Review of the Pathogenic Mechanism of Grape Downy Mildew (Plasmopara viticola) and Strategies for Its Control
Abstract
1. Introduction
2. Life Cycle of P. viticola
3. Pathogenic Factors of P. viticola
4. Prevention of Grape Downy Mildew
4.1. Physical Control
4.2. Chemical Control
4.3. Biological Control
4.4. Breeding Disease-Resistant Grape Varieties
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Terral, J.F.; Tabard, E.; Bouby, L.; Ivorra, S.; Pastor, T.; Figueiral, I.; Picq, S.; Chevance, J.B.; Jung, C.; Fabre, L.; et al. Evolution and History of Grapevine (Vitis vinifera) under Domestication: New Morphometric Perspectives to Understand Seed Domestication Syndrome and Reveal Origins of Ancient European Cultivars. Ann. Bot. 2010, 105, 443–455. [Google Scholar] [CrossRef] [PubMed]
- McGovern, P.E.; Rudolph, H.M. The Analytical and Archaeological Challenge of Detecting Ancient Wine: Two Case Studies from the Ancient Near East. In The Origins and Ancient History of Wine; McGovern, P.E., Fleming, S.J., Katz, S.H., Eds.; Gordon and Breach: New York, NY, USA, 1996; pp. 57–67. [Google Scholar]
- McGovern, P.E.; Glusker, D.L.; Exner, L.J.; Voigt, M.M. Neolithic Resinated Wine. Nature 1996, 381, 480–481. [Google Scholar] [CrossRef]
- Zohary, D. The Mode of Domestication of the Founder Crops of the Southwest Asian Agriculture. In The Origins and Spread of Agriculture and Pastoralism in Eurasia; University College London Press: London, UK, 1996; pp. 142–158. [Google Scholar]
- Zohary, D.; Hopf, M. Domestication of Plants in the Old World, 3rd ed.; Oxford University Press Inc.: New York, NY, USA, 2000; pp. 151–159. [Google Scholar]
- Ma, Z.Y.; Wen, J.; Ickert-Bond, S.M.; Nie, Z.L.; Chen, L.Q.; Liu, X.Q. Phylogenomics, Biogeography, and Adaptive Radiation of Grapes. Mol. Phylogenet. Evol. 2018, 129, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Tassoni, A.; Zappi, A.; Melucci, D.; Reisch, B.I.; Davies, P.J. Seasonal Changes in Amino Acids and Phenolic Compounds in Fruits from Hybrid Cross Populations of American Grapes Differing in Disease Resistance. Plant Physiol. Bioch. 2019, 135, 182–193. [Google Scholar] [CrossRef]
- Flamini, R.; Mattivi, F.; De Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef]
- Zhu, L.; Li, X.Y.; Hu, X.X.; Wu, X.; Liu, Y.Q.; Yang, Y.M.; Zang, Y.Q.; Tang, H.C.; Wang, C.Y.; Xu, J.Y. Quality Characteristics and Anthocyanin Profiles of Different Vitis amurensis Grape Cultivars and Hybrids from Chinese Germplasm. Molecules 2021, 26, 6696. [Google Scholar] [CrossRef]
- Freitas, L.D.S.; Jacques, R.A.; Richter, M.F.; Silva, A.L.; Caramão, E.B. Pressurized liquid extraction of vitamin e from brazilian grape seed oil. J. Chromatogr. A 2008, 1200, 80–83. [Google Scholar] [CrossRef]
- Cuevas, V.M.; Calzado, Y.R.; Guerra, Y.P.; Yera, A.O.; Despaigne, S.J.; Ferreiro, R.M.; Quintana, D.C. Effects of Grape Seed Extract, Vitamin C, and Vitamin E on Ethanol- and Aspirin-Induced Ulcers. Adv. Pharmacol. Sci. 2011, 7, 740687. [Google Scholar] [CrossRef]
- Pérez-Navarro, J.; Da Ros, A.; Masuero, D.; Izquierdo-Cañas, P.M. LC-MS/MS Analysis of Free Fatty Acid Composition and Other Lipids in Skins and Seeds of Vitis vinifera Grape Cultivars. Food Res. Int. 2019, 125, 108556. [Google Scholar] [CrossRef]
- De Bary, A. Recherches sur le développement de quelques champignons parasites. Ann. Des Sci. Nat. Bot. 1863, 20, 5–148. [Google Scholar]
- Schröter, J. Fam. Peronosporaceae. In Kryptogamen flora von Schlesien; Band, H., Cohn, F., Eds.; Kern’s: Breslau, Germany, 1886; pp. 483–484. [Google Scholar]
- Berlese, A.N.; de Toni, J.B. Sylloge Fungorum Omnium Hucusque Cognitorum, VII. (Pars. I.) Phycomyceteae; Iterum Impressum Apud R. Friedländer & Sohn: Berlin, Germany, 1888; pp. 233–264. [Google Scholar]
- Gessler, C.; Pertot, I.; Perazzolli, M. Plasmopara viticola: A Review of Knowledge on Downy Mildew of Grapevine and Effective Disease Management. Phytopathol. Mediterr. 2011, 50, 3–44. [Google Scholar]
- Boso, S.; Kassemeyer, H. Different Susceptibility of European Grapevine Cultivars for Downy Mildew. Vitis 2008, 47, 39–49. [Google Scholar]
- Fu, Q.Q.; Yang, J.; Zhang, K.Z.; Yin, K.X.; Xiang, G.Q.; Yin, X.; Liu, G.T.; Xu, Y. Plasmopara viticola Effector PvCRN11 Induces Disease Resistance to Downy Mildew in Grapevine. Plant J. 2024, 117, 873–891. [Google Scholar] [CrossRef]
- Fontaine, M.C.; Labbé, F.; Dussert, Y.; Delière, L.; Richart-Cervera, S.; Giraud, T.; Delmotte, F. Europe as a Bridgehead in the Worldwide Invasion History of Grapevine Downy Mildew, Plasmopara viticola. Curr. Biol. 2021, 31, 2155–2166. [Google Scholar] [CrossRef]
- Clippinger, J.I.; Dobry, E.P.; Laffan, I.; Zorbas, N.; Hed, B.; Campbell, M.A. Traditional and Emerging Approaches for Disease Management of Plasmopara viticola, Causal Agent of Downy Mildew of Grape. Agriculture 2024, 14, 406. [Google Scholar] [CrossRef]
- Koledenkova, K.; Esmaeel, Q.; Jacquard, C.; Nowak, J.; Clément, C.; Ait Barka, E. Plasmopara viticola the Causal Agent of Downy Mildew of Grapevine: From Its Taxonomy to Disease Management. Front. Microbiol. 2022, 13, 889472. [Google Scholar] [CrossRef]
- Oerke, E.-C.; Juraschek, L.; Steiner, U. Hyperspectral Mapping of the Response of Grapevine Cultivars to Plasmopara viticola Infection at the Tissue Scale. J. Exp. Bot. 2023, 74, 377–395. [Google Scholar] [CrossRef]
- Cohen, Y.; Reuveni, M.; Gur, L.; Ovadia, S. Survival in the Field of Pseudoperonospora cubensis and Plasmopara viticola after Extreme Hot and Dry Weather Conditions in Israel. Phytoparasitica 2020, 48, 699–703. [Google Scholar] [CrossRef]
- Gouveia, C.; Santos, R.B.; Paiva-Silva, C.; Buchholz, G.; Malhó, R.; Figueiredo, A. The Pathogenicity of Plasmopara viticola: A Review of Evolutionary Dynamics, Infection Strategies and Effector Molecules. BMC Plant Biol. 2024, 24, 327. [Google Scholar] [CrossRef]
- Yang, L.J.; Chu, B.Y.; Deng, J.; Yuan, K.; Sun, Q.Y.; Jiang, C.G.; Ma, Z.H. Use of a Real-Time PCR Method to Quantify the Primary Infection of Plasmopara viticola in Commercial Vineyards. Phytopathol. Res. 2023, 5, 19. [Google Scholar] [CrossRef]
- Li, X.L.; Yin, L.; Ma, L.J.; Zhang, Y.L.; An, Y.H.; Lu, J. Pathogenicity Variation and Population Genetic Structure of Plasmopara viticola in China. J. Phytopathol. 2016, 164, 863–873. [Google Scholar] [CrossRef]
- Rossi, V.; Caffi, T. The Role of Rain in Dispersal of the Primary Inoculum of Plasmopara viticola. Phytopathology 2012, 102, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Lafon, R.; Clerjeau, M. Downy mildew. In Compendium of Grape Diseases; Pearson, R.C., Goheen, A.C., Eds.; APS Press: St. Paul, MN, USA, 1988; pp. 11–13. [Google Scholar]
- Gobbin, D.; Jermini, M.; Loskill, B.; Pertot, I.; Raynal, M.; Gessler, C. Importance of Secondary Inoculum of Plasmopara viticola to Epidemics of Grapevine Downy Mildew. Plant Pathol. 2005, 54, 522–534. [Google Scholar] [CrossRef]
- Vercesi, A.; Toffolatti, S.L.; Zocchi, G.; Guglielmann, R.; Ironi, L. A New Approach to Modelling the Dynamics of Oospore Germination in Plasmopara viticola. Eur. J. Plant Pathol. 2010, 128, 113–126. [Google Scholar] [CrossRef]
- Bitencourt, C.; Pierre, P.M.O.; Pinto, F.A.M.F.; Fermino-Junior, P.C.P.; Gomes, B.R.; de Morais, A.C.; Dias, J.M.; Welter, L.J. First Report of Oospore Formation in Plasmopara viticola, the Causal Agent of Grapevine Downy Mildew, in Highland Regions of Southern Brazil. Plant Pathol. 2021, 70, 1897–1907. [Google Scholar] [CrossRef]
- Wong, F.P.; Burr, H.N.; Wilcox, W.F. Heterothallism in Plasmopara viticola. Plant Pathol. 2001, 50, 427–432. [Google Scholar] [CrossRef]
- Rossi, V.; Caffi, T. Effect of Water on Germination of Plasmopara viticola Oospores. Plant Pathol. 2007, 56, 957–966. [Google Scholar] [CrossRef]
- Rossi, V.; Caffi, T.; Bugiani, R.; Spanna, F.; Della Valle, D. Estimating the Germination Dynamics of Plasmopara viticola Oospores Using Hydro-Thermal Time. Plant Pathol. 2008, 57, 216–226. [Google Scholar] [CrossRef]
- Kennelly, M.M.; Gadoury, D.M.; Wilcox, W.F.; Magaery, P.A.; Seem, R.C. Primary Infection, Lesion Productivity, and Survival of Sporangia in the Grapevine Downy Mildew Pathogen Plasmopara viticola. Phytopathology 2007, 97, 512–522. [Google Scholar] [CrossRef]
- Aoki, Y.; Usujima, A.; Suzuki, S. High Night Temperature Promotes Downy Mildew in Grapevine via Attenuating Plant Defence Response and Enhancing Early Plasmopara viticola Infection. Plant Protect. Sci. 2021, 57, 21–30. [Google Scholar] [CrossRef]
- Caffi, T.; Legler, S.E.; González-Domínguez, E.; Rossi, V. 2015. Effect of Temperature and Wetness Duration on Infection by Plasmopara viticola and on Post-Inoculation Efficacy of Copper. Eur. J. Plant Pathol. 2016, 144, 737–750. [Google Scholar] [CrossRef]
- Ash, G. Downy Mildew of Grape. Plant Health Instr. 2000, 1. [Google Scholar] [CrossRef]
- Jones, J.D.G.; Dangl, J.L. The Plant Immune System. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef]
- Kamoun, S. Groovy Times: Filamentous Pathogen Effectors Revealed. Curr. Opin. Plant Biol. 2007, 10, 358–365. [Google Scholar] [CrossRef]
- Vleeshouwers, V.G.A.A.; Oliver, R.P. Effectors as Tools in Disease Resistance Breeding against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. Mol. Plant-Microbe Interact. 2014, 27, 196–206. [Google Scholar] [CrossRef]
- Kamoun, S. A Catalogue of the Effector Secretome of Plant Pathogenic Oomycetes. Annu. Rev. Phytopathol. 2006, 44, 41–60. [Google Scholar] [CrossRef]
- Birch, P.R.J.; Armstrong, M.; Bos, J.; Boevink, P.; Gilroy, E.M.; Taylor, R.M.; Wawra, S.; Pritchard, L.; Conti, L.; Ewan, R.; et al. Towards Understanding the Virulence Functions of RXLR Effectors of the Oomycete Plant Pathogen Phytophthora infestans. J. Exp. Bot. 2009, 60, 1133–1140. [Google Scholar] [CrossRef]
- Jiang, R.H.; Tyler, B.M. Mechanisms and Evolution of Virulence in Oomycetes. Annu. Rev. Phytopathol. 2012, 50, 295–318. [Google Scholar] [CrossRef]
- Dodds, P.N.; Rathjen, J.P. Plant Immunity: Towards an Integrated View of Plant-Pathogen Interactions. Nat. Rev. Genet. 2010, 11, 539–548. [Google Scholar] [CrossRef]
- Haas, B.J.; Kamoun, S.; Zody, M.C.; Jiang, R.H.; Handsaker, R.E.; Cano, L.M.; Grabherr, M.; Kodira, C.D.; Raffaele, S.; Torto-Alalibo, T.; et al. Genome Sequence and Analysis of the Irish Potato Famine Pathogen Phytophthora infestans. Nature 2009, 461, 393–398. [Google Scholar] [CrossRef]
- Morgan, W.; Kamoun, S. RXLR Effectors of Plant Pathogenic Oomycetes. Curr. Opin. Microbiol. 2007, 10, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Whisson, S.C.; Boevink, P.C.; Moleleki, L.; Avrova, A.O.; Morales, J.G.; Gilroy, E.M.; Armstrong, M.R.; Grouffaud, S.; van West, P.; Chapman, S.; et al. A Translocation Signal for Delivery of Oomycete Effector Proteins into Host Plant Cells. Nature 2007, 450, 115–118. [Google Scholar] [PubMed]
- Liu, L.; Xu, L.; Jia, Q.; Pan, R.; Oelmüller, R.; Zhang, W.; Wu, C. Arms Race: Diverse Effector Proteins with Conserved Motifs. Plant Signal Behav. 2019, 14, 1557008. [Google Scholar] [CrossRef]
- Rehmany, A.P.; Gordon, A.; Rose, L.E.; Allen, R.L.; Armstrong, M.R.; Whisson, S.C.; Kamoun, S.; Tyler, B.M.; Birch, P.R.J.; Beynon, J.L. Differential Recognition of Highly Divergent Downy Mildew Avirulence Gene Alleles by RPP1 Resistance Genes from Two Arabidopsis Lines. Plant Cell 2005, 17, 1839–1850. [Google Scholar] [CrossRef]
- Dou, D.L.; Kale, S.D.; Wang, X.L.; Chen, Y.B.; Wang, Q.Q.; Wang, X.; Jiang, R.H.Y.; Arredondo, F.D.; Anderson, R.G.; Thakur, P.B.; et al. Conserved C-Terminal Motifs Required for Avirulence and Suppression of Cell Death by Phytophthora sojae effector Avr1b. Plant Cell 2008, 20, 1118–1133. [Google Scholar] [CrossRef]
- Dussert, Y.; Mazet, I.D.; Couture, C.; Gouzy, J.; Piron, M.; Kuchly, C.; Bouchez, O.; Rispe, C.; Mestre, P.; Delmotte, F. A High-Quality Grapevine Downy Mildew Genome Assembly Reveals Rapidly Evolving and Lineage-Specific Putative Host Adaptation Genes. Genome Biol. Evol. 2019, 11, 954–969. [Google Scholar]
- Mestre, P.; Piron, M.C.; Merdinoglu, D. Identification of Effector Genes from the Phytopathogenic Oomycete Plasmopara viticola through the Analysis of Gene Expression in Germinated Zoospores. Fungal Biol. 2012, 116, 825–835. [Google Scholar] [CrossRef]
- Mestre, P.; Carrere, S.; Gouzy, J.; Piron, M.C.; Tourvieille de Labrouhe, D.; Vincourt, P.; Delmotte, F.; Godiard, L. Comparative Analysis of Expressed CRN and RXLR Effectors from Two Plasmopara Species Causing Grapevine and Sunflower Downy Mildew. Plant Pathol. 2016, 65, 767–778. [Google Scholar]
- Yin, L.; An, Y.H.; Qu, J.J.; Li, X.L.; Zhang, Y.L.; Dry, I.; Wu, H.J.; Lu, J. Genome Sequence of Plasmopara viticola and Insight into the Pathogenic Mechanism. Sci. Rep. 2017, 7, 46553. [Google Scholar] [CrossRef]
- Wawra, S.; Trusch, F.; Matena, A.; Apostolakis, K.; Linne, U.; Zhukov, I.; Stanek, J.; Koźmiński, W.; Davidson, I.; Secombes, C.J.; et al. The RxLR Motif of the Host Targeting Effector AVR3a of Phytophthora infestans Is Cleaved Before Secretion. Plant Cell 2017, 29, 1184–1195. [Google Scholar] [CrossRef]
- Lan, X.; Liu, Y.X.; Song, S.R.; Yin, L.; Xiang, J.; Qu, J.J.; Lu, J. Plasmopara viticola Effector PvRXLR131 Suppresses Plant Immunity by Targeting Plant Receptor-Like Kinase Inhibitor BKI1. Mol. Plant Pathol. 2019, 20, 765–783. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.T.; Liu, R.Q.; Dou, M.R.; Li, M.Y.; Li, M.J.; Yin, X.; Liu, G.T.; Wang, Y.J.; Xu, Y. Insight into Function and Subcellular Localization of Plasmopara viticola Putative RxLR Effectors. Front. Microbiol. 2020, 11, 00692. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.T.; Peng, J.; Yin, X.; Li, M.J.; Xiang, G.Q.; Wang, Y.J.; Lei, Y.; Xu, Y. Importin-αs Are Required for the Nuclear Localization and Function of the Plasmopara viticola Effector PvAVH53. Hortic. Res. 2021, 8, 46. [Google Scholar] [CrossRef]
- Liu, Y.X.; Xia, L.; Song, S.R.; Yin, L.; Dry, I.B.; Qu, J.J.; Xiang, J.; Lu, J. In Planta Functional Analysis and Subcellular Localization of the Oomycete Pathogen Plasmopara viticola Candidate RXLR Effector Repertoire. Front. Plant Sci. 2018, 9, 00286. [Google Scholar] [CrossRef]
- Ma, T.; Chen, S.Y.; Liu, J.Q.; Fu, P.N.; Wu, W.; Song, S.R.; Gao, Y.; Ye, W.X.; Lu, J. Plasmopara viticola Effector PvRXLR111 Stabilizes VvWRKY40 to Promote Virulence. Mol. Plant Pathol. 2020, 22, 231–242. [Google Scholar] [CrossRef]
- Yin, X.; Shang, B.X.; Dou, M.R.; Liu, R.Q.; Chen, T.T.; Xiang, G.Q.; Li, Y.Z.; Liu, G.T.; Xu, Y. The Nuclear-Localized RxLR Effector PvAvh74 from Plasmopara viticola Induces Cell Death and Immunity Responses in Nicotiana benthamiana. Front. Microbiol. 2019, 10, 01531. [Google Scholar] [CrossRef]
- Yin, X.; Fu, Q.Q.; Shang, B.X.; Wang, Y.L.; Liu, R.Q.; Chen, T.T.; Xiang, G.Q.; Dou, M.R.; Liu, G.T.; Xu, Y. An RxLR Effector from Plasmopara viticola Suppresses Plant Immunity in Grapevine by Targeting and Stabilizing VpBPA1. Plant J. 2022, 112, 104–114. [Google Scholar] [CrossRef]
- Xiang, J.; Li, X.L.; Wu, J.; Yin, L.; Zhang, Y.L.; Lu, J. Studying the Mechanism of Plasmopara viticola RxLR Effectors on Suppressing Plant Immunity. Front. Microbiol. 2016, 7, 00709. [Google Scholar] [CrossRef]
- Liu, R.Q.; Chen, T.T.; Yin, X.; Xiang, G.Q.; Peng, J.; Fu, Q.Q.; Li, M.Y.; Shang, B.X.; Ma, H.; Liu, G.T.; et al. A Plasmopara viticola RXLR Effector Targets a Chloroplast Protein PsbP to Inhibit ROS Production in Grapevine. Plant J. 2021, 106, 1557–1570. [Google Scholar] [CrossRef]
- Xiang, J.; Li, X.; Yin, L.; Liu, Y.; Zhang, Y.; Qu, J.; Lu, J. A Candidate RxLR Effector from Plasmopara viticola Can Elicit Immune Responses in Nicotiana benthamiana. BMC Plant Biol. 2017, 17, 75. [Google Scholar] [CrossRef]
- Torto, T.A.; Li, S.; Styer, A.; Huitema, E.; Testa, A.; Gow, N.A.R.; van West, P.; Kamoun, S. EST Mining and Functional Expression Assays Identify Extracellular Effector Proteins from the Plant Pathogen Phytophthora. Genome Res. 2003, 213, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Schornack, S.; van Damme, M.; Bozkurt, T.O.; Cano, L.M.; Smoker, M.; Thines, M.; Gaulin, E.; Kamoun, S.; Huitema, E. Ancient Class of Translocated Oomycete Effectors Targets the Host Nucleus. Proc. Natl. Acad. Sci. USA 2010, 107, 17421–17426. [Google Scholar] [CrossRef] [PubMed]
- Xiang, G.Q.; Yin, X.; Niu, W.L.; Chen, T.T.; Liu, R.Q.; Shang, B.X.; Fu, Q.Q.; Liu, G.T.; Ma, H.; Xu, Y. Characterization of CRN–like Genes from Plasmopara viticola: Searching for the Most Virulent Ones. Front. Microbiol. 2021, 12, 632047. [Google Scholar] [CrossRef]
- Xiang, G.; Fu, Q.; Li, G.; Liu, R.; Liu, G.; Yin, X.; Chen, T.; Xu, Y. The Cytosolic Iron-Sulphur Cluster Assembly Mechanism in Grapevine is One Target of a Virulent Crinkler Effector from Plasmopara viticola. Mol. Plant Pathol. 2022, 23, 1792–1806. [Google Scholar] [CrossRef]
- Kassemeyer, H.; Gadoury, D.; Wilcox, W. Compendium of Grape Diseases, Disorders, and Pests, 2nd ed.; Wilcox, W.F., Gubler, W.D., Uyemoto, J.K., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 2015; pp. 46–51. [Google Scholar]
- Lixandru, M.; Fendrihan, S. Evaluation of the Downy Mildew (Plasmopara viticola) and of the Gray Rot (Botrytis cinerea) Attack Correlated with the Leaf Treatments and the Soil Fertilization. Rom. J. Plant Prot. 2021, 14, 90. [Google Scholar] [CrossRef]
- de Bem, B.P.; Bogo, A.; Everhart, S.E.; Casa, R.T.; Gonçalves, M.J.; Filho, J.L.M.; Rufato, L.; da Silva, F.N.; Allebrandt, R.; da Cunha, I.C. Effect of Four Training Systems on the Temporal Dynamics of Downy Mildew in Two Grapevine Cultivars in Southern Brazil. Trop. Plant Pathol. 2016, 41, 370–379. [Google Scholar] [CrossRef]
- Rumbolz, J.; Wirtz, S.; Kassemeyer, H.H.; Guggenheim, R.; Schäfer, E.; Büche, C. Sporulation of Plasmopara viticola: Differentiation and Light Regulation. Plant Biol. 2002, 4, 413–422. [Google Scholar] [CrossRef]
- Brook, P.J. Effect of Light on Sporulation of Plasmopara viticola. New Zeal. J. Bot. 1979, 17, 135–138. [Google Scholar] [CrossRef]
- Aarrouf, J.; Urban, L. Flashes of UV-C Light: An Innovative Method for Stimulating Plant Defences. PLoS ONE 2020, 15, e235918. [Google Scholar] [CrossRef]
- Millardet, A. Traitement du mildiou par le mélange de sulphate de cuivre et chaux. J. Agric. Prat. 1885, 49, 707–710. [Google Scholar]
- Davidse, L.C.; Hofman, A.E.; Velthuis, G.C.M. Specific Interference of Metalaxyl with Endogenous RNA Polymerase Activity in Isolated Nuclei from Phytophthora megasperma f. sp. medicaginis. Exp. Mycol. 1983, 7, 344–361. [Google Scholar] [CrossRef]
- Fisher, D.J.; Hayes, A.L. Mode of Action of the Systemic Fungicides Furalaxyl, Metalaxyl, and Ofurace. Pesic. Sci. 1982, 13, 330–339. [Google Scholar] [CrossRef]
- Albert, G.; Curtze, J.; Drandarevski, C.A. Dimethomorph (CME 151), a Novel Curative Fungicide. In Proceedings of the International Conference, Brighton Crop Protection Conference: Pests & Diseases, Brighton, UK, 16–19 November 1988; Volume 1, pp. 17–24. [Google Scholar]
- Zhu, S.S.; Lu, X.H.; Chen, L.; Liu, X.L. Research Advances in Carboxylic Acid Amide Fungicides. Chin. J. Pestic. Sci. 2010, 12, 1–12. (In Chinese) [Google Scholar]
- Cohen, Y. Dimethomorph Activity against Oomycete Fungal Plant Pathogens. Phytopathology 1995, 85, 1500–1506. [Google Scholar] [CrossRef]
- Ranganathan, T. Azoxystrobin (Amistar 25 SC), a Novel Fungicide for the Control of Downy and Powdery Mildews of Grapevine. Pestology 2001, 25, 28–31. [Google Scholar]
- Reuveni, M. Activity of the New Fungicide Benthiavalicarb against Plasmopara viticola and its Efficacy in Controlling Downy Mildew in Grapevines. Eur. J. Plant Pathol. 2003, 109, 243–251. [Google Scholar] [CrossRef]
- Gisi, U.; Sierotzki, H. Fungicide Modes of Action and Resistance in Downy Mildews. Eur. J. Plant Pathol. 2008, 122, 157–167. [Google Scholar] [CrossRef]
- Griffiths, R.G.; Dancer, J.; O’Neill, E.; Harwood, J.L. A Mandelamide Pesticide Alters Lipid Metabolism in Phytophthora infestans. New Phytol. 2003, 158, 345–353. [Google Scholar] [CrossRef]
- Cohen, Y.; Gisi, U. Differential Activity of Carboxylic Acid Amide Fungicides against Various Developmental Stages of Phytophthora infestans. Phytopathology 2007, 97, 1274–1283. [Google Scholar] [CrossRef]
- Gisi, U.; Waldner, M.; Kraus, N.; Dubuis, P.H.; Sierotzki, H. Inheritance of Resistance to Carboxylic Acid Amide (CAA) Fungicides in Plasmopara viticola. Plant Pathol. 2007, 56, 199–208. [Google Scholar] [CrossRef]
- Andrieu, N.; Jaworska, G.; Genet, J.; Bompeix, G. Biological Mode of Action of Famoxadone on Plasmopara viticola and Phytophthora infestans. Crop Prot. 2001, 20, 253–260. [Google Scholar] [CrossRef]
- Toffolatti, S.L.; Prandato, M.; Serrati, L.; Sierotzki, H.; Gisi, U.; Vercesi, A. Evolution of Qol Resistance in Plasmopara viticola Oospores. Eur. J. Plant Pathol. 2010, 129, 331–338. [Google Scholar] [CrossRef]
- Wong, F.P.; Wilcox, W.F. Comparative Physical Modes of Action of Azoxystrobin, Mancozeb, and Metalaxyl against Plasmopara viticola (Grapevine Downy Mildew). Plant Dis. 2001, 85, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Toffolatti, S.L.; Serrati, L.; Sierotzki, H.; Gisi, U.; Vercesi, A. Assessment of QoI Resistance in Plasmopara viticola Oospores. Pest Manag. Sci. 2007, 63, 194–201. [Google Scholar] [CrossRef]
- Miao, J.Q.; Cai, M.; Zhang, C.; Li, T.J.; Liu, X.L. Molecular Resistance Mechanism of Phytopathogenic Oomycete to Several Important Fungicides. Chin. J. Pestic. Sci. 2019, 21, 736–746. (In Chinese) [Google Scholar]
- Underdown, R.S.; Sivasithamparam, K.; Barbetti, M.J. Inhibition of the Pre- and Postinfection Processes of Plasmopara viticola on Vitis vinifera Leaves by One Protectant and Four Systemic Fungicides. Australas. Plant Pathol. 2008, 37, 335–343. [Google Scholar] [CrossRef]
- Sapkal, R.T.; Tambe, T.B.; More, T.A. Effectiveness of Fungicides against Downy Mildew Disease of Grapevines. Ann. Plant Prot. Sci. 2000, 8, 258–260. [Google Scholar]
- Northover, J.; Ripley, B.D. Persistence of Chlorothalonil on Grapes and its Effect on Disease Control and Fruit Quality. J. Agric. Food Chem. 1980, 28, 971–974. [Google Scholar] [CrossRef]
- Rusjan, D. Copper in Horticulture. In Fungicides for Plant and Animal Diseases; IntechOpen: Shanghai, China, 2012; pp. 258–278. [Google Scholar]
- Campbell, S.E.; Brannen, P.M.; Scherm, H.; Brewer, M.T. Fungicide Sensitivity Survey of Plasmopara viticola Populations in Georgia Vineyards. Plant Health Prog. 2020, 21, 256–261. [Google Scholar] [CrossRef]
- Campbell, S.E.; Brannen, P.M.; Scherm, H.; Eason, N.; MacAllister, C. Efficacy of Fungicide Treatments for Plasmopara viticola Control and Occurrence of Strobilurin Field Resistance in Vineyards in Georgia, USA. Crop Prot. 2021, 139, 105371. [Google Scholar] [CrossRef]
- Sagar, N.; Jamadar, M.M.; Shalini, N.H.; Mantesh, M.; Jagginavar, S.B.; Pattar, P.S.; Ramanji, R.S. First Report of Quinone Outside Inhibitor (QoI) Resistance in Plasmopara viticola (Grape Downy Mildew) in Karnataka State in India. J. Plant Dis Protect. 2024, 131, 617–618. [Google Scholar] [CrossRef]
- Ismail, I.; Taylor, A.S.; Heuvel, S.V.D.; Borneman, A.; Sosnowski, M.R. Sensitivity of Plasmopara viticola to Selected Fungicide Groups and the Occurrence of the G143A Mutant in Australian Grapevine Isolates. Pest Manag. Sci. 2024, 80, 12. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, M.R.; Bilali, H.E.; Simeone, V.; Baser, N.; Mondelli, D.; Cesari, G. Copper Contents in Grapes and Wines from a Mediterranean Organic Vineyard. Food Chem. 2010, 122, 1338–1343. [Google Scholar] [CrossRef]
- Ashish, B.; Neeti, K.; Himanshu, K. Copper Toxicity: A Comprehensive Study. Res. J. Recent. Sci. 2013, 2, 58–67. [Google Scholar]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy Metals in Agricultural Soils of the European Union with Implications for Food Safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Santos, R.F.; Fraaije, B.A.; Garrido, L.R.; Monteiro-Vitorello, C.B.; Amorim, L. Multiple Resistance of Plasmopara viticola to QoI and CAA Fungicides in Brazil. Plant Pathol. 2020, 69, 1708–1720. [Google Scholar] [CrossRef]
- Heydari, A.; Pessarakli, M. A Review on Biological Control of Fungal Plant Pathogens Using Microbial Antagonists. J. Biol. Sci. 2010, 10, 273–290. [Google Scholar] [CrossRef]
- Lugtenberg, B.; Kamilova, F. Plant-Growth-Promoting Rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [Google Scholar] [CrossRef]
- Sarrocco, S.; Mauro, A.; Battilani, P. Use of Competitive Filamentous Fungi as an Alternative Approach for Mycotoxin Risk Reduction in Staple Cereals: State of Art and Future Perspectives. Toxins 2019, 11, 701. [Google Scholar] [CrossRef]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Woo, S.L.; Lorito, M. Trichoderma-plant-pathogen interactions. Soil Biol. Biochem. 2008, 40, 1–10. [Google Scholar] [CrossRef]
- Shoresh, M.; Harman, G.E.; Mastouri, F. Induced Systemic Resistance and Plant Responses to Fungal Biocontrol Agents. Annu. Rev. Phytopathol. 2010, 48, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Perazzolli, M.; Dagostin, S.; Ferrari, A.; Elad, Y.; Pertot, I. Induction of Systemic Resistance against Plasmopara viticola in Grapevine by Trichoderma harzianum T39 and Benzothiadiazole. Biol. Control 2008, 47, 228–234. [Google Scholar] [CrossRef]
- Perazzolli, M.; Roatti, B.; Bozza, E.; Pertot, I. Trichoderma harzianum T39 Induces Resistance against Downy Mildew by Priming for Defense Without Costs for Grapevine. Biol. Control 2011, 58, 74–82. [Google Scholar] [CrossRef]
- Palmieri, M.C.; Perazzolli, M.; Matafora, V.; Moretto, M.; Bach, A.; Pertot, L. Proteomic Analysis of Grapevine Resistance Induced by Trichoderma harzianum T39 Reveals Specific Defence Ppathways Activated against Downy Mildew. J. Exp. Bot. 2012, 63, 6237–6251. [Google Scholar] [CrossRef]
- Cruz-Silva, A.; Figueiredo, A.; Sebastiana, M. First Insights into the Effect of Mycorrhizae on the Expression of Pathogen Effectors during the Infection of Grapevine with Plasmopara viticola. Sustainability 2021, 13, 1226. [Google Scholar] [CrossRef]
- Cimmino, A.; Bejarano, A.; Masi, M.; Puopolo, G.; Evidente, A. Isolation of 2,5-diketopiperazines from Lysobacter capsici AZ78 with Activity Against Rhodococcus fascians. Nat. Prod. Res. 2021, 35, 4969–4977. [Google Scholar] [CrossRef]
- Furuya, S.; Mochizuki, M.; Aoki, Y.; Kobayashi, H.; Suzuki, S. Isolation and Characterization of Bacillus subtilis KS1 for the Biocontrol of Grapevine Fungal Diseases. Biocontrol Sci. Techn. 2011, 21, 705–720. [Google Scholar] [CrossRef]
- Musetti, R.; Vecchione, A.; Stringher, L.; Borselli, S.; Zulini, L.; Marzani, C.; D’Ambrosio, M.; Sanità di Toppi, L.; Pertot, I. Disease Control and Pest Management Inhibition of Sporulation and Ultrastructural Alterations of Grapevine Downy Mildew by the Endophytic Fungus Alternaria alternata. Phytopathology 2006, 96, 680–803. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.Y.; Li, Y.; Fu, X.C.; Wang, Q. Screening and Characerization of Endophytic Bacillus for Biocontrol of Grapevine Downy Mildew. Crop Prot. 2017, 96, 173–179. [Google Scholar] [CrossRef]
- Shi, X.M.; Shen, H.M.; Wang, Y.C.; Yang, X.; Shi, R.L.; Tan, W.Z.; Ran, L.X. Potential Biocontrol Microorganisms Causing Attenuated Pathogenicity in Plasmopara viticola. Phytopathology 2024, 114, 1226–1236. [Google Scholar] [CrossRef]
- Piccolo, S.L.; Alfonzo, A.; Giambra, S.; Conigliaro, G.; Lopez-Llorca, L.V.; Burruano, S. Identification of Acremonium Isolates from Grapevines and Evaluation of Their Antagonism towards Plasmopara viticola. Ann. Microbiol. 2015, 65, 2393–2403. [Google Scholar] [CrossRef]
- Filo, A.; Sabbatini, P.; Sundin, G.W.; Zabadal, T.J.; Safir, G.R.; Cousins, P.S. Grapevine Crown Gall Suppression Using Biological Control and Genetic Engineering: A Review of Recent Research. Am. J. Enol. Vitic. 2013, 64, 1–14. [Google Scholar] [CrossRef]
- Yin, Y.; Yuan, X.; Li, Q.; Wang, Z. Construction of Green Fluorescent Protein Gene Tagged Biocontrol Bacteria Bacillus subtilis CQBS03 and Its Colonization on the Citrus Leaves. Sci. Agric. Sin. 2010, 43, 3555–3563. (In Chinese) [Google Scholar]
- Saha, D.; Dasgupta, S.; Saha, A. Antifungal Activity of Some Plant Extracts Against Fungal Pathogens of Tea (Camellia sinensis). Pharm. Biol. 2005, 43, 87–91. [Google Scholar] [CrossRef]
- Gabaston, J.; Cantos-Villar, E.; Biais, B.; Waffo-Teguo, P.; Renouf, E.; Corio-Costet, M.F.; Richard, T.; Mérillon, J.M. Stilbenes from Vitis vinifera L. Waste: A Sustainable Tool for Controlling Plasmopara Viticola. J. Agric. Food Chem. 2017, 65, 2711–2718. [Google Scholar] [CrossRef]
- Besrukow, P.; Irmler, J.; Schmid, J.; Stoll, M.; Winterhalter, P.; Schweiggert, R.; Will, F. Variability of Constitutive Stilbenoid Levels and Profiles in Grape Cane (Vitis vinifera L.) Depending Upon Variety and Clone, Location in the Vineyard, Pruning Time, and Vintage. J. Agric. Food Chem. 2022, 70, 4342–4352. [Google Scholar] [CrossRef]
- Pezet, R.; Gindro, K.; Viret, O.; Richter, H. Effects of Resveratrol, Viniferins and Pterostilbene on Plasmopara viticola Zoospore Mobility and Disease Development. Vitis 2004, 43, 145–148. [Google Scholar]
- Aziz, A.; Poinssot, B.; Daire, X.; Adrian, M.; Bézier, A.; Lambert, B.; Joubert, J.M.; Pugin, A. Laminarin Elicits Defense Responses in Grapevine and Induces Protection Against Botrytis cinerea and Plasmopara viticola. Mol. Plant Microbe Interact. 2003, 16, 1118–1128. [Google Scholar] [CrossRef]
- Vuerich, M.; Petrussa, E.; Filippi, A.; Cluzet, S.; Fonayet, J.V.; Sepulcri, A.; Piani, B.; Ermacora, P.; Braidot, E. Antifungal Activity of Chili Pepper Extract with Potential for the Control of Some Major Pathogens in Grapevine. Pest Manag. Sci. 2023, 79, 2503–2516. [Google Scholar] [CrossRef]
- Yoshinao, A.; Trung, N.V.; Shunji, S. Impact of Piper Betle Leaf Extract on Grape Downy Mildew: Effects of Combining 4-allylpyrocatechol with Eugenol, Alpha-Pinene or Beta-Pinene. Plant Protect. Sci. 2019, 55, 23–30. [Google Scholar]
- Gabaston, J.; Richard, T.; Cluzet, S.; Palos Pinto, A.; Dufour, M.-C.; Corio-Costet, M.-F.; Mérillon, J.-M. Pinus pinaster Knot: A Source of Polyphenols against Plasmopara viticola. J. Agric. Food Chem. 2017, 65, 8884–8891. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.R.; Ratsep, J.; Havis, N.D. Controlling Crop Diseases Using Induced Resistance: Challenges for the Future. J. Exp. Bot. 2013, 64, 1263–1280. [Google Scholar] [PubMed]
- Lyon, G.D. 2007. Agents That Can Elicit Induced Resistance. In Induced Resistance for Plant Defence: A Sustainable Approach to Crop Protection; Walters, D.R., Newton, A.C., Lyon, G.D., Eds.; John Wiley & Sons, Ltd.: West Sussex, UK, 2014; pp. 11–31. [Google Scholar]
- Lachhab, N.; Sanzani, S.M.; Adrian, M.; Chiltz, A.; Balacey, S.; Boselli, M.; Ippolito, A.; Poinssot, B. Soybean and Casein Hydrolysates Induce Grapevine Immune Responses and Resistance against Plasmopara viticola. Front. Plant Sci. 2014, 5, 00716. [Google Scholar] [CrossRef]
- Moreira, F.M.; Madini, A.; Marino, R.; Zulini, L.; Stefanini, M.; Velasco, R.; Kozma, P.; Grando, M.S. Genetic Linkage Maps of Two Interspecific Grape Crosses (Vitis spp.) Used to Localize Quantitative Trait Loci for Downy Mildew Resistance. Tree Genet. Genomes 2011, 7, 153–167. [Google Scholar] [CrossRef]
- Trouvelot, S.; Varnier, A.-L.; Allègre, M.; Mercier, L.; Baillieul, F.; Arnould, C.; Gianinazzi-Pearson, V.; Klarzynski, O.; Joubert, J.-M.; Pugin, A.; et al. A β-1,3 Glucan Sulfate Induces Resistance in Grapevine against Plasmopara viticola Through Priming of Defense Responses, Including HR-Like Cell Death. Mol. Plant-Microbe Interact. 2008, 21, 232–243. [Google Scholar] [CrossRef]
- Fröbel, S.; Zyprian, E. Colonization of Different Grapevine Tissues by Plasmopara viticola—A Histological Study. Front. Plant Sci. 2019, 10, 951. [Google Scholar]
- Nogueira Júnior, A.F.; Tränkner, M.; Ribeiro, R.V.; von Tiedemann, A.; Amorim, L. Photosynthetic Cost Associated with Induced Defense to Plasmopara viticola in Grapevine. Front. Plant Sci. 2020, 19, 235. [Google Scholar] [CrossRef]
- Fischer, B.M.; Salakhutdinov, I.; Akkurt, M.; Eibach, R.; Edwards, K.J.; Topfer, R.; Zyprian, E.M. Quantitative Trait Locus Analysis of Fungal Disease Resistance Factors on a Molecular Map of Grapevine. Theor. Appl. Genet. 2004, 108, 501–515. [Google Scholar] [CrossRef]
- Welter, L.J.; Göktürk-Baydar, N.; Akkurt, M.; Maul, E.; Eibach, R.; Töpfer, R.; Zyprian, E.M. Genetic Mapping and Localization of Quantitative Trait Loci Affecting Fungal Disease Resistance and Leaf Morphology in Grapevine (Vitis vinifera L). Mol. Breed. 2007, 20, 359–374. [Google Scholar] [CrossRef]
- Bellin, D.; Peressotti, E.; Merdinoglu, D.; Wiedemann-Merdinoglu, S.; Adam-Blondon, A.-F.; Cipriani, G.; Morgante, M.; Testolin, R.; Di Gaspero, G. Resistance to Plasmopara viticola in Grapevine ‘Bianca’ is Controlled by a Major Dominant Gene Causing Localised Necrosis at the Infection Site. Theor. Appl. Genet. 2009, 120, 163–176. [Google Scholar] [CrossRef]
- Marguerit, E.; Boury, C.; Manicki, A.; Donnart, M.; Butterlin, G.; Némorin, A.; Wiedemann-Merdinoglu, S.; Merdinoglu, D.; Ollat, N.; Decroocq, S. Genetic Dissection of Sex Determinism, Inflorescence Morphology and Downy Mildew Resistance in Grapevine. Theor. Appl. Genet. 2009, 118, 1261–1278. [Google Scholar] [CrossRef] [PubMed]
- Grando, M.S.; Bellin, D.; Edwards, K.J.; Pozzi, C.; Stefanini, M.; Velasco, R. Molecular Linkage Maps of Vitis vinifera L. and Vitis riparia Mchx. Theor. Appl. Genet. 2003, 106, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Di Gaspero, G.; Cipriani, G.; Adam-Blondon, A.–F.; Testolin, R. Linkage Maps of Grapevine Displaying the Chromosomal Locations of 420 Microsatellite Markers and 82 Markers for R–gene Candidates. Theor. Appl. Genet. 2007, 114, 1249–1263. [Google Scholar] [CrossRef]
- Coates, M.E.; Beynon, J.L. Hyaloperonospora arabidopsidis as a Pathogen Model. Annu. Rev. Phytopathol. 2010, 48, 329–345. [Google Scholar] [CrossRef]
- Meyers, B.C.; Shen, K.A.; Rohani, P.; Gaut, B.S.; Michelmore, R.W. Receptor-Like Genes in the Major Resistance Locus of Lettuce are Subject to Divergent Selection. Plant Cell 1998, 10, 1833–1846. [Google Scholar] [CrossRef]
- Collier, S.M.; Moffett, P. NB-LRRs Work a “Bait and Switch” on Pathogens. Trends Plant Sci. 2009, 14, 521–529. [Google Scholar] [CrossRef]
- Anderson, C.; Choisne, N.; Adam-Blondon, A.-F.; Dry, I.B. Positional Cloning of Disease Resistance Genes in Grapevine. In Encyclopaedia of Plant Genomics: Grapes; Kolen, C., Ed.; CRC Press: Versailles, France, 2011; pp. 186–210. [Google Scholar]
- Feechan, A.; Anderson, C.; Torregrosa, L.; Jermakow, A.; Mestre, P.; Wiedemann-Merdinoglu, S.; Merdinoglu, D.; Walker, A.R.; Cadle-Davidson, L.; Reisch, B.; et al. Genetic Dissection of a TIR-NB-LRR Locus from the Wild North American Grapevine Species Muscadinia rotundifolia Identifies Paralogous Genes Conferring Resistance to Major Fungal and Oomycete Pathogens in Cultivated Grapevine. Plant J. 2013, 76, 661–674. [Google Scholar]
- Eisenmann, B.; Czemme, S.; Ziegler, T.; Buchholz, G.; Kortekamp, A.; Trapp, O.; Rausch, T.; Dry, I.; Bogs, J. Rpv3–1 Mediated Resistance to Grapevine Downy Mildew is Associated with Specific Host Transcriptional Responses and the Accumulation of Stilbenes. BMC Plant Biol. 2019, 19, 343. [Google Scholar]
- Di Gaspero, G.; Copetti, D.; Coleman, C.; Castellarin, S.D.; Eibach, R.; Kozma, P.; Lacombe, T.; Gambetta, G.; Zvyagin, A.; Cindrić, P.; et al. Selective Sweep at the Rpv3 Locus During Grapevine Breeding for Downy Mildew Resistance. Theor. Appl. Genet. 2012, 124, 277–286. [Google Scholar]
- Venuti, S.; Copetti, D.; Foria, S.; Falginella, L.; Hoffmann, S.; Bellin, D.; Cindrić, P.; Kozma, P.; Scalabrin, S.; Morgante, M.; et al. Historical Introgression of the Downy Mildew Resistance Gene Rpv12 from the Asian Species Vitis amurensis into Grapevine Varieties. PLoS ONE 2013, 8, e61228. [Google Scholar] [CrossRef]
- Schwander, F.; Eibach, R.; Fechter, I.; Hausmann, L.; Zyprian, E.; Töpfer, R. Rpv10: A New Locus from the Asian Vitis Gene Pool for Pyramiding Downy Mildew Resistance Loci in Grapevine. Theor. Appl. Genet. 2012, 124, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Xiang, G.Q.; Li, Z.Q.; Wang, Y.T.; Dou, M.R.; Su, L.; Yin, X.; Liu, R.Q.; Wang, Y.J.; Xu, Y. Grapevine VpPR10.1 Functions in Resistance to Plasmopara viticola through Triggering a Cell Death-Like Defence Response by Interacting with VpVDAC3. Plant Biotechnol. J. 2018, 16, 1488–1501. [Google Scholar] [CrossRef] [PubMed]
- Li, T.M.; Cheng, X.; Wang, X.W.; Li, G.G.; Wang, B.B.; Wang, W.Y.; Zhang, N.; Han, Y.L.; Jiao, B.L.; Wang, Y.J.; et al. Glyoxalase I-4 Functions Downstream of NAC72 to Modulate Downy Mildew Resistance in Grapevine. Plant J. 2021, 108, 394–410. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, G.; Upadhyay, S.K.; Upadhyay, A.; Singh, K. Investigation of Long Non-Coding RNAs as Regulatory Players of Grapevine Response to Powdery and Downy Mildew Infection. BMC Plant Biol. 2021, 21, 265. [Google Scholar]
Effector | Virulence Subprocesses | Subcellular Locations | Plant Interactors | Biochemical Activities a | Cellular Processes Affected b |
---|---|---|---|---|---|
PvRXLR131 (Lan et al., 2019 [57]) | Suppresses defence-related callose deposition | Unknown | VvBKI1 | Targets the BKI1 receptor inhibitor of growth- and defence-related BR and ER signalling | Suppresses BR and ER signalling in plants |
PvRXLR111 (Liu et al., 2018 [60], Ma et al., 2020 [61]) | Decreases H2O2 accumulation | Nucleus | VvWRKY40 | Interacts with the negative immune regulator VvWRKY40 | Suppresses PTI responses by targeting the VvWRKY40 |
PvAvh74 (Yin et al., 2019 [62]) | Increases ROS accumulation | Nucleus | Unknown | Triggers cell death via SGT1, Hsp90, RAR1, NDR1, EDS1, and MAPK cascades | Activates SA, JA signalling pathways and ROS accumulation |
PvRxLR28 (Xiang et al., 2016 [64]) | Decreases H2O2 accumulation | Nucleus, cytoplasm | Unknown | Reduces the transcriptional levels of defence-related genes and impairs H2O2 accumulation | Represses SA, JA, and ET signalling pathways and H2O2 accumulation |
PvRXLR31154 (Liu et al., 2021 [65]) | Controls the ROS-mediated defence response and reduces defence response in planta and enhanced colonization | Chloroplast, cytoplasm, and nucleus | VpPsbP | Stabilizes PsbP during infection | Suppresses H2O2 production and activates 1O2-mediated signalling |
PvRxLR16 (Xiang et al., 2017 [66]) | ROS accumulation and immunity-associated pathways | Nucleus | Unknown | Triggers cell death depending on SGT1, Hsp90, and RAR1 | Activates SA, JA, and ET signalling pathways and promotes ROS accumulation |
PvAVH53 (Chen et al., 2020, 2021 [58,59]) | Triggers cell death | Nucleus | VvImpα and VvImpα4 | Targets VvImpα/α4 | Interacts with VvImpα/α4 to regulate the immune response |
RxLR50253 (Yin et al., 2022 [63]) | Decreases H2O2 accumulation | Plasma membrane, Cytoplasm, and Nucleus | VpBPA1 | Inhibits degradation of VpBPA1 protein | Decreases H2O2 accumulation by targeting and stabilizing VpBPA1 |
PvCRN17 (Xiang et al., 2021, 2022 [69,70]) | Suppresse defence responses | Mainly localized in the plasma membrane and nucleus | VvAE7L1 and VvNRPPII-X1 | Competes with VCIA1 to bind with VAE7L1 and VAE7 | Interrupts the maturation of Fe-S proteins and suppresses Fe-S proteins-mediated defence responses |
PvCRN11 (Fu et al., 2024 [18]) | Increases ROS accumulation | Nucleus, cytoplasm, plasma membrane | Unknown | Induces BAK1-dependent immunity in the apoplast, and PvCRN11 overexpression in intracellular induces BAK1-independent immunity | Increases ROS accumulation, promotes MAPK activation and PR1 and PR2 up-regulation |
Fungicide Group | Common Name | Mode of Action | Reference |
---|---|---|---|
PA | metalaxyl | Inhibited biosynthesis of RNA | [78,79] |
benalaxyl | [78] | ||
furalaxyl | [79] | ||
CAA | dimethomorph | Inhibited zoospore encystment, cystospore germination, and mycelial growth | [82] |
benthiavalicarb | [84] | ||
QoI | azoxystrobin | Cytochrome bc1 Qo site | [85] |
famoxadone | [89] | ||
fenamidone | [85] | ||
- | copper compounds | Multi-site fungicides | [85] |
mancozeb | [87] | ||
chlorothalonil | [85] | ||
folpet | [85] |
Biocontrol Strategy | Species Used | Possible Mode of Action | Reference |
---|---|---|---|
Fungi | Trichoderma harzianum T39 | Modulated defence-related genes | [111,112,113] |
Rhizophagus irregularis | Modulated the expression of pathogenicity effectors | [114] | |
Alternaria alternata | Antifungal metabolites diketopiperazines inhibited sporulation | [117] | |
Thecaphora amaranthi | - | [119] | |
Acremonium sclerotigenum | Inhibited the germination of sporangia | [119,120] | |
Bacteria | Lysobacter capsici | Produced biocontrol compound 2,5-diketopiperazine | [115] |
Bacillus subtilis KS1 | Antifungal lipopeptide iturin A | [116] | |
Bacillus subtilis GLB191 | Antifungal metabolites | [118] | |
Bacillus pumilus GLB197 | [118] | ||
Curtobacterium herbarum | - | [119] |
Botanical Name | Plant Part | Substances Used | Possible Mode of Action | Reference |
---|---|---|---|---|
Vitis vinifera | cane, wood, and root | r-viniferin | Inhibited pathogen sporulation | [124] |
hopeaphenol | [124] | |||
r2-viniferin | [124] | |||
δ-viniferin | Affected zoospore mobility | [126] | ||
pterostilbene | [126] | |||
Laminaria digitata | - | β-1,3-glucan laminarin | An elicitor of defence responses | [127] |
Capsicum chinense Jacq. | pod | capsaicinoids and polyphenols | Inhibited pathogen’s growth and sporulation | [128] |
Piper betle | leaves | 4-allylpyrocatechol combined with eugenol, alpha-pinene, or beta-pinene | Inhibited P. viticola growth | [129] |
Pinus pinaster | pine knots | pinosylvins | Inhibited zoospore mobility and mildew development | [130] |
pinocembrin | [130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Niu, Z.; Chen, Z.; Zhao, Y.; Yang, L. Review of the Pathogenic Mechanism of Grape Downy Mildew (Plasmopara viticola) and Strategies for Its Control. Microorganisms 2025, 13, 1279. https://doi.org/10.3390/microorganisms13061279
Zhang Z, Niu Z, Chen Z, Zhao Y, Yang L. Review of the Pathogenic Mechanism of Grape Downy Mildew (Plasmopara viticola) and Strategies for Its Control. Microorganisms. 2025; 13(6):1279. https://doi.org/10.3390/microorganisms13061279
Chicago/Turabian StyleZhang, Zhichao, Zaozhu Niu, Zhan Chen, Yanzhuo Zhao, and Lili Yang. 2025. "Review of the Pathogenic Mechanism of Grape Downy Mildew (Plasmopara viticola) and Strategies for Its Control" Microorganisms 13, no. 6: 1279. https://doi.org/10.3390/microorganisms13061279
APA StyleZhang, Z., Niu, Z., Chen, Z., Zhao, Y., & Yang, L. (2025). Review of the Pathogenic Mechanism of Grape Downy Mildew (Plasmopara viticola) and Strategies for Its Control. Microorganisms, 13(6), 1279. https://doi.org/10.3390/microorganisms13061279