Efficiency, Microbial Communities, and Nitrogen Metabolism in Denitrification Biological Filter: Insights into Varied Pore Ceramsite Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Water Quality
2.2. Experimental Methods
2.2.1. Operational Settings
2.2.2. Water Sampling and Analytical Methods
2.2.3. Physicochemical Characteristics of Media
2.2.4. Biomass Determination
2.2.5. Extracellular Enzyme Polymers (EPS)
2.2.6. High-Throughput Sequencing and Analysis
2.2.7. Statistical Analysis and Visualization
3. Results and Discussion
3.1. Pore Structure Characteristics of Media
3.1.1. Media Surface Morphology
3.1.2. Media Porosity and Fractal Characteristics
3.2. The Performance of DNBFs with Different Pore Structure Media
3.3. Biomass and EPS Analysis
3.4. Microbial Community Analysis
3.4.1. Alpha Diversity Analysis
3.4.2. Bacterial Community Composition
3.4.3. Functional Prediction of Microbial Communities Based on the KEGG
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Picetti, R.; Deeney, M.; Pastorino, S.; Miller, M.R.; Shah, A.; Leon, D.A.; Dangour, A.D.; Green, R. Nitrate and Nitrite Contamination in Drinking Water and Cancer Risk: A Systematic Review with Meta-Analysis. Environ. Res. 2022, 210, 112988. [Google Scholar] [CrossRef]
- Zuo, R.; Zheng, S.; Liu, X.; Wu, G.; Wang, S.; Wang, J.; Liu, J.; Huang, C.; Zhai, Y. Groundwater Table Fluctuation: A Driving Force Affecting Nitrogen Transformation in Nitrate-Contaminated Groundwater. J. Hydrol. 2023, 621, 129606. [Google Scholar] [CrossRef]
- Lin, L.; St Clair, S.; Gamble, G.D.; Crowther, C.A.; Dixon, L.; Bloomfield, F.H.; Harding, J.E. Nitrate Contamination in Drinking Water and Adverse Reproductive and Birth Outcomes: A Systematic Review and Meta-Analysis. Sci. Rep. 2023, 13, 563. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, S.; Liu, T.; Yuan, Z.; Guo, J. Efficient Nitrate Removal from Synthetic Groundwater via in Situ Utilization of Short-Chain Fatty Acids from Methane Bioconversion. Chem. Eng. J. 2020, 393, 124594. [Google Scholar] [CrossRef]
- Bai, Y.; Hu, H.; Lee, P.-H.; Zhussupbekova, A.; Shvets, I.V.; Du, B.; Terada, A.; Zhan, X. Nitrate Removal in Iron Sulfide-Driven Autotrophic Denitrification Biofilter: Biochemical and Chemical Transformation Pathways and Its Underlying Microbial Mechanism. Sci. Total Environ. 2023, 901, 165908. [Google Scholar] [CrossRef]
- Arumugham, T.; Khudzari, J.; Abdullah, N.; Yuzir, A.; Iwamoto, K.; Homma, K. Research Trends and Future Directions on Nitrification and Denitrification Processes in Biological Nitrogen Removal. J. Environ. Chem. Eng. 2024, 12, 111897. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, W.; Yuan, C.; Liu, H.; Liang, S.; Tan, S. A Novel Pure Biofilm System Based on Aerobic Denitrification for Nitrate Wastewater Treatment: Exploring the Feasibility of High Total Nitrogen Removal under Low-Carbon Condition. Chem. Eng. J. 2024, 480, 147978. [Google Scholar] [CrossRef]
- Song, H.; Feng, J.; Zhang, L.; Yin, H.; Pan, L.; Li, L.; Fan, C.; Wang, Z. Advanced Treatment of Low C/N Ratio Wastewater Treatment Plant Effluent Using a Denitrification Biological Filter: Insight into the Effect of Medium Particle Size and Hydraulic Retention Time. Environ. Technol. Innov. 2021, 24, 102044. [Google Scholar] [CrossRef]
- Guo, L.-K.; Yang, L.; Ren, Y.-X.; Dou, J.-W.; Cui, S.; Lan, J.; Li, X.-T.; Wang, J.; Wang, Y.-C. Enhanced Biofilm Formation and Denitrification in Slow Sand Filters for Advanced Nitrogen Removal by Powdery Solid Carbon Sources Addition. J. Water Process Eng. 2022, 50, 103192. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, Y.; Gan, D.; Cai, X.; Li, X.; Liu, X.; Xia, S. Enhancing Biofilm Formation with Powder Carriers for Efficient Nitrogen and Phosphorus Removal. Sci. Total Environ. 2024, 951, 175812. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Wu, Y.; Lin, S. Enhancement of Nitrogen Removal and Acceleration of Anammox Start-up with Novel Gravel Contact Carriers. Biochem. Eng. J. 2023, 200, 109084. [Google Scholar] [CrossRef]
- Xu, G.R.; Zou, J.L.; Li, G.B. Stabilization of Heavy Metals in Sludge Ceramsite. Water Res. 2010, 44, 2930–2938. [Google Scholar] [CrossRef] [PubMed]
- Deena, S.R.; Kumar, G.; Vickram, A.S.; Singhania, R.R.; Dong, C.-D.; Rohini, K.; Anbarasu, K.; Thanigaivel, S.; Ponnusamy, V.K. Efficiency of Various Biofilm Carriers and Microbial Interactions with Substrate in Moving Bed-Biofilm Reactor for Environmental Wastewater Treatment. Bioresour. Technol. 2022, 359, 127421. [Google Scholar]
- Hou, Z.; Zhou, X.; Dong, W.; Wang, H.; Liu, H.; Zeng, Z.; Xie, J. Insight into Correlation of Advanced Nitrogen Removal with Extracellular Polymeric Substances Characterization in a Step-Feed Three-Stage Integrated Anoxic/Oxic Biofilter System. Sci. Total Environ. 2022, 806, 151418. [Google Scholar] [CrossRef]
- Zhang, Q.I.; Yu, Z.; Jin, S.; Zhu, L.; Liu, C.; Zheng, H.; Zhou, T.; Liu, Y.; Ruan, R. Lignocellulosic Residue as Bio-Carrier for Algal Biofilm Growth: Effects of Carrier Physicochemical Proprieties and Toxicity on Algal Biomass Production and Composition. Bioresour. Technol. 2019, 293, 122091. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.M. Geometry of Biofilm Carriers: A Systematic Review Deciding the Best Shape and Pore Size. Groundw. Sustain. Dev. 2021, 12, 100520. [Google Scholar] [CrossRef]
- Breitenbücher, K.; Siegl, M.; Knüpfer, A.; Radke, M. Open-Pore Sintered Glass as a High-Efficiency Support Medium in Bioreactors: New Results and Long-Term Experiences Achieved in High-Rate Anaerobic Digestion. Water Sci. Technol. 1990, 22, 25–32. [Google Scholar] [CrossRef]
- Wang, S.; Wang, D.I.C. Pore Dimension Effects in the Cell Loading of a Porous Carrier. Biotech Bioeng. 1989, 33, 915–917. [Google Scholar] [CrossRef]
- Chimileski, S.; Borisy, G.G.; Dewhirst, F.E.; Mark Welch, J.L. Tip Extension and Simultaneous Multiple Fission in a Filamentous Bacterium. Proc. Natl. Acad. Sci. USA 2024, 121, e2408654121. [Google Scholar] [CrossRef]
- Mitchell, J.G. The Energetics and Scaling of Search Strategies in Bacteria. Am. Nat. 2002, 160, 727–740. [Google Scholar] [CrossRef]
- Zhen, Z.; Yang, Y.; Liu, Z.; Sun, H.; He, C. Porous Red Mud Ceramsite for Aquatic Phosphorus Removal: Application in Constructed Wetlands. Environ. Pollut. 2024, 360, 124688. [Google Scholar] [CrossRef] [PubMed]
- Yuan, N.; Li, Z.; Shang, Q.; Liu, X.; Deng, C.; Wang, C. High Efficiency of Drinking Water Treatment Residual-Based Sintered Ceramsite in Biofilter for Domestic Wastewater Treatment. J. Environ. Manag. 2024, 354, 120401. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Wang, Y.; Wang, L.; Wang, S.; Li, S.; Ding, Y. The Performance of Porous Ceramsites in a Biological Aerated Filter for Organic Wastewater Treatment and Simulation Analysis. J. Water Process Eng. 2020, 34, 101134. [Google Scholar] [CrossRef]
- Ou, C.; Wang, J.; Yang, W.; Bao, Y.; Liao, Z.; Shi, J.; Qin, J. Removal of Ammonia Nitrogen and Phosphorus by Porous Slow-Release Ca2+ Ceramsite Prepared from Industrial Solid Wastes. Sep. Purif. Technol. 2023, 304, 122366. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Yu, J.; Si, W.; Fu, Y. Water Supply Sludge-Based Ceramsite Denitrification Filter: Pollutant Removal and Microbial Community Characteristics. J. Water Process Eng. 2023, 55, 104229. [Google Scholar] [CrossRef]
- Li, L.; He, Z.; Liang, T.; Sheng, T.; Zhang, F.; Wu, D.; Ma, F. Colonization of Biofilm in Wastewater Treatment: A Review. Environ. Pollut. 2022, 293, 118514. [Google Scholar] [CrossRef]
- GB 50014-2021; Standard for Design of Outdoor Wastewater Engineering. China Planning Press: Beijing, China, 2021.
- T/CUWA 50053-2023; Standard for Design of Upflow Denitrification Filter. China Planning Press: Beijing, China, 2023.
- GB/T 176-2017; Methods for Chemical Analysis of Cement. Standards Press of China: Beijing, China, 2017.
- Zhang, Z.; Cui, C.; Wu, Z. A Novel Method to Determine the Optimal Threshold of SEM Images. Mar. Pet. Geol. 2024, 163, 106804. [Google Scholar] [CrossRef]
- Zhu, Q.; Yang, W.; Yu, H. Study on the Permeability of Red Sandstone via Image Enhancement. Fractals 2017, 25, 1750055. [Google Scholar] [CrossRef]
- Messing, R.A.; Oppermann, R.A. Pore Dimensions for Accumulating Biomass. I. Microbes That Reproduce by Fission or by Budding. Biotech Bioeng. 1979, 21, 49–58. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.M.; Lynam, J.G.; Lee, W.H.; Dai, F.; Dakhil, I.H. Roughness and Wettability of Biofilm Carriers: A Systematic Review. Environ. Technol. Innov. 2021, 21, 101233. [Google Scholar] [CrossRef]
- Zou, G.; She, J.; Peng, S.; Yin, Q.; Liu, H.; Che, Y. Two-Dimensional SEM Image-Based Analysis of Coal Porosity and Its Pore Structure. Int. J. Coal Sci. Technol. 2020, 7, 350–361. [Google Scholar] [CrossRef]
- Shi, W.; Tian, Z.; Wang, Y.; Yu, B.; Tian, Y.; Yang, M. Effects of Biocarrier Type and Size on the Performance of Nitrification and Simultaneous Nitrification and Denitrification. J. Environ. Chem. Eng. 2023, 11, 110000. [Google Scholar] [CrossRef]
- Elenter, D.; Milferstedt, K.; Zhang, W.; Hausner, M.; Morgenroth, E. Influence of Detachment on Substrate Removal and Microbial Ecology in a Heterotrophic/Autotrophic Biofilm. Water Res. 2007, 41, 4657–4671. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Yang, S.F. Influence of Loosely Bound Extracellular Polymeric Substances (EPS) on the Flocculation, Sedimentation and Dewaterability of Activated Sludge. Water Res. 2007, 41, 1022–1030. [Google Scholar] [CrossRef]
- Fang, F.; Lu, W.-T.; Shan, Q.; Cao, J.-S. Characteristics of Extracellular Polymeric Substances of Phototrophic Biofilms at Different Aquatic Habitats. Carbohydr. Polym. 2014, 106, 1–6. [Google Scholar] [CrossRef]
- Liu, H.; Fang, H.H. Extraction of Extracellular Polymeric Substances (EPS) of Sludges. J. Biotechnol. 2002, 95, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wu, H.; Cai, P.; Fein, J.B.; Chen, W. Atomic Force Microscopy Measurements of Bacterial Adhesion and Biofilm Formation onto Clay-Sized Particles. Sci. Rep. 2015, 5, 16857. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Liang, J.; Li, G. Boric Acid Cross-Linked 3D Polyvinyl Alcohol Gel Beads by NaOH-Titration Method as a Suitable Biomass Immobilization Matrix. J. Polym. Environ. 2020, 28, 532–541. [Google Scholar] [CrossRef]
- Xu, J.; Pang, H.; He, J.; Nan, J.; Wang, M.; Li, L. Start-up of Aerobic Granular Biofilm at Low Temperature: Performance and Microbial Community Dynamics. Sci. Total Environ. 2020, 698, 134311. [Google Scholar] [CrossRef]
- Feng, G.; Cheng, Y.; Wang, S.-Y.; Borca-Tasciuc, D.A.; Worobo, R.W.; Moraru, C.I. Bacterial Attachment and Biofilm Formation on Surfaces Are Reduced by Small-Diameter Nanoscale Pores: How Small Is Small Enough? NPJ Biofilms Microbiomes 2015, 1, 1–9. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Kwon, T.-H. Entrapment of Clay Particles Enhances Durability of Bacterial Biofilm-Associated Bioclogging in Sand. Acta Geotech. 2022, 17, 119–129. [Google Scholar] [CrossRef]
- Characklis, W.G. Bioengineering Report: Fouling Biofilm Development: A Process Analysis. Biotech Bioeng. 1981, 23, 1923–1960. [Google Scholar] [CrossRef]
- Fu, J.; Yu, Y. Experimental Study on Pore Characteristics and Fractal Dimension Calculation of Pore Structure of Aerated Concrete Block. Adv. Civ. Eng. 2019, 2019, 8043248. [Google Scholar] [CrossRef]
- Jianzhong, W.; Huiping, T.; Jilei, Z.; Qingbo, A.; Hao, Z.; Jun, M. Relationship between Compressive Strength and Fractal Dimension of Pore Structure. Rare Met. Mater. Eng. 2013, 42, 2433–2436. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, H.; Lan, S.; Li, X.; Guo, Q.; Xie, Y. An Innovative Bilayer Solid Carbon Source for Tertiary Denitrification: Synthesis, Performance, and Microbial Diversity Analysis. J. Water Process Eng. 2023, 54, 103931. [Google Scholar] [CrossRef]
- Shen, Z.; Zhou, Y.; Hu, J.; Wang, J. Denitrification Performance and Microbial Diversity in a Packed-Bed Bioreactor Using Biodegradable Polymer as Carbon Source and Biofilm Support. J. Hazard. Mater. 2013, 250, 431–438. [Google Scholar] [CrossRef]
- Ammar, Y.; Swailes, D.; Bridgens, B.; Chen, J. Influence of Surface Roughness on the Initial Formation of Biofilm. Surf. Coat. Technol. 2015, 284, 410–416. [Google Scholar] [CrossRef]
- GB 5749-2022; Standards for Drinking Water Quality. Standards Press of China: Beijing, China, 2022.
- Li, C.; Wang, T.; Zheng, N.; Zhang, J.; Ngo, H.H.; Guo, W.; Liang, S. Influence of Organic Shock Loads on the Production of N2O in Denitrifying Phosphorus Removal Process. Bioresour. Technol. 2013, 141, 160–166. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, Y.; Fan, Y.; Gao, J.; Liu, Y.; Lv, X.; Ge, L.; Wu, J. Nitrite Accumulation, Denitrification Kinetic and Microbial Evolution in the Partial Denitrification Process: The Combined Effects of Carbon Source and Nitrate Concentration. Bioresour. Technol. 2022, 361, 127604. [Google Scholar] [CrossRef]
- Long, Y.; Ma, Y.; Wan, J.; Wang, Y.; Tang, M.; Fu, H.; Cao, J. Denitrification Efficiency, Microbial Communities and Metabolic Mechanisms of Corn Cob Hydrolysate as Denitrifying Carbon Source. Environ. Res. 2023, 221, 115315. [Google Scholar] [CrossRef]
- Guo, F.; Xu, F.; Cai, R.; Li, D.; Xu, Q.; Yang, X.; Wu, Z.; Wang, Y.; He, Q.; Ao, L. Enhancement of Denitrification in Biofilters by Immobilized Biochar under Low-Temperature Stress. Bioresour. Technol. 2022, 347, 126664. [Google Scholar] [CrossRef] [PubMed]
- Hasan, H.A.; Abdullah, S.R.S.; Kamarudin, S.K.; Kofli, N.T. Response Surface Methodology for Optimization of Simultaneous COD, NH4+–N and Mn2+ Removal from Drinking Water by Biological Aerated Filter. Desalination 2011, 275, 50–61. [Google Scholar] [CrossRef]
- Wang, F. Synergistic Denitrification Mechanism of Domesticated Aerobic Denitrifying Bacteria in Low-Temperature Municipal Wastewater Treatment. NPJ Clean Water 2024, 7, 6. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Ren, H.; Geng, J.; Xu, K.; Huang, H.; Ding, L. Physicochemical Characteristics and Microbial Community Evolution of Biofilms during the Start-up Period in a Moving Bed Biofilm Reactor. Bioresour. Technol. 2015, 180, 345–351. [Google Scholar] [CrossRef]
- Ahmad, M.; Liu, S.; Mahmood, N.; Mahmood, A.; Ali, M.; Zheng, M.; Ni, J. Effects of Porous Carrier Size on Biofilm Development, Microbial Distribution and Nitrogen Removal in Microaerobic Bioreactors. Bioresour. Technol. 2017, 234, 360–369. [Google Scholar] [CrossRef]
- Cunningham, A.B.; Characklis, W.G.; Abedeen, F.; Crawford, D. Influence of Biofilm Accumulation on Porous Media Hydrodynamics. Environ. Sci. Technol. 1991, 25, 1305–1311. [Google Scholar] [CrossRef]
- Al-Amshawee, S.K.A.; Yunus, M.Y.B.M.; Alalwan, H.A.; Lee, W.H.; Dai, F. Experimental Investigation of Biofilm Carriers of Varying Shapes, Sizes, and Materials for Wastewater Treatment in Fixed Bed Biofilm Reactor: A Qualitative Study of Biocarrier Performance. J. Chem. Technol. Biotechnol. 2022, 97, 2592–2606. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Dong, D.; Hu, H.; Wu, B.; Ren, H. In-Situ Monitoring of the Unstable Bacterial Adhesion Process during Wastewater Biofilm Formation: A Comprehensive Study. Environ. Int. 2020, 140, 105722. [Google Scholar] [CrossRef]
- Pechaud, Y.; Derlon, N.; Queinnec, I.; Bessiere, Y.; Paul, E. Modelling Biofilm Development: The Importance of Considering the Link between EPS Distribution, Detachment Mechanisms and Physical Properties. Water Res. 2024, 250, 120985. [Google Scholar] [CrossRef]
- Zhu, L.; Zhou, J.; Lv, M.; Yu, H.; Zhao, H.; Xu, X. Specific Component Comparison of Extracellular Polymeric Substances (EPS) in Flocs and Granular Sludge Using EEM and SDS-PAGE. Chemosphere 2015, 121, 26–32. [Google Scholar] [CrossRef]
- Cao, G.; Gao, J.; Song, J.; Jia, X.; Liu, Y.; Niu, J.; Yuan, X.; Zhao, Y. Performance and Mechanism of Chromium Reduction in Denitrification Biofilm System with Different Carbon Sources. Sci. Total Environ. 2024, 906, 167191. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Liu, X.; Wang, J. Formation Mechanisms and Assembly Patterns of Anammox Biofilm Induced by Carrier Type: Novel Insights Based on Low-Strength Wastewater Treatment. Bioresour. Technol. 2022, 362, 127863. [Google Scholar] [CrossRef] [PubMed]
- Chai, H.; Xiang, Y.; Chen, R.; Shao, Z.; Gu, L.; Li, L.; He, Q. Enhanced Simultaneous Nitrification and Denitrification in Treating Low Carbon-to-Nitrogen Ratio Wastewater: Treatment Performance and Nitrogen Removal Pathway. Bioresour. Technol. 2019, 280, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.-H.; Wan, J.; Ma, Y.; Wang, Y.; Guan, Z.; Jing, D.-D. Structure and Succession of Bacterial Communities of the Granular Sludge during the Initial Stage of the Simultaneous Denitrification and Methanogenesis Process. Water Air Soil Pollut. 2017, 228, 121. [Google Scholar] [CrossRef]
- Liao, R.; Shen, K.; Li, A.-M.; Shi, P.; Li, Y.; Shi, Q.; Wang, Z. High-Nitrate Wastewater Treatment in an Expanded Granular Sludge Bed Reactor and Microbial Diversity Using 454 Pyrosequencing Analysis. Bioresour. Technol. 2013, 134, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Duan, J.; Xue, L.; Zhang, J.; Yang, L. Effect of Plant-Based Carbon Source Supplements on Denitrification of Synthetic Wastewater: Focus on the Microbiology. Environ. Sci. Pollut. Res. 2019, 26, 24683–24694. [Google Scholar] [CrossRef]
- Ahn, Y.; Park, S.; Kim, H.H.; Basak, B.; Yun, S.-T.; Jeon, B.-H.; Choi, J. Field Evaluation of Carbon Injection Method for In-Situ Biological Denitrification in Groundwater Using Geochemical and Metataxonomic Analyses. Environ. Pollut. 2024, 340, 122719. [Google Scholar] [CrossRef]
- McIlroy, S.J.; Starnawska, A.; Starnawski, P.; Saunders, A.M.; Nierychlo, M.; Nielsen, P.H.; Nielsen, J.L. Identification of Active Denitrifiers in Full-scale Nutrient Removal Wastewater Treatment Systems. Environ. Microbiol. 2016, 18, 50–64. [Google Scholar] [CrossRef]
- Cema, G.; Wiszniowski, J.; Żabczyński, S.; Zabłocka-Godlewska, E.; Raszka, A.; Surmacz-Górska, J. Biological Nitrogen Removal from Landfill Leachate by Deammonification Assisted by Heterotrophic Denitrification in a Rotating Biological Contactor (RBC). Water Sci. Technol. 2007, 55, 35–42. [Google Scholar] [CrossRef]
- Jiang, L.; Ji, F.; Liao, Y.; Mao, Y.; Shen, Q.; Zhuo, Y.; Zhang, Q. Denitrification Performance and Mechanism of Denitrification Biofilm Reactor Based on Carbon-Nitrate Counter-Diffusional. Bioresour. Technol. 2022, 348, 126804. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Z.; Wang, Q.; Zhang, C.; Ji, M. A New Insight to Explore Toxic Cd (II) Affecting Denitrification: Reaction Kinetic, Electron Behavior and Microbial Community. Chemosphere 2022, 305, 135419. [Google Scholar] [CrossRef] [PubMed]
- Gui, X.; Li, Z.; Wang, Z. Kitchen Waste Hydrolysate Enhances Sewage Treatment Efficiency with Different Biological Process Compared with Glucose. Bioresour. Technol. 2021, 341, 125904. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cheng, L.; Lian, Y.; Feng, J.; Zhou, M.; Jing, D.; Yin, W.; Wang, H.; Liu, L. High-Proportions of Tailwater Discharge Alter Microbial Community Composition and Assembly in Receiving Sediments. Sci. Rep. 2024, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Guo, L.; Jin, C.; Zhao, Y.; Gao, M.; She, Z.; Wang, G. Metagenomics and Network Analysis Elucidating the Coordination between Fermentative Bacteria and Microalgae in a Novel Bacterial-Algal Coupling Reactor (BACR) for Mariculture Wastewater Treatment. Water Res. 2022, 215, 118256. [Google Scholar] [CrossRef]
- Wang, P.; Qiao, Z.; Li, X.; Su, Y.; Xie, B. Functional Characteristic of Microbial Communities in Large-Scale Biotreatment Systems of Food Waste. Sci. Total Environ. 2020, 746, 141086. [Google Scholar] [CrossRef]
- Xing, W.; Li, J.; Li, P.; Wang, C.; Cao, Y.; Li, D.; Yang, Y.; Zhou, J.; Zuo, J. Effects of Residual Organics in Municipal Wastewater on Hydrogenotrophic Denitrifying Microbial Communities. J. Environ. Sci. 2018, 65, 262–270. [Google Scholar] [CrossRef]
- Alves, O.I.; Araújo, J.M.; Silva, P.M.; Magnus, B.S.; Gavazza, S.; Florencio, L.; Kato, M.T. Formation and Stability of Aerobic Granular Sludge in a Sequential Batch Reactor for the Simultaneous Removal of Organic Matter and Nutrients from Low-Strength Domestic Wastewater. Sci. Total Environ. 2022, 843, 156988. [Google Scholar] [CrossRef]
- Kurz, D.L.; Secchi, E.; Carrillo, F.J.; Bourg, I.C.; Stocker, R.; Jimenez-Martinez, J. Competition between Growth and Shear Stress Drives Intermittency in Preferential Flow Paths in Porous Medium Biofilms. Proc. Natl. Acad. Sci. USA 2022, 119, e2122202119. [Google Scholar] [CrossRef]
- Wei, G.; Yang, J.Q. Impacts of Hydrodynamic Conditions and Microscale Surface Roughness on the Critical Shear Stress to Develop and Thickness of Early-stage Pseudomonas Putida Biofilms. Biotechnol. Bioeng. 2023, 120, 1797–1808. [Google Scholar] [CrossRef]
- Janissen, R.; Murillo, D.M.; Niza, B.; Sahoo, P.K.; Nobrega, M.M.; Cesar, C.L.; Temperini, M.L.; Carvalho, H.F.; De Souza, A.A.; Cotta, M.A. Spatiotemporal Distribution of Different Extracellular Polymeric Substances and Filamentation Mediate Xylella Fastidiosa Adhesion and Biofilm Formation. Sci. Rep. 2015, 5, 9856. [Google Scholar] [CrossRef]
- Jia, M.; Winkler, M.K.H.; Volcke, E.I.P. Elucidating the Competition between Heterotrophic Denitrification and DNRA Using the Resource-Ratio Theory. Environ. Sci. Technol. 2020, 54, 13953–13962. [Google Scholar] [CrossRef] [PubMed]
Medium | Effective Porosity (%) | Optimal Porosity (%) | Available Porosity (%) | Percentage of Optimal Porosity (%) | Percentage of Available Porosity (%) | Fractal Dimension |
---|---|---|---|---|---|---|
CE1 | 47.8 ± 0.5 b | 47.8 ± 0.5 a | 0.0 ± 0.0 c | 100 ± 0.4 a | 0.0 ± 0.0 c | 1.44 ± 0.06 a |
CE2 | 55.8 ± 0.8 a | 47.9 ± 1.4 a | 7.9 ± 0.3 b | 83.1 ± 3.6 b | 16.9 ± 0.3 b | 1.48 ± 0.07 a |
CE3 | 46.7 ± 1.6 b | 23.5 ± 3.2 b | 23.2 ± 1.1 a | 50.3 ± 6.2 c | 49.7 ± 0.9 a | 1.26 ± 0.03 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Yu, N.; Zhao, C.; Lv, Y.; Yang, J. Efficiency, Microbial Communities, and Nitrogen Metabolism in Denitrification Biological Filter: Insights into Varied Pore Ceramsite Media. Microorganisms 2025, 13, 1187. https://doi.org/10.3390/microorganisms13061187
Song J, Yu N, Zhao C, Lv Y, Yang J. Efficiency, Microbial Communities, and Nitrogen Metabolism in Denitrification Biological Filter: Insights into Varied Pore Ceramsite Media. Microorganisms. 2025; 13(6):1187. https://doi.org/10.3390/microorganisms13061187
Chicago/Turabian StyleSong, Jiajun, Na Yu, Cui Zhao, Yufeng Lv, and Jifu Yang. 2025. "Efficiency, Microbial Communities, and Nitrogen Metabolism in Denitrification Biological Filter: Insights into Varied Pore Ceramsite Media" Microorganisms 13, no. 6: 1187. https://doi.org/10.3390/microorganisms13061187
APA StyleSong, J., Yu, N., Zhao, C., Lv, Y., & Yang, J. (2025). Efficiency, Microbial Communities, and Nitrogen Metabolism in Denitrification Biological Filter: Insights into Varied Pore Ceramsite Media. Microorganisms, 13(6), 1187. https://doi.org/10.3390/microorganisms13061187