Advances in Diversity, Evolutionary Dynamics and Biotechnological Potential of Restriction-Modification Systems
Abstract
:1. Introduction
2. Classification and Diversity of RMS
2.1. Structural Characteristics of RMS
2.1.1. Restriction Enzymes
2.1.2. Modification Enzymes
2.2. Diversity of RMS
2.2.1. Structural Diversity of REases
2.2.2. Comparative Genomics and the Landscape of RMS Diversity
2.2.3. Spectrum of RMS Across Microbial Species
2.3. Coexistence and Interplay of Multiple RMS Within Bacterial Species
3. Biological Functions and Evolutionary Dynamics of RMS
3.1. Phage Invasion and RMS Response
3.2. Maintenance of Genomic Stability
3.3. Genetic Regulation and Expression
3.4. Evolutionary Origins and Adaptive Significance
3.5. Evolutionary Dynamics of RMS Enzyme Families
3.6. Anti-Defense Systems
4. Biotechnological Applications of RMS
4.1. Advances in RMS Characterization Techniques
4.2. Gene Editing and Molecular Cloning
4.3. Synthetic Biology and Metabolic Engineering
4.4. Pharmaceutical Development, Diagnostics, and Gene Therapy
4.5. RMS in Environmental Biotechnology
5. Perspectives and Future Directions
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilson, G.G.; Murray, N.E. Restriction and Modification Systems. Annu. Rev. Genet. 1991, 25, 585–627. [Google Scholar] [CrossRef] [PubMed]
- Arber, W.; Linn, S. DNA Modification and Restriction. Annu. Rev. Biochem. 1969, 38, 467–500. [Google Scholar] [CrossRef] [PubMed]
- Anton, B.P.; Roberts, R.J. Beyond Restriction Modification: Epigenomic Roles of DNA Methylation in Prokaryotes. Annu. Rev. Microbiol. 2021, 75, 129–149. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C.D.; Skeete, C.A.; Fomenkov, A.; Roberts, R.J.; Rittling, S.R. Restriction-Modification Mediated Barriers to Exogenous DNA Uptake and Incorporation Employed by Prevotella Intermedia. PLoS ONE 2017, 12, e0185234. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, L.; Hou, M.; Gao, H.; Ke, Y.; Yang, H.; Si, F. T790M Mutation Upconversion Fluorescence Biosensor via Mild ATRP Strategy and Site-Specific DNA Cleavage of Restriction Endonuclease. Microchim. Acta 2024, 191, 148. [Google Scholar] [CrossRef]
- Mruk, I.; Kobayashi, I. To Be or Not to Be: Regulation of Restriction–Modification Systems and Other Toxin–Antitoxin Systems. Nucleic Acids Res. 2014, 42, 70–86. [Google Scholar] [CrossRef]
- Shaw, L.P.; Rocha, E.P.C.; MacLean, R.C. Restriction-Modification Systems Have Shaped the Evolution and Distribution of Plasmids across Bacteria. Nucleic Acids Res. 2023, 51, 6806–6818. [Google Scholar] [CrossRef]
- Roberts, R.J. How Restriction Enzymes Became the Workhorses of Molecular Biology. Proc. Natl. Acad. Sci. USA 2005, 102, 5905–5908. [Google Scholar] [CrossRef]
- Okada, R.; Matsumoto, M.; Zhang, Y.; Isaka, M.; Tatsuno, I.; Hasegawa, T. Emergence of Type I Restriction Modification System-Negative Emm 1 Type Streptococcus Pyogenes Clinical Isolates in Japan. Apmis 2014, 122, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Deng, A.; Liu, S.; Cui, D.; Qiu, Q.; Wang, L.; Yang, Z.; Wu, J.; Shang, X.; Zhang, Y.; et al. A Novel Tool for Microbial Genome Editing Using the Restriction-Modification System. ACS Synth. Biol. 2018, 7, 98–106. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Environmental Factors Influencing the Development and Spread of Antibiotic Resistance. FEMS Microbiol. Rev. 2018, 42, fux053. [Google Scholar] [CrossRef] [PubMed]
- McInnes, R.S.; McCallum, G.E.; Lamberte, L.E.; van Schaik, W. Horizontal Transfer of Antibiotic Resistance Genes in the Human Gut Microbiome. Curr. Opin. Microbiol. 2020, 53, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Botelho, J.; Schulenburg, H. The Role of Integrative and Conjugative Elements in Antibiotic Resistance Evolution. Trends Microbiol. 2021, 29, 8–18. [Google Scholar] [CrossRef]
- von Wintersdorff, C.J.H.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef] [PubMed]
- Koskella, B.; Brockhurst, M.A. Bacteria–Phage Coevolution as a Driver of Ecological and Evolutionary Processes in Microbial Communities. FEMS Microbiol. Rev. 2014, 38, 916–931. [Google Scholar] [CrossRef]
- Morgan-Kiss, R.M.; Popson, D.; Pereira, R.; Dolhi-Binder, J.; Teufel, A.; Li, W.; Kalra, I.; Sherwell, S.; Reynebeau, E.; Takacs-Vesbach, C. Sentinel Protist Taxa of the McMurdo Dry Valley Lakes, Antarctica: A Review. Front. Ecol. Evol. 2024, 12, 1323472. [Google Scholar] [CrossRef]
- Jo, S.J.; Kwon, J.; Kim, S.G.; Lee, S.-J. The Biotechnological Application of Bacteriophages: What to Do and Where to Go in the Middle of the Post-Antibiotic Era. Microorganisms 2023, 11, 2311. [Google Scholar] [CrossRef]
- Stern, A.; Sorek, R. The Phage-Host Arms-Race: Shaping the Evolution of Microbes. Bioessays 2011, 33, 43–51. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L. The Arms Race between Bacteria CBASS and Bacteriophages. Front. Immunol. 2023, 14, 1224341. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Lin, J.; Gu, Y.; Liu, Z.; Hu, J. Detection of CRISPR-cas and Type I R-M Systems in Klebsiella Pneumoniae of Human and Animal Origins and Their Relationship to Antibiotic Resistance and Virulence. Microbiol. Spectr. 2024, 13, e0000924. [Google Scholar] [CrossRef]
- Doron, S.; Melamed, S.; Ofir, G.; Leavitt, A.; Lopatina, A.; Keren, M.; Amitai, G.; Sorek, R. Systematic Discovery of Antiphage Defense Systems in the Microbial Pangenome. Science 2018, 359, eaar4120. [Google Scholar] [CrossRef] [PubMed]
- Petakh, P.; Oksenych, V.; Khovpey, Y.; Kamyshnyi, O. Comprehensive Analysis of Antiphage Defense Mechanisms: Serovar-Specific Patterns. Antibiotics 2024, 13, 522. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wei, W.; Xu, M.; Ren, Q.; Liu, M.; Pan, X.; Feng, F.; Han, T.; Gou, L. The Restriction Activity Investigation of Rv2528c, an Mrr-like Modification-Dependent Restriction Endonuclease from Mycobacterium Tuberculosis. Microorganisms 2024, 12, 1456. [Google Scholar] [CrossRef]
- Liu, G.; Ou, H.-Y.; Wang, T.; Li, L.; Tan, H.; Zhou, X.; Rajakumar, K.; Deng, Z.; He, X. Cleavage of Phosphorothioated DNA and Methylated DNA by the Type IV Restriction Endonuclease ScoMcrA. PLoS Genet. 2010, 6, e1001253. [Google Scholar] [CrossRef]
- Stewart, F.J.; Panne, D.; A Bickle, T.; A Raleigh, E. Methyl-Specific DNA Binding by McrBC, a Modification-Dependent Restriction Enzyme. J. Mol. Biol. 2000, 298, 611–622. [Google Scholar] [CrossRef]
- Bair, C.L.; Black, L.W. A Type IV Modification Dependent Restriction Nuclease That Targets Glucosylated Hydroxymethyl Cytosine Modified DNAs. J. Mol. Biol. 2007, 366, 768–778. [Google Scholar] [CrossRef]
- Roberts, R.J.; Belfort, M.; Bestor, T.; Bhagwat, A.S.; Bickle, T.A.; Bitinaite, J.; Blumenthal, R.M.; Degtyarev, S.K.; Dryden, D.T.F.; Dybvig, K.; et al. Survey and Summary: A Nomenclature for Restriction Enzymes, DNA Methyltransferases, Homing Endonucleases and Their Genes. Nucleic Acids Res. 2003, 31, 1805–1812. [Google Scholar] [CrossRef]
- Loenen, W.A.M.; Dryden, D.T.F.; Raleigh, E.A.; Wilson, G.G. Type I Restriction Enzymes and Their Relatives. Nucleic Acids Res. 2014, 42, 20–44. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, M.; Mao, C.; Wang, C.; Yuan, P.; Wang, T.; Sun, D. A Type I Restriction Modification System Influences Genomic Evolution Driven by Horizontal Gene Transfer in Paenibacillus Polymyxa. Front. Microbiol. 2021, 12, 709571. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, C.J.; Grätz, C.; Pfaffl, M.W.; Vogel, R.F.; Ehrmann, M.A. Characterization of the Staphylococcus Xylosus Methylome Reveals a New Variant of Type I Restriction Modification System in Staphylococci. Front. Microbiol. 2023, 14, 946189. [Google Scholar] [CrossRef]
- Kulkarni, M.; Nirwan, N.; van Aelst, K.; Szczelkun, M.D.; Saikrishnan, K. Structural Insights into DNA Sequence Recognition by Type ISP Restriction-Modification Enzymes. Nucleic Acids Res. 2016, 44, 4396–4408. [Google Scholar] [CrossRef] [PubMed]
- Sitaraman, R. The Role of DNA Restriction-Modification Systems in the Biology of Bacillus anthracis. Front. Microbiol. 2016, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, M.A.; Hosford, C.J.; Azumaya, C.M.; Luyten, Y.A.; Chen, M.; Morgan, R.D.; Stoddard, B.L. Structures, Activity and Mechanism of the Type IIS Restriction Endonuclease PaqCI. Nucleic Acids Res. 2023, 51, 4467–4487. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.J.; Vincze, T.; Posfai, J.; Macelis, D. REBASE: A Database for DNA Restriction and Modification: Enzymes, Genes and Genomes. Nucleic Acids Res. 2023, 51, D629–D630. [Google Scholar] [CrossRef]
- Roberts, R.; Vincze, T.; Posfai, J.; Macelis, D. REBASE-a Database for DNA Restriction and Modification: Enzymes, Genes and Genomes. Nucleic Acids Res. 2015, 43, D298–D299. [Google Scholar] [CrossRef]
- Rao, D.N.; Dryden, D.T.F.; Bheemanaik, S. Type III Restriction-Modification Enzymes: A Historical Perspective. Nucleic Acids Res. 2014, 42, 45–55. [Google Scholar] [CrossRef]
- Lepikhov, K.; Tchernov, A.; Zheleznaja, L.; Matvienko, N.; Walter, J.; Trautner, T.A. Characterization of the Type IV Restriction Modification System BspLU11III from Bacillus Sp. LU11. Nucleic Acids Res. 2001, 29, 4691–4698. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, W.; Deng, A.; Sun, Z.; Zhang, Y.; Liang, Y.; Che, Y.; Wen, T. A Mimicking-of-DNA-Methylation-Patterns Pipeline for Overcoming the Restriction Barrier of Bacteria. PLoS Genet. 2012, 8, e1002987. [Google Scholar] [CrossRef]
- Wilbanks, E.G.; Doré, H.; Ashby, M.H.; Heiner, C.; Roberts, R.J.; Eisen, J.A. Metagenomic Methylation Patterns Resolve Bacterial Genomes of Unusual Size and Structural Complexity. ISME J. 2022, 16, 1921–1931. [Google Scholar] [CrossRef]
- Bervoets, I.; Charlier, D. Diversity, Versatility and Complexity of Bacterial Gene Regulation Mechanisms: Opportunities and Drawbacks for Applications in Synthetic Biology. FEMS Microbiol. Rev. 2019, 43, 304–339. [Google Scholar] [CrossRef]
- Croucher, N.J.; Coupland, P.G.; Stevenson, A.E.; Callendrello, A.; Bentley, S.D.; Hanage, W.P. Diversification of Bacterial Genome Content through Distinct Mechanisms over Different Timescales. Nat. Commun. 2014, 5, 5471. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.H.; Fang, G. Conserved DNA Methyltransferases: A Window into Fundamental Mechanisms of Epigenetic Regulation in Bacteria. Trends Microbiol. 2021, 29, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.; Mahony, J.; Ainsworth, S.; Nauta, A.; van Sinderen, D. Bacteriophage Orphan DNA Methyltransferases: Insights from Their Bacterial Origin, Function, and Occurrence. Appl. Environ. Microbiol. 2013, 79, 7547–7555. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Chinnusamy, V.; Mohapatra, T. Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond. Front. Genet. 2018, 9, 640. [Google Scholar] [CrossRef]
- Pingoud, A.; Jeltsch, A. Structure and Function of Type II Restriction Endonucleases. Nucleic Acids Res. 2001, 29, 3705–3727. [Google Scholar] [CrossRef]
- Lee, J.H.; Tareen, A.R.; Kim, N.-H.; Jeong, C.; Kang, B.; Lee, G.; Kim, D.-W.; Zahra, R.; Lee, S.H. Comparative Genomic Analyses of E. Coli ST2178 Strains Originated from Wild Birds in Pakistan. J. Microbiol. Biotechnol. 2024, 34, 2041–2048. [Google Scholar] [CrossRef]
- Cairns, J.; Frickel, J.; Jalasvuori, M.; Hiltunen, T.; Becks, L. Genomic Evolution of Bacterial Populations under Coselection by Antibiotics and Phage. Mol. Ecol. 2017, 26, 1848–1859. [Google Scholar] [CrossRef]
- Oliveira, P.H.; Touchon, M.; Rocha, E.P.C. The Interplay of Restriction-Modification Systems with Mobile Genetic Elements and Their Prokaryotic Hosts. Nucleic Acids Res. 2014, 42, 10618–10631. [Google Scholar] [CrossRef]
- Srikhanta, Y.N.; Fox, K.L.; Jennings, M.P. The Phasevarion: Phase Variation of Type III DNA Methyltransferases Controls Coordinated Switching in Multiple Genes. Nat. Rev. Microbiol. 2010, 8, 196–206. [Google Scholar] [CrossRef]
- Kobras, C.M.; Fenton, A.K.; Sheppard, S.K. Next-Generation Microbiology: From Comparative Genomics to Gene Function. Genome Biol. 2021, 22, 123. [Google Scholar] [CrossRef]
- Chevallereau, A.; Pons, B.J.; Van Houte, S.; Westra, E.R. Interactions between Bacterial and Phage Communities in Natural Environments. Nat. Rev. Microbiol. 2022, 20, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Westra, E.R.; van Houte, S.; Gandon, S.; Whitaker, R. The Ecology and Evolution of Microbial CRISPR-Cas Adaptive Immune Systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20190101. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A.; Matthias, T.; Aminov, R. Potential Effects of Horizontal Gene Exchange in the Human Gut. Front. Immunol. 2017, 8, 1630. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Singh, S.P.; Zhang, C. Microorganisms under Extreme Environments and Their Applications. Curr. Res. Microb. Sci. 2022, 3, 100141. [Google Scholar] [CrossRef]
- Wang, T.; Shi, Y.; Zheng, M.; Zheng, J. Comparative Genomics Unveils Functional Diversity, Pangenome Openness, and Underlying Biological Drivers among Bacillus Subtilis Group. Microorganisms 2024, 12, 986. [Google Scholar] [CrossRef]
- Makarova, K.S.; Wolf, Y.I.; Koonin, E.V. Comparative Genomics of Defense Systems in Archaea and Bacteria. Nucleic Acids Res. 2013, 41, 4360–4377. [Google Scholar] [CrossRef]
- Koonin, E.V.; Makarova, K.S.; Wolf, Y.I. Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Annu. Rev. Microbiol. 2017, 71, 233–261. [Google Scholar] [CrossRef]
- Ren, J.; Lee, H.-M.; Thai, T.D.; Na, D. Identification of a Cytosine Methyltransferase That Improves Transformation Efficiency in Methylomonas Sp. DH-1. Biotechnol. Biofuels 2020, 13, 200. [Google Scholar] [CrossRef]
- Krebes, J.; Morgan, R.D.; Bunk, B.; Spröer, C.; Luong, K.; Parusel, R.; Anton, B.P.; König, C.; Josenhans, C.; Overmann, J.; et al. The Complex Methylome of the Human Gastric Pathogen Helicobacter pylori. Nucleic Acids Res. 2014, 42, 2415–2432. [Google Scholar] [CrossRef]
- Murray, I.A.; Clark, T.A.; Morgan, R.D.; Boitano, M.; Anton, B.P.; Luong, K.; Fomenkov, A.; Turner, S.W.; Korlach, J.; Roberts, R.J. The Methylomes of Six Bacteria. Nucleic Acids Res. 2012, 40, 11450–11462. [Google Scholar] [CrossRef]
- Adade, N.E.; Aniweh, Y.; Mosi, L.; Valvano, M.A.; Duodu, S.; Ahator, S.D. Comparative Analysis of Vibrio Cholerae Isolates from Ghana Reveals Variations in Genome Architecture and Adaptation of Outbreak and Environmental Strains. Front. Microbiol. 2022, 13, 998182. [Google Scholar] [CrossRef]
- Bottacini, F.; Morrissey, R.; Roberts, R.J.; James, K.; van Breen, J.; Egan, M.; Lambert, J.; van Limpt, K.; Knol, J.; Motherway, M.O.; et al. Comparative Genome and Methylome Analysis Reveals Restriction/Modification System Diversity in the Gut Commensal Bifidobacterium breve. Nucleic Acids Res. 2018, 46, 1860–1877. [Google Scholar] [CrossRef] [PubMed]
- West, P.T.; Chanin, R.B.; Bhatt, A.S. From Genome Structure to Function: Insights into Structural Variation in Microbiology. Curr. Opin. Microbiol. 2022, 69, 102192. [Google Scholar] [CrossRef]
- Ockleford, C.; Adriaanse, P.; Berny, P.; Brock, T.; Duquesne, S.; Grilli, S.; Hernandez-Jerez, A.F.; Bennekou, S.H.; Klein, M.; Kuhl, T.; et al. Scientific Opinion Addressing the State of the Science on Risk Assessment of Plant Protection Products for In-Soil Organisms. EFSA J. 2017, 15, e04690. [Google Scholar] [CrossRef]
- Ma, B.; Sundararajan, S.; Nadimpalli, G.; France, M.; McComb, E.; Rutt, L.; Lemme-Dumit, J.M.; Janofsky, E.; Roskes, L.S.; Gajer, P.; et al. Highly Specialized Carbohydrate Metabolism Capability in Bifidobacterium Strains Associated with Intestinal Barrier Maturation in Early Preterm Infants. mBio 2022, 13, e0129922. [Google Scholar] [CrossRef]
- Polz, M.F.; Hunt, D.E.; Preheim, S.P.; Weinreich, D.M. Patterns and Mechanisms of Genetic and Phenotypic Differentiation in Marine Microbes. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 2009–2021. [Google Scholar] [CrossRef]
- Liang, Y.; Jiao, S.; Wang, M.; Yu, H.; Shen, Z. A CRISPR/Cas9-Based Genome Editing System for Rhodococcus Ruber TH. Metab. Eng. 2020, 57, 13–22. [Google Scholar] [CrossRef]
- Mo, C.Y.; Mathai, J.; Rostøl, J.T.; Varble, A.; Banh, D.V.; Marraffini, L.A. Type III-A CRISPR Immunity Promotes Mutagenesis of Staphylococci. Nature 2021, 592, 611–615. [Google Scholar] [CrossRef]
- Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR Provides Acquired Resistance against Viruses in Prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar] [CrossRef]
- Sorek, R.; Lawrence, C.M.; Wiedenheft, B. CRISPR-Mediated Adaptive Immune Systems in Bacteria and Archaea. Annu. Rev. Biochem. 2013, 82, 237–266. [Google Scholar] [CrossRef]
- Westra, E.R.; Buckling, A.; Fineran, P.C. CRISPR-Cas Systems: Beyond Adaptive Immunity. Nat. Rev. Microbiol. 2014, 12, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Ahn, J. Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria. Antibiotics 2022, 11, 915. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, K.; Bowring, J.Z.; Ng, Y.K.; Svanberg Frisinger, F.; Maglegaard, J.K.; Li, Q.; Sieber, R.N.; Petersen, A.; Andersen, P.S.; Rostøl, J.T.; et al. An Endogenous Staphylococcus aureus CRISPR-Cas System Limits Phage Proliferation and Is Efficiently Excised from the Genome as Part of the SCCmec Cassette. Microbiol. Spectr. 2023, 11, e0127723. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Gao, C.-H.; Zhu, J.; Zhao, L.; Wu, Q.; Li, M.; Sun, B. Identification and Functional Study of Type III-a CRISPR-Cas Systems in Clinical Isolates of Staphylococcus aureus. Int. J. Med. Microbiol. 2016, 306, 686–696. [Google Scholar] [CrossRef]
- van Houte, S.; Ekroth, A.K.E.; Broniewski, J.M.; Chabas, H.; Ashby, B.; Bondy-Denomy, J.; Gandon, S.; Boots, M.; Paterson, S.; Buckling, A.; et al. The Diversity-Generating Benefits of a Prokaryotic Adaptive Immune System. Nature 2016, 532, 385–388. [Google Scholar] [CrossRef]
- Citorik, R.J.; Mimee, M.; Lu, T.K. Sequence-Specific Antimicrobials Using Efficiently Delivered RNA-Guided Nucleases. Nat. Biotechnol. 2014, 32, 1141–1145. [Google Scholar] [CrossRef]
- Palmer, K.L.; Gilmore, M.S. Multidrug-Resistant Enterococci Lack CRISPR-Cas. mBio 2010, 1, e00227-10. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Anastasiou, R.; Mavrogonatou, E.; Blom, J.; Papandreou, N.C.; Hamodrakas, S.J.; Ferreira, S.; Renault, P.; Supply, P.; Pot, B.; et al. Comparative Genomics of the Dairy Isolate Streptococcus Macedonicus ACA-DC 198 against Related Members of the Streptococcus Bovis/Streptococcus Equinus Complex. BMC Genom. 2014, 15, 272. [Google Scholar] [CrossRef]
- Veiga, H.; Pinho, M.G. Inactivation of the SauI Type I Restriction-Modification System Is Not Sufficient to Generate Staphylococcus aureus Strains Capable of Efficiently Accepting Foreign DNA. Appl. Environ. Microbiol. 2009, 75, 3034–3038. [Google Scholar] [CrossRef]
- Monk, I.R.; Shah, I.M.; Xu, M.; Tan, M.-W.; Foster, T.J. Transforming the Untransformable: Application of Direct Transformation to Manipulate Genetically Staphylococcus aureus and Staphylococcus epidermidis. mBio 2012, 3, e00277-11. [Google Scholar] [CrossRef]
- Vasu, K.; Nagaraja, V. Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense. Microbiol. Mol. Biol. Rev. 2013, 77, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Broniewski, J.M.; Meaden, S.; Paterson, S.; Buckling, A.; Westra, E.R. The Effect of Phage Genetic Diversity on Bacterial Resistance Evolution. ISME J. 2020, 14, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.P.; Roberts, G.A.; White, J.H.; Luyten, Y.A.; Bower, E.K.M.; Morgan, R.D.; Roberts, R.J.; Lindsay, J.A.; Dryden, D.T.F. DNA Target Recognition Domains in the Type I Restriction and Modification Systems of Staphylococcus aureus. Nucleic Acids Res. 2017, 45, 3395–3406. [Google Scholar] [CrossRef] [PubMed]
- Spoto, M.; Riera Puma, J.P.; Fleming, E.; Guan, C.; Ondouah Nzutchi, Y.; Kim, D.; Oh, J. Large-Scale CRISPRi and Transcriptomics of Staphylococcus epidermidis Identify Genetic Factors Implicated in Lifestyle Versatility. mBio 2022, 13, e02632-22. [Google Scholar] [CrossRef]
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage Resistance Mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. [Google Scholar] [CrossRef]
- Azam, A.H.; Kondo, K.; Chihara, K.; Nakamura, T.; Ojima, S.; Nie, W.; Tamura, A.; Yamashita, W.; Sugawara, Y.; Sugai, M.; et al. Evasion of Antiviral Bacterial Immunity by Phage tRNAs. Nat. Commun. 2024, 15, 9586. [Google Scholar] [CrossRef]
- Stokar-Avihail, A.; Fedorenko, T.; Hör, J.; Garb, J.; Leavitt, A.; Millman, A.; Shulman, G.; Wojtania, N.; Melamed, S.; Amitai, G.; et al. Discovery of Phage Determinants That Confer Sensitivity to Bacterial Immune Systems. Cell 2023, 186, 1863–1876.e16. [Google Scholar] [CrossRef]
- Gao, Z.; Feng, Y. Bacteriophage Strategies for Overcoming Host Antiviral Immunity. Front. Microbiol. 2023, 14, 1211793. [Google Scholar] [CrossRef]
- Bryson, A.L.; Hwang, Y.; Sherrill-Mix, S.; Wu, G.D.; Lewis, J.D.; Black, L.; Clark, T.A.; Bushman, F.D. Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9. mBio 2015, 6, e00648-15. [Google Scholar] [CrossRef]
- Iandolo, J.J.; Worrell, V.; Groicher, K.H.; Qian, Y.; Tian, R.; Kenton, S.; Dorman, A.; Ji, H.; Lin, S.; Loh, P.; et al. Comparative Analysis of the Genomes of the Temperate Bacteriophages Φ11, Φ12 and Φ13 of Staphylococcus aureus 8325. Gene 2002, 289, 109–118. [Google Scholar] [CrossRef]
- Hampton, H.G.; Watson, B.N.J.; Fineran, P.C. The Arms Race between Bacteria and Their Phage Foes. Nature 2020, 577, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Dy, R.L.; Richter, C.; Salmond, G.P.C.; Fineran, P.C. Remarkable Mechanisms in Microbes to Resist Phage Infections. Annu. Rev. Virol. 2014, 1, 307–331. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, H.; Tong, Y. Unveil the Secret of the Bacteria and Phage Arms Race. Int. J. Mol. Sci. 2023, 24, 4363. [Google Scholar] [CrossRef] [PubMed]
- Enikeeva, F.N.; Severinov, K.V.; Gelfand, M.S. Restriction–Modification Systems and Bacteriophage Invasion: Who Wins? J. Theor. Biol. 2010, 266, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Braga, L.P.P.; Soucy, S.M.; Amgarten, D.E.; da Silva, A.M.; Setubal, J.C. Bacterial Diversification in the Light of the Interactions with Phages: The Genetic Symbionts and Their Role in Ecological Speciation. Front. Ecol. Evol. 2018, 6, 6. [Google Scholar] [CrossRef]
- Pingoud, A.; Wilson, G.G.; Wende, W. Type II Restriction Endonucleases—A Historical Perspective and More. Nucleic Acids Res. 2014, 42, 7489–7527. [Google Scholar] [CrossRef]
- Cooper, T.F.; Heinemann, J.A. Selection for Plasmid Post–Segregational Killing Depends on Multiple Infection: Evidence for the Selection of More Virulent Parasites through Parasite–Level Competition. Proc. R. Soc. B Biol. Sci. 2005, 272, 403–410. [Google Scholar] [CrossRef]
- Lee, I.P.A.; Eldakar, O.T.; Gogarten, J.P.; Andam, C.P. Bacterial Cooperation through Horizontal Gene Transfer. Trends Ecol. Evol. 2022, 37, 223–232. [Google Scholar] [CrossRef]
- Wang, D.; Liu, L.; Xu, X.; Wang, C.; Wang, Y.; Deng, Y.; Zhang, T. Distributions, Interactions, and Dynamics of Prokaryotes and Phages in a Hybrid Biological Wastewater Treatment System. Microbiome 2024, 12, 134. [Google Scholar] [CrossRef]
- Rocha, E.P.C.; Bikard, D. Microbial Defenses against Mobile Genetic Elements and Viruses: Who Defends Whom from What? PLoS Biol. 2022, 20, e3001514. [Google Scholar] [CrossRef]
- Zautner, A.E.; Goldschmidt, A.-M.; Thürmer, A.; Schuldes, J.; Bader, O.; Lugert, R.; Groß, U.; Stingl, K.; Salinas, G.; Lingner, T. SMRT Sequencing of the Campylobacter coli BfR-CA-9557 Genome Sequence Reveals Unique Methylation Motifs. BMC Genom. 2015, 16, 1088. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Wolf, Y.I. Evolution of Microbes and Viruses: A Paradigm Shift in Evolutionary Biology? Front. Cell. Infect. Microbio. 2012, 2, 119. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Busó, L.; Golparian, D.; Parkhill, J.; Unemo, M.; Harris, S.R. Genetic Variation Regulates the Activation and Specificity of Restriction-Modification Systems in Neisseria Gonorrhoeae. Sci. Rep. 2019, 9, 14685. [Google Scholar] [CrossRef]
- Oliveira, P.H.; Touchon, M.; Rocha, E.P.C. Regulation of Genetic Flux between Bacteria by Restriction–Modification Systems. Proc. Natl. Acad. Sci. USA 2016, 113, 5658–5663. [Google Scholar] [CrossRef] [PubMed]
- Pleška, M.; Qian, L.; Okura, R.; Bergmiller, T.; Wakamoto, Y.; Kussell, E.; Guet, C.C. Bacterial Autoimmunity Due to a Restriction-Modification System. Curr. Biol. 2016, 26, 404–409. [Google Scholar] [CrossRef]
- Mruk, I.; Kaczorowski, T.; Witczak, A. Natural Tuning of Restriction Endonuclease Synthesis by Cluster of Rare Arginine Codons. Sci. Rep. 2019, 9, 5808. [Google Scholar] [CrossRef]
- Kojima, K.K.; Kobayashi, I. Base-Excision Restriction Enzymes: Expanding the World of Epigenetic Immune Systems. DNA Res. 2023, 30, dsad009. [Google Scholar] [CrossRef]
- Ershova, A.S.; Rusinov, I.S.; Spirin, S.A.; Karyagina, A.S.; Alexeevski, A.V. Role of Restriction-Modification Systems in Prokaryotic Evolution and Ecology. Biochem. Mosc. 2015, 80, 1373–1386. [Google Scholar] [CrossRef]
- Gao, Q.; Lu, S.; Wang, Y.; He, L.; Wang, M.; Jia, R.; Chen, S.; Zhu, D.; Liu, M.; Zhao, X.; et al. Bacterial DNA Methyltransferase: A Key to the Epigenetic World with Lessons Learned from Proteobacteria. Front. Microbiol. 2023, 14, 1129437. [Google Scholar] [CrossRef]
- Mavrich, T.N.; Hatfull, G.F. Bacteriophage Evolution Differs by Host, Lifestyle and Genome. Nat. Microbiol. 2017, 2, 17112. [Google Scholar] [CrossRef]
- Vesel, N.; Iseli, C.; Guex, N.; Lemopoulos, A.; Blokesch, M. DNA Modifications Impact Natural Transformation of Acinetobacter Baumannii. Nucleic Acids Res. 2023, 51, 5661–5677. [Google Scholar] [CrossRef] [PubMed]
- Pleška, M.; Guet, C.C. Effects of Mutations in Phage Restriction Sites during Escape from Restriction–Modification. Biol. Lett. 2017, 13, 20170646. [Google Scholar] [CrossRef] [PubMed]
- Rusinov, I.S.; Ershova, A.S.; Karyagina, A.S.; Spirin, S.A.; Alexeevski, A.V. Avoidance of Recognition Sites of Restriction-Modification Systems Is a Widespread but Not Universal Anti-Restriction Strategy of Prokaryotic Viruses. BMC Genom. 2018, 19, 885. [Google Scholar] [CrossRef] [PubMed]
- Roer, L.; Hendriksen, R.S.; Leekitcharoenphon, P.; Lukjancenko, O.; Kaas, R.S.; Hasman, H.; Aarestrup, F.M. Is the Evolution of Salmonella enterica Subsp. enterica Linked to Restriction-Modification Systems? mSystems 2016, 1, e00009-16. [Google Scholar] [CrossRef] [PubMed]
- Manara, S.; Pasolli, E.; Dolce, D.; Ravenni, N.; Campana, S.; Armanini, F.; Asnicar, F.; Mengoni, A.; Galli, L.; Montagnani, C.; et al. Whole-Genome Epidemiology, Characterisation, and Phylogenetic Reconstruction of Staphylococcus aureus Strains in a Paediatric Hospital. Genome Med. 2018, 10, 82. [Google Scholar] [CrossRef]
- Rodríguez-Gijón, A.; Nuy, J.K.; Mehrshad, M.; Buck, M.; Schulz, F.; Woyke, T.; Garcia, S.L. A Genomic Perspective Across Earth’s Microbiomes Reveals That Genome Size in Archaea and Bacteria Is Linked to Ecosystem Type and Trophic Strategy. Front. Microbiol. 2022, 12, 761869. [Google Scholar] [CrossRef]
- Cordero, O.X.; Polz, M.F. Explaining Microbial Genomic Diversity in Light of Evolutionary Ecology. Nat. Rev. Microbiol. 2014, 12, 263–273. [Google Scholar] [CrossRef]
- Haudiquet, M.; De Sousa, J.M.; Touchon, M.; Rocha, E.P.C. Selfish, Promiscuous and Sometimes Useful: How Mobile Genetic Elements Drive Horizontal Gene Transfer in Microbial Populations. Phil. Trans. R. Soc. B 2022, 377, 20210234. [Google Scholar] [CrossRef]
- Patel, K.M.; Seed, K.D. Sporadic Phage Defense in Epidemic Vibrio Cholerae Mediated by the Toxin-Antitoxin System DarTG Is Countered by a Phage-Encoded Antitoxin Mimic. mBio 2024, 15, e00111-24. [Google Scholar] [CrossRef]
- Derbyshire, M.C. Bioinformatic Detection of Positive Selection Pressure in Plant Pathogens: The Neutral Theory of Molecular Sequence Evolution in Action. Front. Microbiol. 2020, 11, 644. [Google Scholar] [CrossRef]
- de Oliveira, B.F.R.; Freitas-Silva, J.; Sánchez-Robinet, C.; Laport, M.S. Transmission of the Sponge Microbiome: Moving towards a Unified Model. Environ. Microbiol. Rep. 2020, 12, 619–638. [Google Scholar] [CrossRef] [PubMed]
- Serfiotis-Mitsa, D.; Herbert, A.P.; Roberts, G.A.; Soares, D.C.; White, J.H.; Blakely, G.W.; Uhrín, D.; Dryden, D.T.F. The Structure of the KlcA and ArdB Proteins Reveals a Novel Fold and Antirestriction Activity against Type I DNA Restriction Systems in Vivo but Not in Vitro. Nucleic Acids Res. 2010, 38, 1723–1737. [Google Scholar] [CrossRef] [PubMed]
- Stanley, S.Y.; Maxwell, K.L. Phage-Encoded Anti-CRISPR Defenses. Annu. Rev. Genet. 2018, 52, 445–464. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yin, M.; Wang, M.; Wang, Y. Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race. Mol. Cell 2019, 73, 611–620.e3. [Google Scholar] [CrossRef]
- Flusberg, B.A.; Webster, D.R.; Lee, J.H.; Travers, K.J.; Olivares, E.C.; Clark, T.A.; Korlach, J.; Turner, S.W. Direct Detection of DNA Methylation during Single-Molecule, Real-Time Sequencing. Nat. Methods 2010, 7, 461–465. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Bollas, A.; Wang, Y.; Au, K.F. Nanopore Sequencing Technology, Bioinformatics and Applications. Nat. Biotechnol. 2021, 39, 1348–1365. [Google Scholar] [CrossRef]
- Loenen, W.A.M.; Dryden, D.T.F.; Raleigh, E.A.; Wilson, G.G.; Murray, N.E. Highlights of the DNA Cutters: A Short History of the Restriction Enzymes. Nucleic Acids Res. 2014, 42, 3–19. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Cohen, S.N.; Chang, A.C.Y.; Boyer, H.W.; Helling, R.B. Construction of Biologically Functional Bacterial Plasmids in Vitro. Proc. Natl. Acad. Sci. USA 1973, 70, 3240–3244. [Google Scholar] [CrossRef]
- Wang, J.; Sui, X.; Ding, Y.; Fu, Y.; Feng, X.; Liu, M.; Zhang, Y.; Xian, M.; Zhao, G. A Fast and Robust Iterative Genome-Editing Method Based on a Rock-Paper-Scissors Strategy. Nucleic Acids Res. 2021, 49, e12. [Google Scholar] [CrossRef]
- Johnston, C.D.; Cotton, S.L.; Rittling, S.R.; Starr, J.R.; Borisy, G.G.; Dewhirst, F.E.; Lemon, K.P. Systematic Evasion of the Restriction-Modification Barrier in Bacteria. Proc. Natl. Acad. Sci. USA 2019, 116, 11454–11459. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.N.; Nakura, Y.; Yoshimura, M.; Gaddi Tantengco, O.A.; Nomiyama, M.; Takayanagi, T.; Fujita, T.; Yasukawa, K.; Yanagihara, I. Type II Restriction Modification System in Ureaplasma Parvum OMC-P162 Strain. PLoS ONE 2018, 13, e0205328. [Google Scholar] [CrossRef] [PubMed]
- Paddon, C.J.; Westfall, P.J.; Pitera, D.J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.D.; Tai, A.; Main, A.; Eng, D.; et al. High-Level Semi-Synthetic Production of the Potent Antimalarial Artemisinin. Nature 2013, 496, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Peña-Castro, J.M.; Muñoz-Páez, K.M.; Robledo-Narvaez, P.N.; Vázquez-Núñez, E. Engineering the Metabolic Landscape of Microorganisms for Lignocellulosic Conversion. Microorganisms 2023, 11, 2197. [Google Scholar] [CrossRef]
- Joshi, A.; Verma, K.K.; D Rajput, V.; Minkina, T.; Arora, J. Recent Advances in Metabolic Engineering of Microorganisms for Advancing Lignocellulose-Derived Biofuels. Bioengineered 2022, 13, 8135–8163. [Google Scholar] [CrossRef]
- Park, Y.; Espah Borujeni, A.; Gorochowski, T.E.; Shin, J.; Voigt, C.A. Precision Design of Stable Genetic Circuits Carried in Highly-insulated E. Coli Genomic Landing Pads. Mol. Syst. Biol. 2020, 16, e9584. [Google Scholar] [CrossRef]
- Ge, J.; Wang, X.; Bai, Y.; Wang, Y.; Wang, Y.; Tu, T.; Qin, X.; Su, X.; Luo, H.; Yao, B.; et al. Engineering Escherichia Coli for Efficient Assembly of Heme Proteins. Microb. Cell Factories 2023, 22, 59. [Google Scholar] [CrossRef]
- Lee, H.; Park, J.; Kim, W.; Lee, J.; Lee, J.; Ahn, J.; Lee, E.; Lee, H. Engineered Escherichia Coli Strains as Platforms for Biological Production of Isoprene. FEBS Open Bio 2020, 10, 780–788. [Google Scholar] [CrossRef]
- Del Valle, I.; Fulk, E.M.; Kalvapalle, P.; Silberg, J.J.; Masiello, C.A.; Stadler, L.B. Translating New Synthetic Biology Advances for Biosensing into the Earth and Environmental Sciences. Front. Microbiol. 2021, 11, 618373. [Google Scholar] [CrossRef]
- Dixon, T.A.; Williams, T.C.; Pretorius, I.S. Sensing the Future of Bio-Informational Engineering. Nat. Commun. 2021, 12, 388. [Google Scholar] [CrossRef]
- Thavarajah, W.; Verosloff, M.S.; Jung, J.K.; Alam, K.K.; Miller, J.D.; Jewett, M.C.; Young, S.L.; Lucks, J.B. A Primer on Emerging Field-Deployable Synthetic Biology Tools for Global Water Quality Monitoring. NPJ Clean Water 2020, 3, 18. [Google Scholar] [CrossRef]
- Hossain, G.S.; Saini, M.; Miyake, R.; Ling, H.; Chang, M.W. Genetic Biosensor Design for Natural Product Biosynthesis in Microorganisms. Trends Biotechnol. 2020, 38, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Paddon, C.J.; Keasling, J.D. Semi-Synthetic Artemisinin: A Model for the Use of Synthetic Biology in Pharmaceutical Development. Nat. Rev. Microbiol. 2014, 12, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, T.; Mizoi, K.; Ishii-Watabe, A. Pharmacokinetics of Biopharmaceuticals: Their Critical Role in Molecular Design. Biomedicines 2023, 11, 1456. [Google Scholar] [CrossRef]
- Dugger, S.A.; Platt, A.; Goldstein, D.B. Drug Development in the Era of Precision Medicine. Nat. Rev. Drug Discov. 2018, 17, 183–196. [Google Scholar] [CrossRef]
- Zhou, Q.; Jiao, L.; Li, W.; Hu, Z.; Li, Y.; Zhang, H.; Yang, M.; Xu, L.; Yan, Y. A Novel Cre/Lox-Based Genetic Tool for Repeated, Targeted and Markerless Gene Integration in Yarrowia Lipolytica. Int. J. Mol. Sci. 2021, 22, 10739. [Google Scholar] [CrossRef]
- Mehrotra, T.; Konar, D.; Pragasam, A.K.; Kumar, S.; Jana, P.; Babele, P.; Paul, D.; Purohit, A.; Tanwar, S.; Bakshi, S.; et al. Antimicrobial Resistance Heterogeneity among Multidrug-Resistant Gram-Negative Pathogens: Phenotypic, Genotypic, and Proteomic Analysis. Proc. Natl. Acad. Sci. USA 2023, 120, e2305465120. [Google Scholar] [CrossRef]
- Tanniche, I.; Behkam, B. Engineered Live Bacteria as Disease Detection and Diagnosis Tools. J. Biol. Eng. 2023, 17, 65. [Google Scholar] [CrossRef]
- Riley, L.W. Laboratory Methods in Molecular Epidemiology: Bacterial Infections. Microbiol. Spectr. 2018, 6, 10–1128. [Google Scholar] [CrossRef]
- Goyal, P.A.; Bankar, N.J.; Mishra, V.H.; Borkar, S.K.; Makade, J.G. Revolutionizing Medical Microbiology: How Molecular and Genomic Approaches Are Changing Diagnostic Techniques. Cureus 2023, 15, e47106. [Google Scholar] [CrossRef]
- Dwivedi, S.; Purohit, P.; Misra, R.; Pareek, P.; Goel, A.; Khattri, S.; Pant, K.K.; Misra, S.; Sharma, P. Diseases and Molecular Diagnostics: A Step Closer to Precision Medicine. Indian J. Clin. Biochem. 2017, 32, 374–398. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhan, X.; Zhang, Z.; Chen, K.; Wang, M.; Sun, Y.; He, B.; Liang, Y. Tetrahedral DNA Nanostructures for Effective Treatment of Cancer: Advances and Prospects. J. Nanobiotechnol. 2021, 19, 412. [Google Scholar] [CrossRef]
- Deneault, E. Recent Therapeutic Gene Editing Applications to Genetic Disorders. Curr. Issues Mol. Biol. 2024, 46, 4147–4185. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.; Das, S. Environmental Impacts of Microplastic and Role of Plastisphere Microbes in the Biodegradation and Upcycling of Microplastic. Chemosphere 2023, 334, 138928. [Google Scholar] [CrossRef]
- Voytas, D.F.; Gao, C. Precision Genome Engineering and Agriculture: Opportunities and Regulatory Challenges. PLoS Biol. 2014, 12, e1001877. [Google Scholar] [CrossRef]
- Sveen, T.R.; Hannula, S.E.; Bahram, M. Microbial Regulation of Feedbacks to Ecosystem Change. Trends Microbiol. 2024, 32, 68–78. [Google Scholar] [CrossRef]
- Rafeeq, H.; Afsheen, N.; Rafique, S.; Arshad, A.; Intisar, M.; Hussain, A.; Bilal, M.; Iqbal, H.M.N. Genetically Engineered Microorganisms for Environmental Remediation. Chemosphere 2023, 310, 136751. [Google Scholar] [CrossRef]
- Fuentes, S.; Méndez, V.; Aguila, P.; Seeger, M. Bioremediation of Petroleum Hydrocarbons: Catabolic Genes, Microbial Communities, and Applications. Appl. Microbiol. Biotechnol. 2014, 98, 4781–4794. [Google Scholar] [CrossRef]
- Raffa, C.M.; Chiampo, F. Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering 2021, 8, 92. [Google Scholar] [CrossRef]
- Elshafei, A.M.; Mansour, R. Microbial Bioremediation of Soils Contaminated with Petroleum Hydrocarbons. Discov. Soil 2024, 1, 9. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Tian, S.; Wang, W.; Qi, Q.; Jiang, P.; Gao, X.; Li, F.; Li, H.; Yu, H. Petroleum Hydrocarbon-Degrading Bacteria for the Remediation of Oil Pollution under Aerobic Conditions: A Perspective Analysis. Front. Microbiol. 2018, 9, 2885. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Tsai, S.-L.; Chen, W. Microbial Biosensors: Engineered Microorganisms as the Sensing Machinery. Sensors 2013, 13, 5777–5795. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, S.; Baylon, M.G.; Park, S.J.; Choi, J. Engineered Microbial Biosensors Based on Bacterial Two-Component Systems as Synthetic Biotechnology Platforms in Bioremediation and Biorefinery. Microb. Cell Factories 2017, 16, 62. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.; Agapito-Tenfen, S.Z. Unintended Genomic Outcomes in Current and next Generation GM Techniques: A Systematic Review. Plants 2022, 11, 2997. [Google Scholar] [CrossRef]
- Woo, H.-J.; Qin, Y.; Park, S.-Y.; Park, S.K.; Cho, Y.-G.; Shin, K.-S.; Lim, M.-H.; Cho, H.-S. Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision. PLoS ONE 2015, 10, e0132667. [Google Scholar] [CrossRef]
- Li, Y.; de Winde, J.H. Editorial: Systems and Synthetic Approaches to Industrial Biotechnology. Biotechnol. J. 2013, 8, 870–871. [Google Scholar] [CrossRef]
- Lajoie, M.J.; Rovner, A.J.; Goodman, D.B.; Aerni, H.-R.; Haimovich, A.D.; Kuznetsov, G.; Mercer, J.A.; Wang, H.H.; Carr, P.A.; Mosberg, J.A.; et al. Genomically Recoded Organisms Expand Biological Functions. Science 2013, 342, 357–360. [Google Scholar] [CrossRef]
- Shaffer, J.P.; Nothias, L.-F.; Thompson, L.R.; Sanders, J.G.; Salido, R.A.; Couvillion, S.P.; Brejnrod, A.D.; Lejzerowicz, F.; Haiminen, N.; Huang, S.; et al. Standardized Multi-Omics of Earth’s Microbiomes Reveals Microbial and Metabolite Diversity. Nat. Microbiol. 2022, 7, 2128–2150. [Google Scholar] [CrossRef]
- Zhang, Q.; Rho, M.; Tang, H.; Doak, T.G.; Ye, Y. CRISPR-Cas Systems Target a Diverse Collection of Invasive Mobile Genetic Elements in Human Microbiomes. Genome Biol. 2013, 14, R40. [Google Scholar] [CrossRef]
- Doudna, J.A.; Charpentier, E. Genome Editing. The New Frontier of Genome Engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef] [PubMed]
- Dormatey, R.; Sun, C.; Ali, K.; Fiaz, S.; Xu, D.; Calderón-Urrea, A.; Bi, Z.; Zhang, J.; Bai, J. ptxD/Phi as Alternative Selectable Marker System for Genetic Transformation for Bio-Safety Concerns: A Review. PeerJ 2021, 9, e11809. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Guo, J. Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology. Chem. Rev. 2024, 124, 10577–10617. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.-Y.; Tang, Q.; Li, Y.; Li, F.-H.; Wu, J.-H.; Li, W.-W.; Yu, H.-Q. Rapid and Highly Efficient Genomic Engineering with a Novel iEditing Device for Programming Versatile Extracellular Electron Transfer of Electroactive Bacteria. Environ. Microbiol. 2021, 23, 1238–1255. [Google Scholar] [CrossRef]
RM Type | Rease a | MTase b | Recognition Sequence | Modification Base | ATP Requirement | Notable Features | References |
---|---|---|---|---|---|---|---|
I | EcoKI | M.EcoKI | AACNNNNNNGTGC | m6A | ATP | Multi-subunit complex (HsdR, HsdM, HsdS); cleaves DNA at distant sites from the recognition sequence | REBASE c |
I | EcoAI | M.EcoAI | GAGNNNNNNTC | m6A | ATP | Multi-subunit complex; typical Type I system | REBASE c |
I | EcoBI | M.EcoBI | GGCCNNNNN | m5C | ATP | Multi-subunit complex; exhibits complex DNA recognition mechanisms | REBASE c |
II-A | EcoRI | M.EcoRI | GAATTC | m6A | None | Produces 5′ overhang; classical enzyme used in cloning | REBASE c |
II-A | HindIII | M.HindIII | AAGCTT | m6A | None | Produces sticky ends; widely used in genome engineering | REBASE c |
II-A | BamHI | M.BamHI | GGATCC | m6A | None | Frequently used in construction of expression vectors; produces sticky ends | REBASE c |
II-A | SmaI | M.SmaI | CCCGGG | m5C | None | Produces blunt ends; highly specific cleavage | REBASE c |
II-A | NcoI | M.NcoI | CCATGG | m5C | None | Produces blunt or sticky ends (depending on conditions); common in subcloning | REBASE c |
II-A | PstI | M.PstI | CTGCAG | m6A | None | Produces sticky ends; used in genomic library construction | REBASE c |
II-A | KpnI | M.KpnI | GGTACC | m6A | None | Produces sticky ends; widely used in subcloning | REBASE c |
II-B | NgoMIV | M.NgoMIV | GCCGGC | m5C | None | Belongs to Type II-B enzymes; exhibits unique recognition specificity | REBASE c |
II-S | BsaI | M.BsaI | GGTCTCN1 | m5A | None | Type IIS enzyme generating defined overhangs; frequently used in DNA assembly | REBASE c |
II-S | BsmI | M.BsmI | GAATGCN | m6A | None | Precise cleavage activity; commonly used in molecular cloning | REBASE c |
II-S | AlwI | M.AlwI | GGATCN4 | m6A | None | Shares recognition sequence with BamHI but has a different cleavage mechanism | REBASE c |
II-M | DpnI | – | GATC | – | None | Type IIM enzyme; cleaves only methylated DNA; no cognate methyltransferase | REBASE c |
II-I | DpnII | M.DpnII | GATC | m6A | None | Recognizes unmethylated DNA; usually functions in conjunction with its cognate methyltransferase (M.DpnII) | REBASE c |
II-M | – | M.SssI | CGCG | m4C | None | CpG Methyltransferase; no cognate restriction endonuclease | REBASE c |
II-G | BspMI | M.BspMI | ACCTGCN4 | m6A | None | Produces sticky ends via a specific cleavage site; used in specialized cloning applications | REBASE c |
II-S | FokI | M.FokI | GGATG | m6A | None | Widely applied in gene editing; its cleavage domain is used in engineered nucleases | REBASE c |
III | EcoP15I | M.EcoP15I | CAGCAG | m6A | ATP | Type III enzyme; cleaves approximately 25 bp from the recognition site | REBASE c |
III | EcoP14I | M.EcoP14I | CAGCAG | m5C | ATP | Similar to EcoP15I but with different modification specificity | REBASE c |
IV | Mrr | – | non-specificity | non-specificity | None | Type IV enzyme; exhibits broad non-specific restriction activity | [23] |
IV | McrBC | – | Gm5CGC | m5C | GTP | Recognizes methylated DNA; effective against phage DNA | [10] |
IV | McrA | – | Ym5CGR | m5C | None | Recognizes specific methylated modifications | [24] |
IV | McrC | – | GGWm5CC | m5C | None | Works in cooperation with McrA; enhances recognition of methylated DNA | [25] |
IV | MrrI | – | non-specificity | non-specificity | None | Similar to Mrr; targets non-specifically modified DNA | [26] |
IV | MmeI | – | TCCRAm5C | m5C | None | Possesses both restriction and modification functions; often used in genome editing | REBASE c |
IV | MboII | – | Gm6ATC | m6A | None | Acts on methylated DNA; part of phage defense mechanisms | REBASE c |
IV | MspI | – | Cm5CGG | m5C | None | Sensitive to methylation status; commonly used in DNA methylation analysis | REBASE c |
IV | CviJI | – | CCm6ANNNNNNTGG | m6A | None | Recognizes modified sequences; frequently applied in studies of DNA methylation patterns | REBASE c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Zhang, Y.; Wu, H.; Qiao, J.; Caiyin, Q. Advances in Diversity, Evolutionary Dynamics and Biotechnological Potential of Restriction-Modification Systems. Microorganisms 2025, 13, 1126. https://doi.org/10.3390/microorganisms13051126
Chen C, Zhang Y, Wu H, Qiao J, Caiyin Q. Advances in Diversity, Evolutionary Dynamics and Biotechnological Potential of Restriction-Modification Systems. Microorganisms. 2025; 13(5):1126. https://doi.org/10.3390/microorganisms13051126
Chicago/Turabian StyleChen, Chen, Yue Zhang, Hao Wu, Jianjun Qiao, and Qinggele Caiyin. 2025. "Advances in Diversity, Evolutionary Dynamics and Biotechnological Potential of Restriction-Modification Systems" Microorganisms 13, no. 5: 1126. https://doi.org/10.3390/microorganisms13051126
APA StyleChen, C., Zhang, Y., Wu, H., Qiao, J., & Caiyin, Q. (2025). Advances in Diversity, Evolutionary Dynamics and Biotechnological Potential of Restriction-Modification Systems. Microorganisms, 13(5), 1126. https://doi.org/10.3390/microorganisms13051126