Immunoinformatics Predictions on Variable Mycobacterium tuberculosis Lineage 6 T Cell Epitopes and HLA Interactions in West Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animal Housing and Infection
2.3. Lung Processing, CFU Determination, and mRNA Analysis
2.4. Dataset and Genome Sequence Analysis
2.5. Variant Allele Frequency Analysis and Visualization
2.6. IFNepitope Analysis
2.7. HLA Selection for T Cell Epitope Prediction
2.8. T Cell Epitope Prediction
3. Results and Discussion
3.1. Selection of Highly Variable Antigens in Mtb L6 Strains
3.2. Immunogenicity Predictions for the Variant Epitopes
3.3. HLA Binding Affinity Predictions for Mtb L6 Epitopes
- high frequency in at least one of the five West African countries (Guinea-Bissau, Mali, Senegal, The Gambia, and Burkina Faso), but not at a global level;
- high frequency in Europe, North America, and Asia, and low frequency in West African countries.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFU | Colony forming unit |
HLA | Human leucocyte antigen |
IC | Inhibitory concentration |
IFN | Interferon |
IL | Interleukin |
L | Lineage |
Mtb | Mycobacterium tuberculosis |
MTBC | Mycobacterium tuberculosis complex |
SNPs | Single nucleotide polymorphism |
SVM | Support vector machine |
TB | Tuberculosis |
VAF | Variant allele frequency |
References
- WHO. Global Tuberculosis Report; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Comas, I.; Coscolla, M.; Luo, T.; Borrell, S.; Holt, K.E.; Kato-Maeda, M.; Parkhill, J.; Malla, B.; Berg, S.; Thwaites, G.; et al. Out-of-Africa Migration and Neolithic Coexpansion of Mycobacterium Tuberculosis with Modern Humans. Nat. Genet. 2013, 45, 1176–1182. [Google Scholar] [CrossRef]
- Gagneux, S. Ecology and Evolution of Mycobacterium Tuberculosis. Nat. Rev. Microbiol. 2018, 16, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Orgeur, M.; Sous, C.; Madacki, J.; Brosch, R. Evolution and Emergence of Mycobacterium Tuberculosis. FEMS Microbiol. Rev. 2024, 48, fuae006. [Google Scholar] [CrossRef]
- Goig, G.A.; Windels, E.M.; Loiseau, C.; Stritt, C.; Biru, L.; Borrell, S.; Brites, D.; Gagneux, S. Ecology, Global Diversity and Evolutionary Mechanisms in the Mycobacterium Tuberculosis Complex. Nat. Rev. Microbiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Guyeux, C.; Senelle, G.; Le Meur, A.; Supply, P.; Gaudin, C.; Phelan, J.E.; Clark, T.G.; Rigouts, L.; de Jong, B.; Sola, C.; et al. Newly Identified Mycobacterium Africanum Lineage 10, Central Africa. Emerg. Infect. Dis. 2024, 30, 560–563. [Google Scholar] [CrossRef]
- Stucki, D.; Brites, D.; Jeljeli, L.; Coscolla, M.; Liu, Q.; Trauner, A.; Fenner, L.; Rutaihwa, L.; Borrell, S.; Luo, T.; et al. Mycobacterium Tuberculosis Lineage 4 Comprises Globally Distributed and Geographically Restricted Sublineages. Nat. Genet. 2016, 48, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- van Soolingen, D.; Qian, L.; de Haas, P.E.; Douglas, J.T.; Traore, H.; Portaels, F.; Qing, H.Z.; Enkhsaikan, D.; Nymadawa, P.; van Embden, J.D. Predominance of a Single Genotype of Mycobacterium Tuberculosis in Countries of East Asia. J. Clin. Microbiol. 1995, 33, 3234–3238. [Google Scholar] [CrossRef]
- Riojas, M.A.; McGough, K.J.; Rider-Riojas, C.J.; Rastogi, N.; Hazbón, M.H. Phylogenomic Analysis of the Species of the Mycobacterium Tuberculosis Complex Demonstrates That Mycobacterium Africanum, Mycobacterium Bovis, Mycobacterium Caprae, Mycobacterium Microti and Mycobacterium Pinnipedii Are Later Heterotypic Synonyms of Mycob. Int. J. Syst. Evol. Microbiol. 2018, 68, 324–332. [Google Scholar] [CrossRef]
- Coscolla, M.; Gagneux, S.; Menardo, F.; Loiseau, C.; Ruiz-Rodriguez, P.; Borrell, S.; Otchere, I.D.; Asante-Poku, A.; Asare, P.; Sánchez-Busó, L.; et al. Phylogenomics of Mycobacterium Africanum Reveals a New Lineage and a Complex Evolutionary History. Microb. Genom. 2021, 7, 000477. [Google Scholar] [CrossRef]
- Silva, M.L.; Cá, B.; Osório, N.S.; Rodrigues, P.N.S.; Maceiras, A.R.; Saraiva, M. Tuberculosis Caused by Mycobacterium Africanum: Knowns and Unknowns. PLoS Pathog. 2022, 18, e1010490. [Google Scholar] [CrossRef]
- de Jong, B.C.; Antonio, M.; Gagneux, S. Mycobacterium Africanum-Review of an Important Cause of Human Tuberculosis in West Africa. PLoS Negl. Trop. Dis. 2010, 4, e744. [Google Scholar] [CrossRef] [PubMed]
- Brites, D.; Gagneux, S. Co-Evolution of Mycobacterium Tuberculosis and Homo Sapiens. Immunol. Rev. 2015, 264, 6–24. [Google Scholar] [CrossRef]
- Hershberg, R.; Lipatov, M.; Small, P.M.; Sheffer, H.; Niemann, S.; Homolka, S.; Roach, J.C.; Kremer, K.; Petrov, D.A.; Feldman, M.W.; et al. High Functional Diversity in Mycobacterium Tuberculosis Driven by Genetic Drift and Human Demography. PLoS Biol. 2008, 6, e311. [Google Scholar] [CrossRef]
- Gröschel, M.I.; Pérez-Llanos, F.J.; Diel, R.; Vargas, R.; Escuyer, V.; Musser, K.; Trieu, L.; Meissner, J.S.; Knorr, J.; Klinkenberg, D.; et al. Differential Rates of Mycobacterium Tuberculosis Transmission Associate with Host–Pathogen Sympatry. Nat. Microbiol. 2024, 9, 2113–2127. [Google Scholar] [CrossRef]
- Gehre, F.; Antonio, M.; Faïhun, F.; Odoun, M.; Uwizeye, C.; de Rijk, P.; de Jong, B.C.; Affolabi, D. The First Phylogeographic Population Structure and Analysis of Transmission Dynamics of M. Africanum West African 1—Combining Molecular Data from Benin, Nigeria and Sierra Leone. PLoS ONE 2013, 8, 8–13. [Google Scholar] [CrossRef]
- Yeboah-Manu, D.; de Jong, B.C.; Gehre, F. The Biology and Epidemiology of Mycobacterium Africanum. Adv. Exp. Med. Biol. 2017, 1019, 117–133. [Google Scholar] [CrossRef]
- Asante-Poku, A.; Yeboah-Manu, D.; Otchere, I.D.; Aboagye, S.Y.; Stucki, D.; Hattendorf, J.; Borrell, S.; Feldmann, J.; Danso, E.; Gagneux, S. Mycobacterium Africanum Is Associated with Patient Ethnicity in Ghana. PLoS Negl. Trop. Dis. 2015, 9, e3370. [Google Scholar] [CrossRef] [PubMed]
- Otchere, I.D.; Coscolla, M.; Sánchez-Busó, L.; Asante-Poku, A.; Brites, D.; Loiseau, C.; Meehan, C.J.; Osei-Wusu, S.; Forson, A.; Laryea, C.; et al. Comparative Genomics of Mycobacterium Africanum Lineage 5 and Lineage 6 from Ghana Suggests Distinct Ecological Niches. Sci. Rep. 2018, 8, 11269. [Google Scholar] [CrossRef] [PubMed]
- Asante-Poku, A.; Otchere, I.D.; Osei-Wusu, S.; Sarpong, E.; Baddoo, A.; Forson, A.; Laryea, C.; Borrell, S.; Bonsu, F.; Hattendorf, J.; et al. Molecular Epidemiology of Mycobacterium Africanum in Ghana. BMC Infect. Dis. 2016, 16, 385. [Google Scholar] [CrossRef]
- Hiza, H.; Zwyer, M.; Hella, J.; Arbués, A.; Sasamalo, M.; Borrell, S.; Xu, Z.M.; Ross, A.; Brites, D.; Fellay, J.; et al. Bacterial Diversity Dominates Variable Macrophage Responses of Tuberculosis Patients in Tanzania. Sci. Rep. 2024, 14, 9287. [Google Scholar] [CrossRef]
- Osei-Wusu, S.; Tetteh, J.K.A.; Musah, A.B.; Ntiamoah, D.O.; Arthur, N.; Adjei, A.; Arbues, A.; Ofori, E.A.; Mensah, K.A.; Galevo, S.E.A.; et al. Macrophage Susceptibility to Infection by Ghanaian Mycobacterium Tuberculosis Complex Lineages 4 and 5 Varies with Self-Reported Ethnicity. Front. Cell. Infect. Microbiol. 2023, 13, 1163993. [Google Scholar] [CrossRef] [PubMed]
- de Jong, B.C.; Hill, P.C.; Aiken, A.; Awine, T.; Antonio, M.; Adetifa, I.M.; Jackson-Sillah, D.J.; Fox, A.; Deriemer, K.; Gagneux, S.; et al. Progression to Active Tuberculosis, but Not Transmission, Varies by Mycobacterium Tuberculosis Lineage in The Gambia. J. Infect. Dis. 2008, 198, 1037–1043. [Google Scholar] [CrossRef]
- Scriba, T.J.; Maseeme, M.; Young, C.; Taylor, L.; Leslie, A.J. Immunopathology in Human Tuberculosis. Sci. Immunol. 2024, 9, eado5951. [Google Scholar] [CrossRef] [PubMed]
- O’Garra, A.; Redford, P.S.; McNab, F.W.; Bloom, C.I.; Wilkinson, R.J.; Berry, M.P.R. The Immune Response in Tuberculosis. Annu. Rev. Immunol. 2013, 31, 475–527. [Google Scholar] [CrossRef]
- Comas, I.; Chakravartti, J.; Small, P.M.; Galagan, J.; Niemann, S.; Kremer, K.; Ernst, J.D.; Gagneux, S. Human T Cell Epitopes of Mycobacterium Tuberculosis are Evolutionarily Hyperconserved. Nat. Genet. 2010, 42, 498–503. [Google Scholar] [CrossRef]
- Coscolla, M.; Copin, R.; Sutherland, J.; Gehre, F.; de Jong, B.; Owolabi, O.; Mbayo, G.; Giardina, F.; Ernst, J.D.; Gagneux, S.M. Tuberculosis T Cell Epitope Analysis Reveals Paucity of Antigenic Variation and Identifies Rare Variable TB Antigens. Cell Host Microbe 2015, 18, 538–548. [Google Scholar] [CrossRef]
- Tientcheu, L.D.; Sutherland, J.S.; de Jong, B.C.; Kampmann, B.; Jafali, J.; Adetifa, I.M.; Antonio, M.; Dockrell, H.M.; Ota, M.O. Differences in T-Cell Responses between Mycobacterium Tuberculosis and Mycobacterium Africanum-Infected Patients. Eur. J. Immunol. 2014, 44, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Philips, J.A.; Ernst, J.D. Tuberculosis Pathogenesis and Immunity. Annu. Rev. Pathol. 2012, 7, 353–384. [Google Scholar] [CrossRef]
- Orme, I.M.; Andersen, P.; Boom, W.H. T Cell Response to Mycobacterium Tuberculosis. J. Infect. Dis. 1993, 167, 1481–1497. [Google Scholar] [CrossRef]
- Roach, D.R.; Bean, A.G.D.; Demangel, C.; France, M.P.; Briscoe, H.; Britton, W.J. TNF Regulates Chemokine Induction Essential for Cell Recruitment, Granuloma Formation, and Clearance of Mycobacterial Infection. J. Immunol. 2002, 168, 4620–4627. [Google Scholar] [CrossRef]
- Gehre, F.; Otu, J.; DeRiemer, K.; de Sessions, P.F.; Hibberd, M.L.; Mulders, W.; Corrah, T.; de Jong, B.C.; Antonio, M. Deciphering the Growth Behaviour of Mycobacterium Africanum. PLoS Negl. Trop. Dis. 2013, 7, e2220. [Google Scholar] [CrossRef]
- Cá, B.; Fonseca, K.L.; Sousa, J.; Maceiras, A.R.; Machado, D.; Sanca, L.; Rabna, P.; Rodrigues, P.N.S.; Viveiros, M.; Saraiva, M. Experimental Evidence for Limited in Vivo Virulence of Mycobacterium Africanum. Front. Microbiol. 2019, 10, 2102. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Peng, J.; Chi, H. Systems Immunology: Integrating Multi-Omics Data to Infer Regulatory Networks and Hidden Drivers of Immunity. Curr. Opin. Syst. Biol. 2019, 15, 19–29. [Google Scholar] [CrossRef]
- Chatanaka, M.K.; Ulndreaj, A.; Sohaei, D.; Prassas, I. Immunoinformatics: Pushing the Boundaries of Immunology Research and Medicine. ImmunoInformatics 2022, 5, 100007. [Google Scholar] [CrossRef]
- Wang, X.; Fan, D.; Yang, Y.; Gimple, R.C.; Zhou, S. Integrative Multi-Omics Approaches to Explore Immune Cell Functions: Challenges and Opportunities. iScience 2023, 26, 106359. [Google Scholar] [CrossRef]
- Maceiras, A.R.; Silvério, D.; Gonçalves, R.; Cardoso, M.S.; Saraiva, M. Infection with Hypervirulent Mycobacterium Tuberculosis Triggers Emergency Myelopoiesis but Not Trained Immunity. Front. Immunol. 2023, 14, 1211404. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, K.L.; Maceiras, A.R.; Matos, R.; Simoes-Costa, L.; Sousa, J.; Cá, B.; Barros, L.; Fernandes, A.I.; Mereiter, S.; Reis, R.; et al. Deficiency in the Glycosyltransferase Gcnt1 Increases Susceptibility to Tuberculosis through a Mechanism Involving Neutrophils. Mucosal Immunol. 2020, 13, 836–848. [Google Scholar] [CrossRef] [PubMed]
- Napier, G.; Campino, S.; Merid, Y.; Abebe, M.; Woldeamanuel, Y.; Aseffa, A.; Hibberd, M.L.; Phelan, J.; Clark, T.G. Robust Barcoding and Identification of Mycobacterium Tuberculosis Lineages for Epidemiological and Clinical Studies. Genome Med. 2020, 12, 114. [Google Scholar] [CrossRef]
- Dhanda, S.K.; Vir, P.; Raghava, G.P.S. Designing of Interferon-Gamma Inducing MHC Class-II Binders. Biol. Direct 2013, 8, 30. [Google Scholar] [CrossRef]
- Dhall, A.; Patiyal, S.; Raghava, G.P.S. A Hybrid Method for Discovering Interferon-Gamma Inducing Peptides in Human and Mouse. Sci. Rep. 2024, 14, 26859. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, Z.; Cia, G.; Song, X.; Pucci, F.; Rooman, M.; Xue, F.; Hou, Q. MHCII-Peptide Presentation: An Assessment of the State-of-the-Art Prediction Methods. Front. Immunol. 2024, 15, 1293706. [Google Scholar] [CrossRef] [PubMed]
- Trevizani, R.; Yan, Z.; Greenbaum, J.A.; Sette, A.; Nielsen, M.; Peters, B. A Comprehensive Analysis of the IEDB MHC Class-I Automated Benchmark. Brief. Bioinform. 2022, 23, bbac259. [Google Scholar] [CrossRef]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved Predictions of MHC Antigen Presentation by Concurrent Motif Deconvolution and Integration of MS MHC Eluted Ligand Data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef]
- Sousa, J.; Cá, B.; Maceiras, A.R.; Simões-Costa, L.; Fonseca, K.L.; Fernandes, A.I.; Ramos, A.; Carvalho, T.; Barros, L.; Magalhães, C.; et al. Mycobacterium Tuberculosis Associated with Severe Tuberculosis Evades Cytosolic Surveillance Systems and Modulates IL-1β Production. Nat. Commun. 2020, 11, 1949. [Google Scholar] [CrossRef] [PubMed]
- Medhasi, S.; Chantratita, N. Human Leukocyte Antigen (HLA) System: Genetics and Association with Bacterial and Viral Infections. J. Immunol. Res. 2022, 2022, 9710376. [Google Scholar] [CrossRef]
- Harishankar, M.; Selvaraj, P.; Bethunaickan, R. Influence of Genetic Polymorphism Towards Pulmonary Tuberculosis Susceptibility. Front. Med. 2018, 5, 213. [Google Scholar] [CrossRef]
- Oliveira-Cortez, A.; Melo, A.C.; Chaves, V.E.; Condino-Neto, A.; Camargos, P. Do HLA Class II Genes Protect against Pulmonary Tuberculosis? A Systematic Review and Meta-Analysis. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2016, 35, 1567–1580. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-P.; Zhou, Y.; Xiang, X.; Zhou, Y.; He, M. Relationship of HLA-DRB1 Gene Polymorphism with Susceptibility to Pulmonary Tuberculosis: Updated Meta-Analysis. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Against Tuberc. Lung Dis. 2015, 19, 841–849. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Y.; Xiang, X.; Zhou, Y.; He, M. The Relationship of HLA-DQ Alleles with Tuberculosis Risk: A Meta-Analysis. Lung 2015, 193, 521–530. [Google Scholar] [CrossRef]
- Yuliwulandari, R.; Sachrowardi, Q.; Nakajima, H.; Kashiwase, K.; Hirayasu, K.; Mabuchi, A.; Sofro, A.S.M.; Tokunaga, K. Association of HLA-A, -B, and -DRB1 with Pulmonary Tuberculosis in Western Javanese Indonesia. Hum. Immunol. 2010, 71, 697–701. [Google Scholar] [CrossRef]
- Kettaneh, A.; Seng, L.; Tiev, K.P.; Tolédano, C.; Fabre, B.; Cabane, J. Human Leukocyte Antigens and Susceptibility to Tuberculosis: A Meta-Analysis of Case-Control Studies. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Against Tuberc. Lung Dis. 2006, 10, 717–725. [Google Scholar]
- Vejbaesya, S.; Chierakul, N.; Luangtrakool, K.; Srinak, D.; Stephens, H.A.F. Associations of HLA Class II Alleles with Pulmonary Tuberculosis in Thais. Eur. J. Immunogenet. Off. J. Br. Soc. Histocompat. Immunogenet. 2002, 29, 431–434. [Google Scholar] [CrossRef]
- Brahmajothi, V.; Pitchappan, R.M.; Kakkanaiah, V.N.; Sashidhar, M.; Rajaram, K.; Ramu, S.; Palanimurugan, K.; Paramasivan, C.N.; Prabhakar, R. Association of Pulmonary Tuberculosis and HLA in South India. Tubercle 1991, 72, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Snary, D.; Barnstable, C.J.; Bodmer, W.F.; Crumpton, M.J. Molecular Structure of Human Histocompatibility Antigens: The HLA-C Series. Eur. J. Immunol. 1977, 7, 580–585. [Google Scholar] [CrossRef]
- McCutcheon, J.A.; Gumperz, J.; Smith, K.D.; Lutz, C.T.; Parham, P. Low HLA-C Expression at Cell Surfaces Correlates with Increased Turnover of Heavy Chain MRNA. J. Exp. Med. 1995, 181, 2085–2095. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Savan, R.; Qi, Y.; Gao, X.; Yuki, Y.; Bass, S.E.; Martin, M.P.; Hunt, P.; Deeks, S.G.; Telenti, A.; et al. Differential MicroRNA Regulation of HLA-C Expression and Its Association with HIV Control. Nature 2011, 472, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Davila, J.; McNamara, L.A.; Yang, Z. Comparison of the Predicted Population Coverage of Tuberculosis Vaccine Candidates Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f via a Bioinformatics Approach. PLoS ONE 2012, 7, e40882. [Google Scholar] [CrossRef]
- Karosiene, E.; Rasmussen, M.; Blicher, T.; Lund, O.; Buus, S.; Nielsen, M. NetMHCIIpan-3.0, a Common Pan-Specific MHC Class II Prediction Method Including All Three Human MHC Class II Isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics 2013, 65, 711–724. [Google Scholar] [CrossRef]
- Tong, X.; Chen, L.; Liu, S.; Yan, Z.; Peng, S.; Zhang, Y.; Fan, H. Polymorphisms in HLA-DRB1 Gene and the Risk of Tuberculosis: A Meta-Analysis of 31 Studies. Lung 2015, 193, 309–318. [Google Scholar] [CrossRef]
- Toyo-oka, L.; Mahasirimongkol, S.; Yanai, H.; Mushiroda, T.; Wattanapokayakit, S.; Wichukchinda, N.; Yamada, N.; Smittipat, N.; Juthayothin, T.; Palittapongarnpim, P.; et al. Strain-Based HLA Association Analysis Identified HLA-DRB1*09:01 Associated with Modern Strain Tuberculosis. HLA 2017, 90, 149–156. [Google Scholar] [CrossRef]
Allele Frequency * | ||||||
---|---|---|---|---|---|---|
Guinea-Bissau | Mali | Senegal | The Gambia | Burkina Faso | ||
HLAs with high prevalence in West Africa | HLA-A * 23:01 | 0.1858 | 0.228 | 0.177 | n.d. | n.d. |
HLA-A * 02:01 | 0.1084 | 0.083 | 0.081 | n.d. | 0.0945 | |
HLA-A* 33:03 | 0.0882 | 0.094 | 0.081 | n.d. | n.d. | |
HLA-A * 74:01 | 0.13175 | 0.036 | 0.022 | n.d. | 0.032333 | |
HLA-A* 02:02 | 0.0714 | 0.076 | 0.091 | n.d. | 0.053 | |
HLA-B * 15:03 | 0.108 | 0.069 | n.d. | n.d. | 0.1045 | |
HLA-B * 35:01 | 0.144 | 0.127 | 0.122 | n.d. | n.d. | |
HLA-B * 53:01 | 0.1 | 0.159 | 0.053 | n.d. | 0.171 | |
HLA-B * 58:01 | 0.078 | 0.022 | 0.069 | n.d. | n.d. | |
HLA-B * 08:01 | 0.077 | 0.007 | 0.048 | n.d. | n.d. | |
HLAs with low prevalence in West Africa | HLA-A * 24:02 | 0.0224 | 0 | 0.005 | n.d. | n.d. |
HLA-A * 01:01 | 0.051 | 0.007 | 0.027 | n.d. | n.d. | |
HLA-A * 02:07 | n.d. | n.d. | n.d. | n.d. | 0.005 | |
HLA-A * 24:07 | n.d. | n.d. | n.d. | n.d. | n.d. | |
HLA-A * 26:08 | 0 | 0 | n.d. | n.d. | n.d. | |
HLA-B * 07:02 | 0.023 | 0.058 | 0.058 | n.d. | n.d. | |
HLA-B * 18:01 | n.d. | 0.0070 | 0.0270 | n.d. | n.d. | |
HLA-B * 27:05 | 0 | 0 | n.d. | n.d. | n.d. | |
HLA-B * 40:01 | 0 | 0 | n.d. | n.d. | 0.014 | |
HLA-B * 15:01 | 0 | 0 | n.d. | n.d. | 0 |
Allele Frequency * | ||||||
---|---|---|---|---|---|---|
Guinea-Bissau | Mali | Senegal | The Gambia | Burkina Faso | ||
HLAs with high prevalence in West Africa | HLA-DRB1 * 11:01 | 0.1080 | n.d. | 0.0330 | 0.0846 | n.d. |
HLA-DRB1 * 10:01 | 0.100 | n.d | 0.1890 | 0.0628 | 0.0900 | |
HLA-DRB1 * 04:05 | 0.0770 | n.d. | n.d. | 0.0475 | n.d. | |
HLA-DRB1 * 09:01 | 0.0770 | n.d. | 0.0330 | 0.0742 | n.d. | |
HLA-DRB1 * 11:02 | 0.0770 | n.d. | 0.1440 | 0.0753 | n.d. | |
HLA-DRB1 * 13:02 | 0.0770 | n.d. | 0.0440 | 0.1440 | n.d. | |
HLA-DRB1 * 15:03 | 0.0093 | n.d. | 0.0220 | n.d. | n.d. | |
HLAs with low prevalence in West Africa | HLA-DRB1 * 04:01 | 0 | n.d. | n.d. | 0.0055 | n.d. |
HLA-DRB1 * 07:01 | n.d. | n.d. | 0.0110 | 0.0557 | n.d | |
HLA-DRB1 * 11:04 | n.d. | n.d. | n.d. | 0.0005 | n.d. | |
HLA-DRB1 * 14:02 | n.d. | n.d. | n.d. | n.d. | n.d. | |
HLA-DRB1 * 15:01 | 0.0080 | n.d. | n.d. | n.d. | n.d. | |
HLA-DRB1 * 01:01 | 0 | n.d. | 0.0110 | n.d. | n.d. |
HLA Class I | Frequency in West Africa | |||||
High | Low | |||||
Protein | L6 Variants | L4 Variants | L6–Anc. | L4–Anc. | L6–Anc. | L4–Anc. |
Rv0010c | A26V | - | 0 | - | 0 | - |
RimJ | L123V | - | 0 | - | 0 | - |
TB7.3 | Q62H | - | −2 | - | * | - |
Rv0012 | E234Q; G258D | D55N; K105E | −2 | +1 | 0 | +1 |
Rv0990c | P8L: A68V | A54S; H61Q | −2 | 0 | 0 | 0 |
LldD2 | L258V | A59G; V176A; V253M | −2 | +4 | 0 | +4 |
Rv2719c | - | H124Y | - | 0 | - | 0 |
HLA Class II | Frequency in West Africa | |||||
High | Low | |||||
Protein | L6 Variants | L4 Variants | L6–Anc. | L4–Anc. | L6–Anc. | L4–Anc. |
Rv0010c | A26V | - | −4 | - | −5 | - |
RimJ | L123V | - | 0 | - | 0 | - |
TB7.3 | Q62H | - | 0 | - | 0 | - |
Rv0012 | E234Q; G258D | D55N; K105E | −2 | +4 | −5 | 0 |
Rv0990c | P8L: A68V | A54S; H61Q | −7 | −5 | +3 | 0 |
LldD2 | L258V | A59G; V176A; V253M | −1 | +1 | +3 | 0 |
Rv2719c | - | H124Y | - | 0 | - | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.L.; Osório, N.S.; Saraiva, M. Immunoinformatics Predictions on Variable Mycobacterium tuberculosis Lineage 6 T Cell Epitopes and HLA Interactions in West Africa. Microorganisms 2025, 13, 1032. https://doi.org/10.3390/microorganisms13051032
Silva ML, Osório NS, Saraiva M. Immunoinformatics Predictions on Variable Mycobacterium tuberculosis Lineage 6 T Cell Epitopes and HLA Interactions in West Africa. Microorganisms. 2025; 13(5):1032. https://doi.org/10.3390/microorganisms13051032
Chicago/Turabian StyleSilva, Marta L., Nuno S. Osório, and Margarida Saraiva. 2025. "Immunoinformatics Predictions on Variable Mycobacterium tuberculosis Lineage 6 T Cell Epitopes and HLA Interactions in West Africa" Microorganisms 13, no. 5: 1032. https://doi.org/10.3390/microorganisms13051032
APA StyleSilva, M. L., Osório, N. S., & Saraiva, M. (2025). Immunoinformatics Predictions on Variable Mycobacterium tuberculosis Lineage 6 T Cell Epitopes and HLA Interactions in West Africa. Microorganisms, 13(5), 1032. https://doi.org/10.3390/microorganisms13051032