agriculture 2024, 14, 879. [Google Scholar] [CrossRef]
- Shen, A.; Shen, B. Diversity and Network Relationship Construction of Soil Fungal Communities in Lactarius Hatsudake Tanaka Orchard During Harvest. Available online: https://www.mdpi.com/2076-2607/11/9/2279 (accessed on 19 April 2025).
- Chen, J.; Heikkinen, J.; Hobbie, E.A.; Rinne-Garmston, K.T.; Penttilä, R.; Mäkipää, R. Strategies of Carbon and Nitrogen Acquisition by Saprotrophic and Ectomycorrhizal Fungi in Finnish Boreal Picea Abies-Dominated Forests. Fungal Biol. 2019, 123, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Anthony, M.A.; Tedersoo, L.; Vos, B.D. Fungal Community Composition Predicts Forest Carbon Storage at a Continental Scale. Available online: https://www.nature.com/articles/s41467-024-46792-w (accessed on 19 April 2025).
- Churchland, C.; Grayston, S.J. Specificity of Plant-Microbe Interactions in the Tree Mycorrhizosphere Biome and Consequences for Soil C Cycling. Front. Microbiol. 2014, 5, 261. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Kou, Y. Ectomycorrhizal Fungi: Participation in Nutrient Turnover and Community Assembly Pattern in Forest Ecosystems. Forests 2020, 11, 453. [Google Scholar] [CrossRef]
- Fan, X.; Ge, A.-H.; Qi, S.; Guan, Y.; Wang, R.; Yu, N.; Wang, E. Root Exudates and Microbial Metabolites: Signals and Nutrients in Plant-Microbe Interactions. SCLS 2025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, C.; Liu, Y. Effects of Planting Patterns on Physicochemical Properties, Metabolites and Microbial Community Structure of Rhizosphere Soil in Perennial Cultivated Grassland. Available online: https://www.nature.com/articles/s41598-025-94366-7 (accessed on 19 April 2025).
- Tedersoo, L.; Bahram, M.; Zobel, M. How Mycorrhizal Associations Drive Plant Population and Community Biology. Available online: https://www.science.org/doi/10.1126/science.aba1223 (accessed on 19 April 2025).
- Zhou, S.; Guo, L. Research progress of arbuscular mycorrhizal fungi associated with plants in desert areas. Mycosystema 2021, 40, 2523–2536. [Google Scholar] [CrossRef]
- Pang, F.; Li, Q. Soil Phosphorus Transformation and Plant Uptake Driven by Phosphate-Solubilizing Microorganisms. Available online: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2024.1383813/full (accessed on 19 April 2025).
- You, Y.-H.; Park, J.M.; Ku, Y.-B.; Jeong, T.-Y.; Lim, K.; Shin, J.-H.; Kim, J.-S.; Hong, J.W. Fungal Microbiome of Alive and Dead Korean Fir in Its Native Habitats. Mycobiology 2024, 52, 68–84. [Google Scholar] [CrossRef]
- Lin, P.; Cai, B. Phosphate-Solubilizing Bacteria: Advances in Their Physiology, Molecular Mechanisms and Microbial Community Effects. Available online: https://www.mdpi.com/2076-2607/11/12/2904 (accessed on 19 April 2025).
- Chutrakul, C.; Panchanawaporn, S.; Vorapreeda, T.; Jeennor, S.; Anantayanon, J.; Laoteng, K. The Exploring Functional Role of Ammonium Transporters of Aspergillus Oryzae in Nitrogen Metabolism: Challenges towards Cell Biomass Production. Int. J. Mol. Sci. 2025, 23, 7567. [Google Scholar] [CrossRef] [PubMed]
- Onet, A.; Grenni, P.; Onet, C.; Stoian, V.; Crisan, V. Forest Soil Microbiomes: A Review of Key Research from 2003 to 2023. Forests 2025, 16, 148. [Google Scholar] [CrossRef]
- Yang, B.; Yang, Z.; He, K. Soil Fungal Community Diversity, Co-Occurrence Networks, and Assembly Processes Under Diverse Forest Ecosystems. Available online: https://www.mdpi.com/2076-2607/12/9/1915 (accessed on 19 April 2025).
- Schlatter, D.C.; Kinkel, L.L. Do Tradeoffs Structure Antibiotic Inhibition, Resistance, and Resource Use Among Soil-Borne Streptomyces? Available online: https://bmcecolevol.biomedcentral.com/articles/10.1186/s12862-015-0470-6 (accessed on 19 April 2025).
- Westhoff, S.; Kloosterman, A.M.; van Hoesel, S.F.A.; van Wezel, G.P.; Rozen, D.E. Competition Sensing Changes Antibiotic Production in Streptomyces. Available online: https://journals.asm.org/doi/10.1128/mbio.02729-20 (accessed on 19 April 2025).
- Hawkins, J.P.; Oresnik, I.J. The Rhizobium-Legume Symbiosis: Co-Opting Successful Stress Management. Front. Plant Sci. 2022, 12, 796045. [Google Scholar] [CrossRef]
- Li, X.; Xiao, R. Molecular Dialogue in Legume-Rhizobium Symbiosis: Signaling Mechanisms and Genetic Insights. Rhizosphere 2025, 33, 101034. [Google Scholar] [CrossRef]
Forest Type | TC (g/kg) | TN (g/kg) | AN (mg/kg) | AP (mg/kg) | pH | C/N |
---|---|---|---|---|---|---|
PL | 60.10 ± 0.10 b | 2.26 ± 0.04 c | 243.93 ± 0.47 c | 21.15 ± 0.10 c | 5.72 ± 0.03 b | 27.00 |
BP | 30.04 ± 0.67 d | 2.02 ± 0.04 d | 184.46 ± 0.42 d | 36.36 ± 0.43 a | 5.92 ± 0.04 a | 15.00 |
LG | 40.92 ± 0.76 c | 3.12 ± 0.55 b | 354.17 ± 0.18 b | 20.09 ± 0.19 d | 5.72 ± 0.03 b | 15.80 |
PS | 200.54 ± 0.03 a | 12.60 ± 0.15 a | 896.81 ± 0.42 a | 28.06 ± 0.39 b | 5.62 ± 0.03 c | 16.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, H.; Wang, M.; Meng, X.; Zhang, Y.; Gao, X.; Zhang, Y.; Sui, X.; Li, M. Variations in the Structure and Composition of Soil Microbial Communities of Different Forests in the Daxing’anling Mountains, Northeastern China. Microorganisms 2025, 13, 1298. https://doi.org/10.3390/microorganisms13061298
Qu H, Wang M, Meng X, Zhang Y, Gao X, Zhang Y, Sui X, Li M. Variations in the Structure and Composition of Soil Microbial Communities of Different Forests in the Daxing’anling Mountains, Northeastern China. Microorganisms. 2025; 13(6):1298. https://doi.org/10.3390/microorganisms13061298
Chicago/Turabian StyleQu, Han, Mingyu Wang, Xiangyu Meng, Youjia Zhang, Xin Gao, Yuhe Zhang, Xin Sui, and Maihe Li. 2025. "Variations in the Structure and Composition of Soil Microbial Communities of Different Forests in the Daxing’anling Mountains, Northeastern China" Microorganisms 13, no. 6: 1298. https://doi.org/10.3390/microorganisms13061298
APA StyleQu, H., Wang, M., Meng, X., Zhang, Y., Gao, X., Zhang, Y., Sui, X., & Li, M. (2025). Variations in the Structure and Composition of Soil Microbial Communities of Different Forests in the Daxing’anling Mountains, Northeastern China. Microorganisms, 13(6), 1298. https://doi.org/10.3390/microorganisms13061298