Clostridioides difficile in Animal Inflammatory Bowel Disease: A One Health Perspective on Emerging Zoonotic Threats
Abstract
:1. Introduction
2. Clostridioides difficile in Animal IBD: A Growing Concern
3. Pathogenic Mechanisms of Clostridioides difficile in Animal IBD
4. Diagnostic Challenges in Detecting Clostridioides difficile in Animals
5. Therapeutic Approaches: Current Strategies and Limitations
6. Environmental Factors and C. difficile Transmission in the Amazon Biome and Beyond
7. Correlation Between IBD and Ribotypes of Clostridioides difficile
8. Future Perspectives and Research Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knight, D.R.; Kullin, B.; Androga, G.O.; Barbut, F.; Eckert, C.; Johnson, S.; Spigaglia, P.; Tateda, K.; Tsai, P.J.; Riley, T.V. Evolutionary and Genomic Insights into Clostridioides difficile Sequence Type 11: A Diverse Zoonotic and Antimicrobial-Resistant Lineage of Global One Health Importance. mBio 2019, 10, e00446-19. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.P.; Rood, J.I.; Lyras, D. The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends Microbiol. 2012, 20, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S. Clostridium (Clostridioides) difficile in Animals. J. Vet. Diagn. Investig. 2020, 32, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.C.; Knight, D.R.; Riley, T.V. Clostridium difficile and One Health. Clin. Microb. Infect. 2020, 26, 857–863. [Google Scholar] [CrossRef]
- Wang, R.; Li, Z.; Liu, S.; Zhang, D. Global, Regional and National Burden of Inflammatory Bowel Disease in 204 Countries and Territories from 1990 to 2019: A Systematic Analysis Based on the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e065186. [Google Scholar] [CrossRef]
- Bäverud, V.; Gustafsson, A.; Franklin, A.; Lindholm, A.; Gunnarsson, A. Clostridium difficile Associated with Acute Colitis in Mature Horses Treated with Antibiotics. Equine Vet. J. 1997, 29, 279–284. [Google Scholar] [CrossRef]
- Donaldson, M.T.; Palmer, J.E. Prevalence of Clostridium perfringens enterotoxin and Clostridium difficile toxin A in Feces of Horses with Diarrhea and Colic. J. Am. Vet. Med. Assoc. 1999, 215, 358–361. [Google Scholar] [CrossRef]
- Yaeger, M.; Funk, N.; Hoffman, L. A Survey of Agents Associated with Neonatal Diarrhea in Iowa Swine Including Clostridium difficile and Porcine Reproductive and Respiratory Syndrome Virus. J. Vet. Diagn. Investig. 2002, 14, 281–287. [Google Scholar] [CrossRef]
- Arruda, P.H.; Madson, D.M.; Ramirez, A.; Rowe, E.; Lizer, J.T.; Songer, J.G. Effect of Age, Dose and Antibiotic Therapy on the Development of Clostridium difficile Infection in Neonatal Piglets. Anaerobe 2013, 22, 104–110. [Google Scholar] [CrossRef]
- Rodriguez-Palacios, A.; Stämpfli, H.R.; Stalker, M.; Duffield, T.; Weese, J.S. Natural and Experimental Infection of Neonatal Calves with Clostridium difficile. Vet. Microbiol. 2007, 124, 166–172. [Google Scholar] [CrossRef]
- Bandelj, P.; Harmanus, C.; Blagus, R.; Cotman, M.; Kuijper, E.J.; Ocepek, M.; Vengust, M. Quantification of Clostridioides (Clostridium) difficile in Feces of Calves of Different Age and Determination of Predominant Clostridioides difficile Ribotype 033 Relatedness and Transmission between Family Dairy Farms Using Multilocus Variable-number Tandem-repeat Analysis. BMC Vet. Res. 2018, 14, 298. [Google Scholar] [CrossRef]
- Busch, K.; Suchodolski, J.S.; Kühner, K.A.; Minamoto, Y.; Steiner, J.M.; Mueller, R.S.; Hartmann, K.; Unterer, S. Clostridium perfringens Enterotoxin and Clostridium difficile Toxin A/B do Not Play a Role in Acute Haemorrhagic Diarrhoea Syndrome in Dogs. Vet. Rec. 2015, 176, 253. [Google Scholar] [CrossRef] [PubMed]
- Clooten, J.K.; Kruth, S.A.; Weese, J.S. Genotypic and phenotypic Characterization of Clostridium perfringens and Clostridium difficile in Diarrheic and Healthy dogs. J. Vet. Intern. Med. 2003, 17, 123. [Google Scholar] [CrossRef] [PubMed]
- Madewell, B.R.; Bea, J.K.; Kraegel, S.A.; Winthrop, M.; Tang, Y.J.; Silva, J., Jr. Clostridium difficile: A Survey of Fecal Carriage in Cats in a Veterinary Medical Teaching Hospital. J. Vet. Diagn. Investig. 1999, 11, 50–54. [Google Scholar] [CrossRef]
- Rabold, D.; Espelage, W.; Abu Sin, M.; Eckmanns, T.; Schneeberg, A.; Neubauer, H.; Möbius, N.; Hille, K.; Wieler, L.H.; Seyboldt, C.; et al. The Zoonotic Potential of Clostridium difficile from Small Companion Animals and their Owners. PLoS ONE 2018, 13, e0193411. [Google Scholar] [CrossRef]
- Bondo, K.J.; Pearl, D.L.; Janecko, N.; Reid-Smith, R.J.; Parmley, E.J.; Weese, J.S.; Rousseau, J.; Taboada, E.; Mutschall, S.; Jardine, C.M. Salmonella, Campylobacter, Clostridium difficile, and Anti-microbial Resistant Escherichia coli in the Faeces of Sympatric Meso-mammals in Southern Ontario, Canada. Zoon. Public Health 2019, 66, 406–416. [Google Scholar] [CrossRef]
- Ortiz-Prado, E.; Yeager, J.; Vasconez-Gonzalez, J.; Culqui-Sánchez, M.; Izquierdo-Condoy, J.S. Integrating environmental conservation and public health strategies to combat zoonotic disease emergence: A call to action from the Amazon rainforest. Front. Cell. Infect. Microbiol. 2024, 14, 1405472. [Google Scholar] [CrossRef]
- Silva, R.O.S.; D’Elia, M.L.; Teixeira, E.P.T.; Pereira, P.L.L.; Soares, D.F.M.; Cavalcanti, A.R.; Kocuvan, A.; Rupnik, M.; Santos, A.L.Q.; Oliveira Junior, C.A.; et al. Clostridium difficile and Clostridium perfringens from wild carnivore species in Brazil. Anaerobe 2014, 28, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Salgado-Bierman, F.; Rupnik, M.; Smith, D.A.; Groot, P.C. Clostridium (Clostridioides) difficile Shedding by Polar Bears (Ursus maritimus) in the Canadian Arctic. Anaerobe 2019, 57, 35–38. [Google Scholar] [CrossRef]
- Al-Zahrani, I.A. Clostridioides (Clostridium) difficile: A silent nosocomial pathogen. Saudi Med. J. 2023, 44, 825–835. [Google Scholar] [CrossRef]
- Banawas, S.S. Clostridium difficile Infections: A Global Overview of Drug Sensitivity and Resistance Mechanisms. BioMed Res. Int. 2018, 21, 8414257. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, L.E.; Fiorani, M.; Tohumcu, E.; Bibbò, S.; Porcari, S.; Mele, M.C.; Pizzoferrato, M.; Gasbarrini, A.; Cammarota, G.; Ianiro, G. Risk Factors, Diagnosis, and Management of Clostridioides difficile Infection in Patients with Inflammatory Bowel Disease. Microorganisms 2022, 10, 1315. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, B.G.; Vinithakumari, A.A.; Sponseller, B.; Tangudu, C.; Mooyottu, S. Prevalence, Colonization, Epidemiology, and Public Health Significance of Clostridioides difficile in Companion Animals. Front. Vet. Sci. 2020, 7, 512551. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Monaghan, T.; Yadegar, A.; Louie, T.; Kao, D. Insights into the Evolving Epidemiology of Clostridioides difficile Infection and Treatment: A Global Perspective. Antibiotics 2023, 12, 1141. [Google Scholar] [CrossRef]
- Tsai, C.S.; Hung, Y.P.; Lee, J.C.; Syue, L.S.; Hsueh, P.R.; Ko, W.C. Clostridioides difficile infection: An emerging zoonosis? Expert Rev. Anti-Infect. Ther. 2021, 19, 1543–1552. [Google Scholar] [CrossRef]
- Alves, F.; Castro, R.; Pinto, M.; Nunes, A.; Pomba, C.; Oliveira, M.; Silveira, L.; Gomes, J.P.; Oleastro, M. Molecular Epidemiology of Clostridioides difficile in Companion Animals: Genetic Overlap with Human Strains and Public Health Concerns. Front. Public Health 2023, 6, 1070258. [Google Scholar] [CrossRef]
- Steele, J.; Feng, H.; Parry, N.; Tzipori, S. Piglet models of acute or chronic Clostridium difficile illness. J. Infect. Dis. 2010, 201, 428–434. [Google Scholar] [CrossRef]
- Sholeh, M.; Krutova, M.; Forouzesh, M.; Mironov, S.; Sadeghifard, N.; Molaeipour, L.; Maleki, A.; Kouhsari, E. Antimicrobial resistance in Clostridioides (Clostridium) difficile derived from humans: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2020, 9, 158. [Google Scholar] [CrossRef]
- Tuniyazi, M.; Hu, X.; Fu, Y.; Zhang, N. Canine Fecal Microbiota Transplantation: Current Application and Possible Mechanisms. Vet. Sci. 2022, 30, 396. [Google Scholar] [CrossRef]
- Winston, J.A.; Suchodolski, J.; Gaschen, F.P.; Busch, K.B.; Marsilio, S.; Costa, M.C.; Chaitman, J.; Coffey, E.L.; Dandrieux, J.; Gal, A.; et al. Clinical Guidelines for Fecal Microbiota Transplantation in Companion Animals. Adv. Small Anim. Care 2024, 5, 79–107. [Google Scholar] [CrossRef]
- Rocha, M.F.G.; Diógenes, E.M.; Carvalho, V.L.; Marmontel, M.; da Costa, M.O.; da Silva, V.M.F.; de Souza, A.R.; Gravena, W.; do Carmo, N.A.S.; Marigo, J.; et al. One Health Implications of Antimicrobial Resistance in Bacteria from Amazon River Dolphins. Ecohealth 2022, 18, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Varela, K.; Brown, J.A.; Lipton, B.; Dunn, J.; Stanek, D.; Behravesh, C.B.; Chapman, H.; Conger, T.H.; Vanover, T.; Edling, T.; et al. A Review of Zoonotic Disease Threats to Pet Owners: A Compendium of Measures to Prevent Zoonotic Diseases Associated with Non-Traditional Pets: Rodents and Other Small Mammals, Reptiles, Amphibians, Backyard Poultry, and Other Selected Animals. Vector Borne Zoonotic Dis. 2022, 22, 303–360. [Google Scholar] [CrossRef] [PubMed]
- Elsohaby, I.; Villa, L. Zoonotic diseases: Understanding the risks and mitigating the threats. BMC Vet. Res. 2023, 19, 186. [Google Scholar] [CrossRef] [PubMed]
- Janezic, S.; Rupnik, M. Genomic diversity of Clostridium difficile strains. Res. Microbiol. 2015, 166, 353–360. [Google Scholar] [CrossRef]
- Meléndez-Sánchez, D.; Hernández, L.; Ares, M.; Méndez-Tenorio, A.; Flores-Luna, L.; Torres, J.; Camorlinga-Ponce, M. Genomic and phenotypic studies among Clostridioides difficile isolates show a high prevalence of clade 2 and great diversity in clinical isolates from Mexican adults and children with healthcare-associated diarrhea. Microbiol. Spectr. 2024, 12, e0394723. [Google Scholar] [CrossRef]
- Kamuju, V.; Kumar, S.; Khan, W.H.; Vivekanandan, P. Hypervirulent Clostridium difficile ribotypes are CpG depleted. Virulence 2018, 9, 1422–1425. [Google Scholar] [CrossRef]
- Yuille, S.; Mackay, W.G.; Morrison, D.J.; Tedford, M.C. Drivers of Clostridioides difficile hypervirulent ribotype 027 spore germination, vegetative cell growth and toxin production in vitro. Clin. Microbiol. Infect. 2020, 26, 941.e1–941.e7. [Google Scholar] [CrossRef]
- Lawley, T.D.; Young, V.B. Murine models to study Clostridium difficile infection and transmission. Anaerobe 2013, 24, 94–97. [Google Scholar] [CrossRef]
- Barron, M.R.; Sovacool, K.L.; Abernathy-Close, L.; Vendrov, K.C.; Standke, A.K.; Bergin, I.L.; Schloss, P.D.; Young, V.B. Intestinal Inflammation Reversibly Alters the Microbiota to Drive Susceptibility to Clostridioides difficile Colonization in a Mouse Model of Colitis. mBio 2022, 13, e0190422. [Google Scholar] [CrossRef]
- Zhou, F.; Hamza, T.; Fleur, A.S.; Zhang, Y.; Yu, H.; Chen, K.; Heath, J.E.; Chen, Y.; Huang, H.; Feng, H. Mice with Inflammatory Bowel Disease are Susceptible to Clostridium difficile Infection with Severe Disease Outcomes. Inflamm. Bowel Dis. 2018, 24, 573–582. [Google Scholar] [CrossRef]
- Werner, M.; Ishii, P.E.; Pilla, R.; Lidbury, J.A.; Steiner, J.M.; Busch-Hahn, K.; Unterer, S.; Suchodolski, J.S. Prevalence of Clostridioides difficile in Canine Feces and Its Association with Intestinal Dysbiosis. Animals 2023, 13, 2441. [Google Scholar] [CrossRef] [PubMed]
Animal Species | Incidence/Prevalence of Clostridioides difficile | References |
---|---|---|
Horse | High incidence associated with colitis, especially in foals | [3,4,5] |
Pigs | Common in neonatal piglets, leading to diarrhea and increased mortality | [3,6,7] |
Cattle | Reported mainly in young calves with enteritis | [3,8,9] |
Dogs | Observed in dogs with chronic and acute diarrhea | [3,10,11] |
Cats | Lower incidence compared to dogs but associated with diarrhea | [3,12,13] |
Wild Animals | Reported in captive conditions with digestive manifestations and variable incidence in mammals and birds in natural environments | [3,14,15,16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvarani, F.M.; Oliveira, H.G.d.S.; Uzal, F.A. Clostridioides difficile in Animal Inflammatory Bowel Disease: A One Health Perspective on Emerging Zoonotic Threats. Microorganisms 2025, 13, 1233. https://doi.org/10.3390/microorganisms13061233
Salvarani FM, Oliveira HGdS, Uzal FA. Clostridioides difficile in Animal Inflammatory Bowel Disease: A One Health Perspective on Emerging Zoonotic Threats. Microorganisms. 2025; 13(6):1233. https://doi.org/10.3390/microorganisms13061233
Chicago/Turabian StyleSalvarani, Felipe Masiero, Hanna Gabriela da Silva Oliveira, and Francisco Alejandro Uzal. 2025. "Clostridioides difficile in Animal Inflammatory Bowel Disease: A One Health Perspective on Emerging Zoonotic Threats" Microorganisms 13, no. 6: 1233. https://doi.org/10.3390/microorganisms13061233
APA StyleSalvarani, F. M., Oliveira, H. G. d. S., & Uzal, F. A. (2025). Clostridioides difficile in Animal Inflammatory Bowel Disease: A One Health Perspective on Emerging Zoonotic Threats. Microorganisms, 13(6), 1233. https://doi.org/10.3390/microorganisms13061233