Metallic Shipwrecks and Bacteria: A Love-Hate Relationship
Abstract
:1. Introduction
2. Shipwrecks Change Their Environment and Affect Communities
3. Microbial Colonization
4. Microbial Communities and Taxonomic Groups on Metallic Shipwrecks
5. Microbial Influenced Corrosion (MIC)
6. Protective Biofilm
7. The Particular Case of Halomonas Titanicae
8. Environmental Changes
9. Questions and Future Research Directions
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Vinson, I. Editorial. Mus. Int. 2008, 60, 4–6. [Google Scholar] [CrossRef]
- Parliamentary Assembly. The Environmental Impact of Sunken Shipwrecks. Resolution 1869, 2012. Available online: https://assembly.coe.int/nw/xml/XRef/Xref-XML2HTML-en.asp?fileid=18077&lang=en (accessed on 19 March 2025).
- Paxton, A.B.; McGonigle, C.; Damour, M.; Holly, G.; Caporaso, A.; Campbell, P.B.; Meyer-Kaiser, K.S.; Hamdan, L.J.; Mires, C.H.; Taylor, J.C. Shipwreck ecology: Understanding the function and processes from microbes to megafauna. BioScience 2024, 74, 12–24. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, I.D. In-situ Corrosion Studies on Wrecked Aircraft of the Imperial Japanese Navy in Chuuk Lagoon, Federated States of Micronesia. Int. J. Naut. Archaeol. 2006, 35, 128–136. [Google Scholar] [CrossRef]
- Claros, C.E.; DeBellis, L.; Salvadori, B.; Brizzi, S.; Balbo, A.; Zanotto, F.; Buratti, E.; Cano, E.; Barat, B.R.; Guilminot, E. Protective treatments for the protection and preservation of aircraft artefacts from world war II. Prog. Org. Coat. 2025, 204, 109215. [Google Scholar] [CrossRef]
- Landquist, H.; Norrman, J.; Lindhe, A.; Norberg, T.; Hassellöv, I.M.; Lindgren, J.F.; Rosén, L. Expert elicitation for deriving input data for probabilistic risk assessment of shipwrecks. Mar. Pollut. Bull. 2017, 125, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Frey, T.; Czub, M.; Bełdowski, J.; Meski, L. Thematic assessment on Hazardous Submerged Objects in the Baltic Sea (Warfare Materials in the Baltic Sea). HELCOM 2024. Available online: https://helcom.fi/wp-content/uploads/2024/05/HELCOM-Thematic-Assessment-on-Hazardous-Submerged-Objects-in-the-Baltic-Sea.pdf (accessed on 19 March 2025).
- Michel, J.; Etkin, D.S.; Gilbert, T.; Urban, R.; Waldron, J.; Blocksidge, C.T. Potentially Polluting Wrecks in Marine Waters: An Issue Paper Presented at the 2005 International Oil Spill Conference; American Petroleum Institute: Washington, DC, USA, 2005; 76p. [Google Scholar]
- Melchers, R.E. Long-term corrosion of cast irons and steel in marine and atmospheric environments. Corr. Sci. 2013, 68, 186–194. [Google Scholar] [CrossRef]
- Faksness, L.G.; Daling, P.; Altin, D.; Dolva, H.; Fosbæk, B.; Bergstrøm, R. Relative bioavailability and toxicity of fuel oils leaking from World War II shipwrecks. Mar. Pollut. Bull. 2015, 94, 123–130. [Google Scholar] [CrossRef]
- Carter, M.; Goodsir, F.; Cundall, P.; Devlin, M.; Fuller, S.; Jeffery, B.; Hil, G.; Talouli, A. Ticking ecological time bombs: Risk characterisation and management of oil polluting World War II shipwrecks in the Pacific Ocean. Mar. Pollut. Bull. 2021, 164, 112087. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.W.; Barott, K.L.; Dinsdale, E.; Friedlander, A.M.; Nosrat, B.; Obura, D.; Sala, E.; Sandin, S.A.; Smith, J.E.; Vermeij, M.J.; et al. Black reefs: Iron-induced phase shifts on coral reefs. ISME J. 2012, 6, 638–649. [Google Scholar] [CrossRef]
- Renzi, M.; Romeo, T.; Guerranti, C.; Perra, G.; Canese, S.; Consoli, P.; Focardi, S.E.; Berti, C.; Sprovieri, M.; Gherardi, S.; et al. Are shipwrecks a real hazard for the ecosystem in the Mediterranean Sea? Mar. Pollut. Bull. 2017, 124, 21–32. [Google Scholar] [CrossRef]
- Stieglitz, T.C. Habitat engineering by decadal-scale bioturbation around shipwrecks on the Great Barrier Reef mid-shelf. Mar. Ecol. Prog. Ser. 2013, 477, 29–40. [Google Scholar] [CrossRef]
- Picken, G.B. Moray Firth marine fouling communities. Proc. R. Soc. Edin. B-Biol. 1986, 91, 213–220. [Google Scholar] [CrossRef]
- Fagundes-Netto, E.B.; Gaelzer, L.R.; Coutinho, R.; Zalmon, I.R. Influence of a shipwreck on a nearshore-reef fish assemblages off the coast of Rio de Janeiro, Brazil. Lat. Am. J. Aquat. Res. 2011, 39, 103–116. [Google Scholar] [CrossRef]
- González-Duarte, M.M.; Fernández-Montblanc, T.; Bethencourt, M.; Izquierdo, A. Effects of substrata and environmental conditions on ecological succession on historic shipwrecks. Estuar. Coast. Shelf Sci. 2018, 200, 301–310. [Google Scholar] [CrossRef]
- Simon, T.; Joyeux, J.C.; Pinheiro, H.T. Fish assemblages on shipwrecks and natural rocky reefs strongly differ in trophic structure. Mar. Environ. Res. 2013, 90, 55–65. [Google Scholar] [CrossRef]
- Arena, P.T.; Jordan, L.K.; Spieler, R.E. Fish assemblages on sunken vessels and natural reefs in southeast Florida, USA. Hydrobiologia 2007, 580, 157–171. [Google Scholar] [CrossRef]
- Randell, S. Marine growth on shipwrecks. AIMA Bull. 1998, 22, 107–108. [Google Scholar]
- Lengkeek, W.; Coolen, J.W.P.; Gittenberger, A.; Schrieken, N. Ecological relevance of shipwrecks in the North Sea. Ned. Faun. Meded. 2013, 41, 49–57. [Google Scholar]
- Bulleri, F. The introduction of artificial structures on marine soft-and hard-bottoms: Ecological implications of epibiota. Environ. Conserv. 2005, 32, 101–102. [Google Scholar] [CrossRef]
- Airoldi, L.; Turon, X.; Perkol-Finkel, S.; Rius, M. Corridors for aliens but not for natives: Effects of marine urban sprawl at a regional scale. Divers. Distrib. 2015, 2, 755–768. [Google Scholar] [CrossRef]
- Zintzen, V.; Norro, A.; Massin, C.; Mallefet, J. Spatial variability of epifaunal communities from artificial habitat: Shipwrecks in the Southern Bight of the North Sea. Estuar. Coast. Shelf Sci. 2008, 76, 327–344. [Google Scholar] [CrossRef]
- Zintzen, V.; Massin, C. Artificial hard substrata from the Belgian part of the North Sea and their influence on the distributional range of species. Belg. J. Zool. 2010, 140, 20–29. [Google Scholar] [CrossRef]
- Zintzen, V.; Massin, C.; Norro, A.; Mallefet, J. Epifaunal inventory of two shipwrecks from the Belgian Continental Shelf. In Marine Biodiversity: Patterns and Processes, Assessment, Threats, Management and Conservation; Developments in Hydrobiology; Martens, K., Queiroga, H., Cunha, M.R., Cunha, A., Moreira, M.H., Quintino, V., Rodrigues, A.M., Seroôdio, J., Warwick, R.M., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 207–219. [Google Scholar]
- Bacchiocchi, F.; Airoldi, L. Distribution and dynamics of epibiota on hard structures for coastal protection. Estuar. Coast. Shelf Sci. 2003, 56, 1157–1166. [Google Scholar] [CrossRef]
- Baynes, T.W.; Szmant, A.M. Effect of current on the sessile benthic community structure of an artificial reef. Bull. Mar. Sci. 1989, 44, 545–566. [Google Scholar]
- Falcão, M.; Santos, M.N.; Drago, T.; Serpa, D.; Monteiro, C. Effect of artificial reefs (southern Portugal) on sediment–water transport of nutrients: Importance of the hydrodynamic regime. Estuar. Coast. Shelf Sci. 2009, 83, 451–459. [Google Scholar] [CrossRef]
- Ruuskanen, A.T.; Kraufvelin, P.; Alvik, R.; Díaz, E.R.; Honkonen, J.; Kanerva, J.; Karell, K.; Kekäläinen, P.; Lappalainen, J.; Mikkola, R.; et al. Benthic conditions around a historic shipwreck: Vrouw Maria (1771) in the northern Baltic proper. Cont. Shelf Res. 2015, 98, 1–12. [Google Scholar] [CrossRef]
- Balazy, P.; Copeland, U.; Sokołowski, A. Shipwrecks and underwater objects of the southern Baltic–Hard substrata islands in the brackish, soft bottom marine environment. Estuar. Coast. Shelf Sci. 2019, 225, 106240. [Google Scholar] [CrossRef]
- Rogowska, J.; Kudłak, B.; Tsakovski, S.; Gałuszka, A.; Bajger-Nowak, G.; Simeonov, V.; Konieczka, P.; Wolska, L.; Namieśnik, J. Surface sediments pollution due to shipwreck s/s “Stuttgart”: A multidisciplinary approach. Stoch. Environ. Res. Risk Assess. 2015, 29, 1797–1807. [Google Scholar] [CrossRef]
- Annibaldi, A.; Illuminati, S.; Truzzi, C.; Scarponi, G. SWASV speciation of Cd, Pb and Cu for the determination of seawater contamination in the area of the Nicole shipwreck (Ancona coast, Central Adriatic Sea). Mar. Pollut. Bull. 2011, 62, 2813–2821. [Google Scholar] [CrossRef]
- Thomas, G.E.; Bolam, S.G.; Brant, J.L.; Brash, R.; Goodsir, F.; Hynes, C.; McGenity, T.J.; McIlwaine, P.S.O.; McKew, B.A. Evaluation of polycyclic aromatic hydrocarbon pollution from the HMS royal oak shipwreck and effects on sediment microbial community structure. Front. Mar. Sci. 2021, 8, 650139. [Google Scholar] [CrossRef]
- Mugge, R.L.; Brock, M.L.; Salerno, J.L.; Damour, M.; Church, R.A.; Lee, J.S.; Hamdan, L.J. Deep-sea biofilms, historic shipwreck preservation and the Deepwater Horizon spill. Front. Mar. Sci. 2019, 6, 48. [Google Scholar] [CrossRef]
- Van Landuyt, J.; Kundu, K.; Van Haelst, S.; Neyts, M.; Parmentier, K.; De Rijcke, M.; Boon, N. 80 years later: Marine sediment still influenced by an old war ship. Front. Mar. Sci. 2022, 9, 10171. [Google Scholar] [CrossRef]
- Bolton, E.; Greenhalgh, N.; Kunselman, E.; Mifsud, J.; Patel, N.; Sausmekat, M.P.; Oldach, P.; Gambin, T. Deepening the understanding of wreck ecology: A comparative study of marine sediment microbiomes across 10 Maltese wreck sites. Front. Mar. Sci. 2024, 11, 1480265. [Google Scholar] [CrossRef]
- Schroeder, R.E.; Green, A.L.; DeMartini, E.E.; Kenyon, J.C. Long-term effects of a ship-grounding on coral reef fish assemblages at Rose Atoll, American Samoa. Bull. Mar. Sci. 2008, 82, 345–364. [Google Scholar]
- Work, T.M.; Aeby, G.S.; Maragos, J.E. Phase shift from a coral to a corallimorph-dominated reef associated with a shipwreck on Palmyra Atoll. PLoS ONE 2008, 3, e2989. [Google Scholar] [CrossRef]
- Svane, I.B.; Petersen, J.K. On the problems of epibioses, fouling and artificial reefs, a review. Mar. Ecol. 2001, 22, 169–188. [Google Scholar] [CrossRef]
- Huggett, M.J.; Williamson, J.E.; De Nys, R.; Kjelleberg, S.; Steinberg, P.D. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 2006, 149, 604–619. [Google Scholar] [CrossRef]
- Price, K.A.; Garrison, C.E.; Richards, N.; Field, E.K. A shallow water ferrous-hulled shipwreck reveals a distinct microbial community. Front. Microbiol. 2020, 11, 1897. [Google Scholar] [CrossRef]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef]
- Acuña, N.; Ortega-Morales, B.O.; Valadez-González, A. Biofilm colonization dynamics and its influence on the corrosion resistance of austenitic UNS S31603 stainless steel exposed to Gulf of Mexico seawater. Mar. Biotechnol. 2006, 8, 62–70. [Google Scholar] [CrossRef]
- McBeth, J.M.; Emerson, D. In situ microbial community succession on mild steel in estuarine and marine environments: Exploring the role of iron-oxidizing bacteria. Front. Microbiol. 2016, 7, 767. [Google Scholar] [CrossRef] [PubMed]
- Qian, P.Y.; Cheng, A.; Wang, R.; Zhang, R. Marine biofilms: Diversity, interactions and biofouling. Nat. Rev. Microbiol. 2022, 20, 671–684. [Google Scholar] [CrossRef]
- Decho, A.W. Microbial biofilms in intertidal systems: An overview. Cont. Shelf Res. 2000, 20, 1257–1273. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilm control in industrial water systems: Approaching an old problem in new ways. In Biofilms: Recent Advances in Their Study and Control; Evans, L.V., Ed.; Harwood Academic Publishers: Amsterdam, The Netherlands, 2000; pp. 333–360. [Google Scholar]
- Tremblay, Y.D.; Hathroubi, S.; Jacques, M. Les biofilms bactériens: Leur importance en santé animale et en santé publique. Can. J. Vet. Res. 2014, 78, 110–116. [Google Scholar]
- Mugunthan, S.; Wong, L.L.; Winnerdy, F.R.; Summers, S.; Bin Ismail, M.H.; Foo, Y.H.; Jaggi, T.K.; Meldrum, O.W.; Tiew, P.Y.; Chotirmall, S.H.; et al. RNA is a key component of extracellular DNA networks in Pseudomonas aeruginosa biofilms. Nat. Commun. 2023, 14, 7772. [Google Scholar] [CrossRef]
- Beech, I.B.; Cheung, C.S. Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions. Int. Biodeterior. Biodegrad. 1995, 35, 59–72. [Google Scholar] [CrossRef]
- Zuo, R. Biofilms: Strategies for metal corrosion inhibition employing microorganisms. Appl. Microbiol. Biotechnol. 2007, 76, 1245–1253. [Google Scholar] [CrossRef]
- Little, B.J.; Lee, J.S.; Ray, R.I. The influence of marine biofilms on corrosion: A concise review. Electrochim. Acta 2008, 54, 2–7. [Google Scholar] [CrossRef]
- Usher, K.M.; Kaksonen, A.H.; MacLeod, I.D. Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria. Corr. Sci. 2014, 83, 189–197. [Google Scholar] [CrossRef]
- Smith, M.; Bardiau, M.; Brennan, R.; Burgess, H.; Caplin, J.; Ray, S.; Urios, T. Accelerated low water corrosion: The microbial sulfur cycle in microcosm. npj Mater. Degrad. 2019, 3, 37. [Google Scholar] [CrossRef]
- Hamdan, L.J.; Hampel, J.J.; Moseley, R.D.; Mugge, R.L.; Ray, A.; Salerno, J.L.; Damour, M. Deep-sea shipwrecks represent island-like ecosystems for marine microbiomes. ISME J. 2021, 15, 2883–2891. [Google Scholar] [CrossRef] [PubMed]
- Hampel, J.J.; Moseley, R.D.; Hamdan, L.J. Microbiomes respond predictably to built habitats on the seafloor. Mol. Ecol. 2023, 32, 6686–6695. [Google Scholar] [CrossRef] [PubMed]
- Shostak, M.O.; Cox, M.A.; Richards, N.; Field, E.K. Evaluation of biofilm assembly and microbial diversity on a freshwater, ferrous-hulled shipwreck. Appl. Environ. Microbiol. 2024, 90, e01770-24. [Google Scholar] [CrossRef] [PubMed]
- Garrison, C.E.; Field, E.K. Introducing a “core steel microbiome” and community functional analysis associated with microbially influenced corrosion. FEMS Microbiol. Ecol. 2021, 97, fiaa237. [Google Scholar] [CrossRef]
- Moura, V.; Ribeiro, I.; Moriggi, P.; Capão, A.; Salles, C.; Bitati, S.; Procópio, L. The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment. Arch. Microbiol. 2018, 200, 1447–1456. [Google Scholar] [CrossRef]
- Doghri, I.; Rodrigues, S.; Bazire, A.; Dufour, A.; Akbar, D.; Sopena, V.; Sablé, S.; Lanneluc, I. Marine bacteria from the French Atlantic coast displaying high forming-biofilm abilities and different biofilm 3D architectures. BMC Microbiol. 2015, 15, 231. [Google Scholar] [CrossRef]
- Mugge, R.L.; Moseley, R.D.; Hamdan, L.J. Substrate specificity of biofilms proximate to historic shipwrecks. Microorganisms 2023, 11, 2416. [Google Scholar] [CrossRef]
- Sharpley, J.M. Microbiological corrosion in waterfloods. Corrosion 1961, 17, 92–96. [Google Scholar] [CrossRef]
- Kobrin, G. Corrosion by microbiological organisms in natural waters. Mater. Perform. 1976, 15, 38–43. [Google Scholar]
- McBeth, J.M.; Little, B.J.; Ray, R.I.; Farrar, K.M.; Emerson, D. Neutrophilic iron-oxidizing “Zetaproteobacteria” and mild steel corrosion in nearshore marine environments. Appl. Environ. Microbiol. 2011, 77, 1405–1412. [Google Scholar] [CrossRef]
- Lee, J.S.; McBeth, J.M.; Ray, R.I.; Little, B.J.; Emerson, D. Iron cycling at corroding carbon steel surfaces. Biofouling 2013, 29, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Nealson, K.H.; Little, B. Breathing manganese and iron: Solid-state respiration. Adv. Appl. Microbiol. 1997, 45, 213–239. [Google Scholar]
- Larsen, I.; Little, B.J.; Nealson, K.; Ray, R.I.; Stone, A.; Tian, J. Manganite reduction by Shewanella putrefaciens mr-4. Am. Mineral. 1998, 83, 1564–1572. [Google Scholar] [CrossRef]
- Dubiel, M.; Hsu, C.H.; Chien, C.C.; Mansfeld, F.; Newman, D.K. Microbial iron respiration can protect steel from corrosion. Appl. Environ. Microbiol. 2002, 68, 1440–1445. [Google Scholar] [CrossRef]
- Lovley, D.R.; Stolz, J.F.; Nord, G.L.; Phillips, E.J.P. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 1987, 330, 252–254. [Google Scholar] [CrossRef]
- Myers, C.; Nealson, K.H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 1988, 240, 1319–1321. [Google Scholar] [CrossRef]
- Coleman, M.L.; Hedrick, D.B.; Lovley, D.R.; White, D.C.; Pye, K. Reduction of Fe(III) in sediments by sulfate-reducing bacteria. Nature 1993, 361, 436–438. [Google Scholar] [CrossRef]
- Emerson, D. The role of iron-oxidizing bacteria in biocorrosion: A review. Biofouling 2018, 34, 989–1000. [Google Scholar] [CrossRef]
- AlAbbas, F.M.; Williamson, C.; Bhola, S.M.; Spear, J.R.; Olson, D.L.; Mishra, B.; Kakpovbia, A.E. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80). Int. Biodeterior. Biodegrad. 2013, 78, 34–42. [Google Scholar] [CrossRef]
- Moore, J.D. Long-term corrosion processes of iron and steel shipwrecks in the marine environment: A review of current knowledge. J. Marit. Archaeol. 2015, 10, 191–204. [Google Scholar] [CrossRef]
- Shade, A.; Handelsman, J. Beyond the Venn diagram: The hunt for a core microbiome. Environ. Microbiol. 2012, 14, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Jousset, A.; Bienhold, C.; Chatzinotas, A.; Gallien, L.; Gobet, A.; Kurm, V.; Küsel, K.; Rillig, M.C.; Rivett, D.W.; Salles, J.F.; et al. Where less may be more: How the rare biosphere pulls ecosystems strings. ISME J. 2017, 11, 853–862. [Google Scholar] [CrossRef]
- Cullimore, D.R.; Johnston, L.A. Microbiology of concretions, sediments and mechanisms influencing the preservation of submerged archaeological artifacts. Int. J. Hist. Archaeol. 2008, 12, 120–132. [Google Scholar] [CrossRef]
- Pandit, S.N.; Kolasa, J.; Cottenie, K. Contrasts between habitat generalists and specialists: An empirical extension to the basic metacommunity framework. Ecology 2009, 90, 2253–2262. [Google Scholar] [CrossRef]
- Wells, W.; Mann, H. Microbiology and formation of rusticles from the RMS Titanic. Resour. Environ. Biotechnol. 1997, 1, 271–281. [Google Scholar]
- Jeffrey, R.; Melchers, R.E. Influence of migration of iron particles, ions and compounds during long term marine immersion corrosion. Corr. Eng. Sci. Technol. 2007, 42, 145–151. [Google Scholar] [CrossRef]
- Cullimore, D.R.; Johnston, L. Biodeterioration of the RMS Titanic. Can. Chem. News 2000, 52, 14. [Google Scholar]
- Daokoru-Olukole, C.G.; Okpokwasili, G.S.C. Diversity of cyanobacteria in shipwrecks in the shallow water of New Calabar River, Nigeria. J. Microbiol. Exp. 2020, 8, 184–191. [Google Scholar]
- Liu, H.; Sharma, M.; Wang, J.; Cheng, Y.F.; Liu, H. Microbiologically influenced corrosion of 316L stainless steel in the presence of Chlorella vulgaris. Int. Biodeterior. Biodegrad. 2018, 129, 209–216. [Google Scholar] [CrossRef]
- Salerno, J.L.; Little, B.; Lee, J.; Hamdan, L.J. Exposure to crude oil and chemical dispersant may impact marine microbial biofilm composition and steel corrosion. Front. Mar. Sci. 2018, 5, 196. [Google Scholar] [CrossRef]
- Liu, T.; Guo, Z.; Zeng, Z.; Guo, N.; Lei, Y.; Liu, T.; Sun, S.; Chang, X.; Yin, Y.; Wang, X. Marine bacteria provide lasting anticorrosion activity for steel via biofilm-induced mineralization. ACS Appl. Mater. Interfaces 2018, 10, 40317–40327. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.B.; Sadek, A.; Rodriguez, A.; Iannuzzi, M.; Giai, C.; Senko, J.M.; Monty, C.N. Use of an electrochemical split cell technique to evaluate the influence of Shewanella oneidensis activities on corrosion of carbon steel. PLoS ONE 2016, 11, e0147899. [Google Scholar] [CrossRef] [PubMed]
- Tuck, B.; Watkin, E.; Somers, A.; Machuca, L.L. A critical review of marine biofilms on metallic materials. npj Mater. Degrad. 2022, 6, 25. [Google Scholar] [CrossRef]
- Sanchez-Porro, C.; Kaur, B.; Mann, H.; Ventosa, A. Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanic. Int. J. Syst. Evol. Microbiol. 2010, 60, 2768–2774. [Google Scholar] [CrossRef]
- Sánchez-Porro, C.; de la Haba, R.R.; Cruz-Hernández, N.; González, J.M.; Reyes-Guirao, C.; Navarro-Sampedro, L.; Carballo, M.; Ventosa, A. Draft genome of the marine Gammaproteobacterium Halomonas titanicae. Genome Announc. 2013, 1, 10.1128. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Sun, L.; Zhang, D.; Li, E.; Xu, M.; Cai, H. Corrosion of EH40 steel affected by Halomonas titanicae dependent on electron acceptors utilized. Corr. Sci. 2021, 182, 109263. [Google Scholar] [CrossRef]
- Lu, S.; Chen, S.; Dou, W.; Wang, Y.; Sun, J.; Liu, G. Microbiologically influenced corrosion inhibition of two marine structural steels caused by Halomonas titanicae in aerobic environments. Eng. Fail. Anal. 2023, 154, 107668. [Google Scholar] [CrossRef]
- Lu, S.; Sun, J.; Xue, N.; Gu, T.; Xia, M.; Chu, W.; Chen, S.; Gangzhou, L.; Dou, W. Study of copper corrosion via extracellular electron transfer by nitrate reducing Halomonas titanicae. Corr. Sci. 2024, 231, 111996. [Google Scholar] [CrossRef]
- Li, J.; Xiao, X.; Zhou, M.; Zhang, Y. Strategy for the adaptation to stressful conditions of the novel isolated conditional Piezophilic strain Halomonas titanicae ANRCS81. Appl. Environ. Microbiol. 2023, 89, e01304-22. [Google Scholar] [CrossRef]
- Balmaceda, R.S.; Ramos Ricciuti, F.E.; Redersdorff, I.E.; Veinticcinque, L.M.; Studdert, C.A.; Herrera Seitz, M.K. Chemosensory pathways of Halomonas titanicae KHS3 control chemotaxis behaviour and biofilm formation. Microbiology 2022, 168, 001251. [Google Scholar] [CrossRef]
- Fu, M.; Xia, M.; Lai, L.; Lu, S.; Chen, S.; Liu, G. Corrosion mechanisms of EH40 steel induced by extracellular polymeric substances from Halomonas titanicae cultivated under aerobic and anaerobic conditions. Corr. Sci. 2025, 246, 112758. [Google Scholar] [CrossRef]
- Nakagawa, S.; Takai, K.; Inagaki, F.; Horikoshi, K.; Sako, Y. Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the ε-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int. J. Syst. Evol. Microbiol. 2005, 55, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Perner, M. The globally widespread genus Sulfurimonas: Versatile energy metabolisms and adaptations to redox clines. Front. Microbiol. 2015, 6, 989. [Google Scholar] [CrossRef]
- Sun, Q.; Xu, K.; Cao, L.; Du, Z.; Wang, M.; Sun, L. Nitrogen and sulfur cycling driven by Campylobacterota in the sediment–water interface of deep-sea cold seep: A case in the South China Sea. mBio 2023, 14, e00117-23. [Google Scholar] [CrossRef]
- McAllister, S.M.; Moore, R.M.; Gartman, A.; Luther, G.W., III; Emerson, D.; Chan, C.S. The Fe (II)-oxidizing Zetaproteobacteria: Historical, ecological and genomic perspectives. FEMS Microbiol. Ecol. 2019, 95, fiz015. [Google Scholar] [CrossRef]
- Mercier-Bion, F.; Vernet, J.; Gallien, J.P.; Dillmann, P.; Foy, E.; Memet, J.B.; Bayle, M.; Caubisens, C.; Urios, L.; Huet, N.; et al. In-situ conservation of historical metallic shipwrecks: Complementary approach from on-site global measurements to multiscale characterization. In Proceedings of the EuroCorr 2022-the European Corrosion Congress 2022, Berlin, Germany, 28 August–1 September 2022. [Google Scholar]
- Thompson, A.A.; Wood, J.L.; Palombo, E.A.; Green, W.K.; Wade, S.A. From laboratory tests to field trials: A review of cathodic protection and microbially influenced corrosion. Biofouling 2022, 38, 298–320. [Google Scholar] [CrossRef]
- Bugnot, A.B.; Mayer-Pinto, M.; Airoldi, L.; Heery, E.C.; Johnston, E.L.; Critchley, L.P.; Strain, E.M.; Morris, R.L.; Loke, L.H.; Bishop, M.J.; et al. Current and projected global extent of marine built structures. Nat. Sustain. 2021, 4, 33–41. [Google Scholar] [CrossRef]
- Meyer-Kaiser, K.S.; Mires, C.H. Underwater cultural heritage is integral to marine ecosystems. Trends Ecol. Evol. 2022, 37, 815–818. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urios, L. Metallic Shipwrecks and Bacteria: A Love-Hate Relationship. Microorganisms 2025, 13, 1030. https://doi.org/10.3390/microorganisms13051030
Urios L. Metallic Shipwrecks and Bacteria: A Love-Hate Relationship. Microorganisms. 2025; 13(5):1030. https://doi.org/10.3390/microorganisms13051030
Chicago/Turabian StyleUrios, Laurent. 2025. "Metallic Shipwrecks and Bacteria: A Love-Hate Relationship" Microorganisms 13, no. 5: 1030. https://doi.org/10.3390/microorganisms13051030
APA StyleUrios, L. (2025). Metallic Shipwrecks and Bacteria: A Love-Hate Relationship. Microorganisms, 13(5), 1030. https://doi.org/10.3390/microorganisms13051030