Deep-Sea Cold Seep Campylobacterota: Diversity, Growth, Metabolic Characteristics, and Nutrient Production
Abstract
:1. Introduction
2. Methods and Materials
2.1. Sampling, Medium Optimization, and Bacterial Enrichment and Isolation
2.2. Phenotypic, Phylogenetic, and Chemotaxonomic Analysis
2.3. Amplicon Analysis, Genomics, and Transcriptomics
2.4. Chemical Composition Analysis
2.5. Protein Content and Metabolomics Analysis
3. Results
3.1. Diversity of Campylobacterota in the Formosa Cold Seep of the South China Sea (SCS)
3.2. Enrichment and Isolation of Sulfurovum and Sulfurimonas
3.3. Characterization of Two Novel Campylobacterota Species
3.3.1. Morphological and Physiological Characterization
3.3.2. Phylogenomic and Chemotaxonomic Characterization
3.4. The Nutrient Composition of Autotrophic Campylobacterota
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veronese, P.; Dodi, I. Campylobacter jejuni/coli Infection: Is It Still a Concern? Microorganisms 2024, 12, 2669. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, J.; Mao, L.; Yao, Y. Helicobacter pylori outer membrane vesicles and infected cell exosomes: New players in host immune modulation and pathogenesis. Front. Immunol. 2024, 15, 1512935. [Google Scholar] [CrossRef]
- Waite, D.W.; Vanwonterghem, I.; Rinke, C.; Parks, D.H.; Zhang, Y.; Takai, K.; Sievert, S.M.; Simon, J.; Campbell, B.J.; Hanson, T.E.; et al. Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.). Front. Microbiol. 2017, 8, 682. [Google Scholar] [CrossRef] [PubMed]
- Mall, A.; Sobotta, J.; Huber, C.; Tschirner, C.; Kowarschik, S.; Bačnik, K.; Mergelsberg, M.; Boll, M.; Hügler, M.; Eisenreich, W.; et al. Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium. Science 2018, 359, 563–567. [Google Scholar] [CrossRef]
- Hatakeyama, S.; Mino, S.; Mizobata, M.; Takada, M.; Tsuchiya, J.; Yamaki, S.; Ando, Y.; Sawabe, T.; Takai, K. Hydrogenimonas leucolamina sp. nov., a hydrogen- and sulphur-oxidizing mesophilic chemolithoautotroph isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Western Pacific Ocean. Int. J. Syst. Evol. Microbiol. 2024, 74, 006553. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, S.; Lai, Q.; Shao, Z.; Jiang, L. Sulfurimonas indica sp. nov., a hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a hydrothermal sulfide chimney in the Northwest Indian Ocean. Int. J. Syst. Evol. Microbiol. 2020, 71, 004575. [Google Scholar] [CrossRef]
- Nagata, R.; Takaki, Y.; Tame, A.; Nunoura, T.; Muto, H.; Mino, S.; Sawayama, S.; Takai, K.; Nakagawa, S. Lebetimonas natsushimae sp. nov., a novel strictly anaerobic, moderately thermophilic chemoautotroph isolated from a deep-sea hydrothermal vent polychaete nest in the Mid-Okinawa Trough. Syst. Appl. Microbiol. 2017, 40, 352–356. [Google Scholar] [CrossRef]
- Mino, S.; Nakagawa, S.; Makita, H.; Toki, T.; Miyazaki, J.; Sievert, S.M.; Polz, M.F.; Inagaki, F.; Godfroy, A.; Kato, S.; et al. Endemicity of the cosmopolitan mesophilic chemolithoautotroph Sulfurimonas at deep-sea hydrothermal vents. ISME J. 2017, 11, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, F.; Takai, K.; Nealson, K.H.; Horikoshi, K. Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int. J. Syst. Evol. Microbiol. 2004, 54, 1477–1482. [Google Scholar] [CrossRef]
- Meyer, J.L.; Huber, J.A. Strain-level genomic variation in natural populations of Lebetimonas from an erupting deep-sea volcano. ISME J. 2014, 8, 867–880. [Google Scholar] [CrossRef]
- Giovannelli, D.; Chung, M.; Staley, J.; Starovoytov, V.; Le Bris, N.; Vetriani, C. Sulfurovum riftiae sp. nov., a mesophilic, thiosulfate-oxidizing, nitrate-reducing chemolithoautotrophic epsilonproteobacterium isolated from the tube of the deep-sea hydrothermal vent polychaete Riftia pachyptila. Int. J. Syst. Evol. Microbiol. 2016, 66, 2697–2701. [Google Scholar] [CrossRef]
- Li, W.L.; Dong, X.; Lu, R.; Zhou, Y.L.; Zheng, P.F.; Feng, D.; Wang, Y. Microbial ecology of sulfur cycling near the sulfate-methane transition of deep-sea cold seep sediments. Environ. Microbiol. 2021, 23, 6844–6858. [Google Scholar] [CrossRef] [PubMed]
- Niemann, H.; Linke, P.; Knittel, K.; MacPherson, E.; Boetius, A.; Brückmann, W.; Larvik, G.; Wallmann, K.; Schacht, U.; Omoregie, E.; et al. Methane-carbon flow into the benthic food web at cold seeps—A case study from the Costa Rica subduction zone. PLoS ONE 2013, 8, e74894. [Google Scholar] [CrossRef] [PubMed]
- Delpech, L.M.; Tveit, A.T.; Hodson, A.J.; Hand, K.P.; Kalenitchenko, D. Chemolithoautotrophic bacteria flourish at dark water-ice interfaces of an emerged Arctic cold seep. ISME J. 2024, 18, wrae170. [Google Scholar] [CrossRef]
- Sun, Q.L.; Xu, K.; Cao, L.; Du, Z.; Wang, M.; Sun, L. Nitrogen and sulfur cycling driven by Campylobacterota in the sediment-water interface of deep-sea cold seep: A case in the South China Sea. mBio 2023, 14, e0011723. [Google Scholar] [CrossRef]
- Jesse, M.N.; Hryhoriy, S.; Sylva, S.P.; Thomas, F.; Musat, N.; Seewald, J.S.; Sievert, S.M. Primary productivity below the seafloor at deep-sea hot springs. Proc. Natl. Acad. Sci. USA 2018, 115, 6756–6761. [Google Scholar]
- Wegener, G.; Molari, M.; Purser, A.; Diehl, A.; Albers, E.; Walter, M.; Mertens, C.; German, C.R.; Boetius, A. Hydrothermal vents supporting persistent plumes and microbial chemoautotrophy at Gakkel Ridge (Arctic Ocean). Front. Microbiol. 2024, 15, 1473822. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; St John, E.; Anantharaman, K.; Reysenbach, A.L. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits. Microbiome 2022, 10, 241. [Google Scholar] [CrossRef]
- Miyazaki, J.; Ikuta, T.; Watsuji, T.O.; Abe, M.; Yamamoto, M.; Nakagawa, S.; Takaki, Y.; Nakamura, K.; Takai, K. Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica. ISME J. 2020, 14, 1273–1289. [Google Scholar] [CrossRef]
- Sun, Q.L.; Zeng, Z.G.; Chen, S.; Sun, L. First Comparative Analysis of the Community Structures and Carbon Metabolic Pathways of the Bacteria Associated with Alvinocaris longirostris in a Hydrothermal Vent of Okinawa Trough. PLoS ONE 2016, 11, e0154359. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, Z.G.; Chen, S.; Sun, L. Bacterial communities associated with Shinkaia crosnieri from the Iheya North, Okinawa Trough: Microbial diversity and metabolic potentials. J. Mar. Syst. 2018, 180, 228–236. [Google Scholar] [CrossRef]
- Guéganton, M.; Rouxel, O.; Durand, L.; Cueff-Gauchard, V.; Gayet, N.; Pradillon, F.; Cambon-Bonavita, M.A. Anatomy and Symbiosis of the Digestive System of the Vent Shrimp Rimicaris Exoculata and Rimicaris Chacei Revealed Through Imaging Approaches. Front. Mar. Sci. 2022, 9, 903748. [Google Scholar] [CrossRef]
- Guéganton, M.; Methou, P.; Aubé, J.; Noël, C.; Rouxel, O.; Cueff-Gauchard, V.; Gayet, N.; Durand, L.; Pradillon, F.; Cambon-Bonavita, M.A. Symbiont Acquisition Strategies in Post-Settlement Stages of Two Co-Occurring Deep-Sea Rimicaris Shrimp. Ecol. Evol. 2024, 14, e70369. [Google Scholar] [CrossRef]
- Watsuji, T.O.; Yamamoto, A.; Motoki, K.; Ueda, K.; Hada, E.; Takaki, Y.; Kawagucci, S.; Takai, K. Molecular evidence of digestion and absorption of epibiotic bacterial community by deep-sea crab Shinkaia crosnieri. ISME J. 2014, 9, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Hilário, A.; Capa, M.; Dahlgren, T.G.; Halanych, K.M.; Little, C.T.; Thornhill, D.J.; Verna, C.; Glover, A.G. New Perspectives on the Ecology and Evolution of Siboglinid Tubeworms. PLoS ONE 2011, 6, e16309. [Google Scholar] [CrossRef]
- Sun, Q.L.; Yuan, Z.H.; Sun, Y.Y.; Sun, L. Integrated multi-approaches reveal unique metabolic mechanisms of Vestimentifera to adapt to deep sea. Microbiome 2024, 12, 241. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, J.; Sun, Y.; Sun, L. Genomic, transcriptomic, and proteomic insights into the symbiosis of deep-sea tubeworm holobionts. ISME J. 2020, 14, 135–150. [Google Scholar] [CrossRef]
- Sun, Q.L.; Zhang, J.; Wang, M.X.; Cao, L.; Du, Z.F.; Sun, Y.Y.; Liu, S.Q.; Li, C.L.; Sun, L. High-Throughput Sequencing Reveals a Potentially Novel Sulfurovum Species Dominating the Microbial Communities of the Seawater–Sediment Interface of a Deep-Sea Cold Seep in South China Sea. Microorganisms 2020, 8, 687. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, L.; Hu, Q.; Cui, L.; Zhu, B.; Fu, X.; Lai, Q.; Shao, Z.; Yang, S. Characterization of Sulfurimonas hydrogeniphila sp. nov., a Novel Bacterium Predominant in Deep-Sea Hydrothermal Vents and Comparative Genomic Analyses of the Genus Sulfurimonas. Front. Microbiol. 2021, 12, 626705. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, L.; Cui, L.; Alain, K.; Xie, S.; Shao, Z. Transcriptome Analysis of Cyclooctasulfur Oxidation and Reduction by the Neutrophilic Chemolithoautotrophic Sulfurovum indicum from Deep-Sea Hydrothermal Ecosystems. Antioxidants 2023, 12, 627. [Google Scholar] [CrossRef]
- Zhou, H.Z.; Zhang, J.; Sun, Q.L. Description of Novosphingopyxis iocasae sp. nov., isolated from deep sea sediment from the Mariana Trench, and emended description of the genus Novosphingopyxis. Int. J. Syst. Evol. Microbiol. 2021, 71, 004910. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Y.; Zhou, H.Z.; Sun, Q.L. Bacillus fonticola sp. nov., isolated from deep sea cold seep sediment. Arch. Microbiol. 2021, 203, 4127–4132. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Zheng, R.; Li, L.; Xi, S.; Luan, Z.; Sun, C.; Zhang, X. In situ Raman quantitative monitoring of methanogenesis: Culture experiments of a deep-sea cold seep methanogenic archaeon. Front. Microbiol. 2023, 14, 1128064. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Oh, H.S.; Park, S.C.; Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 2014, 64, 346–351. [Google Scholar] [CrossRef]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef]
- Rozenberg, A.; Inoue, K.; Kandori, H.; Béjà, O. Microbial Rhodopsins: The Last Two Decades. Annu. Rev. Microbiol. 2021, 75, 427–447. [Google Scholar] [CrossRef]
- Huang, H.M.; Xue, Z.X.; Jiang, Y.F.; Li, R.; Guo, R.B.; Fan, X.L.; Fu, S.F. New approach for raw biogas: Production of single cell protein by sulfide-tolerant methane-oxidizing bacteria consortia. Chem. Eng. J. 2024, 495, 153678. [Google Scholar] [CrossRef]
- Woern, C.; Grossmann, L. Microbial gas fermentation technology for sustainable food protein production. Biotechnol. Adv. 2023, 69, 108240. [Google Scholar] [CrossRef]
- Ingelman, H.; Heffernan, J.K.; Harris, A.; Brown, S.D.; Shaikh, K.M.; Saqib, A.Y.; Pinheiro, M.J.; Lima, L.A.; Martinez, K.R.; Gonzalez-Garcia, R.A.; et al. Autotrophic adaptive laboratory evolution of the acetogen Clostridium autoethanogenum delivers the gas-fermenting strain LAbrini with superior growth, products, and robustness. New Biotechnol. 2024, 83, 1–15. [Google Scholar] [CrossRef]
- Du, Z.F.; Zhang, X.; Luan, Z.D.; Wang, M.X.; Xi, S.C.; Li, L.F.; Wang, B.; Cao, L.; Lian, C.; Li, C.L.; et al. In situ Raman Quantitative Detection of the Cold Seep Vents and Fluids in the Chemosynthetic Communities in the South China Sea. Geochem. Geophys. Geosystems 2018, 19, 2049–2061. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, L.; Xie, S.; Alain, K.; Wang, Z.; Wang, J.; Liu, D.; Shao, Z. Disproportionation of inorganic sulfur compounds by mesophilic chemolithoautotrophic Campylobacterota. mSystems 2023, 8, e0095422. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.; Dubey, P.; Verma, V.; Dasgupta, S.; Dhar, S.K. Helicobacter pylori shows asymmetric and polar cell divisome assembly associated with DNA replisome. FEBS J. 2018, 285, 2531–2547. [Google Scholar] [CrossRef]
- Stokke, R.; Dahle, H.; Roalkvam, I.; Wissuwa, J.; Daae, F.L.; Tooming-Klunderud, A.; Thorseth, I.H.; Pedersen, R.B.; Steen, I.H. Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm. Environ. Microbiol. 2015, 17, 4063–4077. [Google Scholar] [CrossRef]
- Huang, H.; Li, X.; Cao, K.; Leng, X. Effects of replacing fishmeal with the mixture of cottonseed protein concentrate and Clostridium autoethanogenum protein on the growth, nutrient utilization, serum biochemical indices, intestinal and hepatopancreas histology of rainbow trout (Oncorhynchus mykiss). Animals 2023, 13, 817. [Google Scholar] [CrossRef] [PubMed]
- Odintsova, N.A.; Boroda, A.V.; Velansky, P.V.; Kostetsky, E.Y. The fatty acid profile changes in marine invertebrate larval cells during cryopreservation. Cryobiology 2009, 59, 335–343. [Google Scholar] [CrossRef]
- Yoon, D.S.; Byeon, E.; Kim, D.H.; Lee, M.C.; Shin, K.H.; Hagiwara, A.; Park, H.G.; Lee, J.S. Effects of temperature and combinational exposures on lipid metabolism in aquatic invertebrates. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2022, 262, 109449. [Google Scholar] [CrossRef] [PubMed]
- Serrato-Salas, J.; Gendrin, M. Involvement of microbiota in insect physiology: Focus on B Vitamins. mBio 2023, 14, e02225-22. [Google Scholar] [CrossRef]
- Putnam, E.E.; Goodman, A.L. B vitamin acquisition by gut commensal bacteria. PLoS Pathog. 2020, 16, e1008208. [Google Scholar] [CrossRef]
- Powers, H.J. Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr. 2003, 77, 1352–1360. [Google Scholar] [CrossRef]
- Balasubramaniam, S.; Christodoulou, J.; Rahman, S. Disorders of riboflavin metabolism. J. Inherit. Metab. Dis. 2019, 42, 608–619. [Google Scholar] [CrossRef]
- Jang, H.-J.; Yoon, S.-H.; Ryu, H.-K.; Kim, J.H.; Wang, C.L.; Kim, J.Y.; Oh, D.K.; Kim, S.W. Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system. Microb. Cell Fact. 2011, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Debelo, H.; Novotny, J.A.; Ferruzzi, M.G. Vitamin a. Adv. Nutr. 2017, 8, 992–994. [Google Scholar] [CrossRef] [PubMed]
- Molari, M.; Hassenrueck, C.; Laso-Perez, R.; Wegener, G.; Offre, P.; Scilipoti, S.; Boetius, A. A hydrogenotrophic Sulfurimonas is globally abundant in deep-sea oxygen-saturated hydrothermal plumes. Nat. Microbiol. 2023, 8, 651–665. [Google Scholar] [CrossRef]
- Shastak, Y.; Gordillo, A.; Pelletier, W. The relationship between vitamin A status and oxidative stress in animal production. J. Appl. Anim. Res. 2023, 51, 546–553. [Google Scholar] [CrossRef]
- Olson, J.A. Vitamin A and Carotenoids as Antioxidants in a Physiological Context. J. Nutr. Sci. Vitaminol. 1993, 39, S57–S65. [Google Scholar] [CrossRef]
- Bruckner, C.G.; Mammitzsch, K.; Jost, G.; Wendt, J.; Labrenz, M.; Jürgens, K. Chemolithoautotrophic denitrification of epsilonproteobacteria in marine pelagic redox gradients. Environ. Microbiol. 2013, 15, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
- Pyo, M.; Kim, D.; Kim, H.S.; Hwang, M.H.; Lee, S.; Lee, E.J. Sulfur powder utilization and denitrification efficiency in an elemental sulfur-based membrane bioreactor with coagulant addition. Water Res. 2024, 272, 122882. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Zhang, Q.; Li, Z.; Meng, G.; Liu, B.; Jiang, Y.; Li, S. Autotrophic denitrification by sulfur-based immobilized electron donor for enhanced nitrogen removal: Denitrification performance, microbial interspecific interaction and functional traits. Bioresour. Technol. 2024, 401, 130747. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, X.; Yang, X.; Zhou, H.; Fang, J.; Gong, S.; Yang, J.; Chen, J.; Lu, T.; Zeng, M.; et al. The nitrogen removal performance and microbial community on mixotrophic denitrification process. Bioresour. Technol. 2022, 363, 127901. [Google Scholar] [CrossRef]
- Möller, L.; Laas, P.; Rogge, A.; Goetz, F.; Bahlo, R.; Leipe, T.; Labrenz, M. Sulfurimonas subgroup GD17 cells accumulate polyphosphate under fluctuating redox conditions in the Baltic Sea: Possible implications for their ecology. ISME J. 2018, 13, 482–493. [Google Scholar] [CrossRef]
- Jiang, W.; Hernández Villamor, D.; Peng, H.; Chen, J.; Liu, L.; Haritos, V.; Ledesma-Amaro, R. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat. Chem. Biol. 2021, 17, 845–855. [Google Scholar] [CrossRef] [PubMed]
Characteristics | 1 * | 2 | 3 * | 4 |
---|---|---|---|---|
Shape | Rod to slightly curved | Rod to slightly curved | Rod or filament | Ellipsoid or rod |
Temperature range (optimal) (°C) | 5–20(20) | 0–37(25–28) | 5–25(15) | 5–20(10) |
pH range(optimal) | 5.5–7.5(6.5) | 6.5–7.5(6.5) | 6.0–7.5(6.5) | 5.5–8.5(6.5) |
NaCl range (optimal) (%) | 1–3(1) | 1–6(2–3) | 2.0–4.0(3.0) | 2.0–4.0(3.0) |
Electron donors | H2, S0, S2O32− | H2, S0 * | H2 | H2 * |
Heterotrophic growth | – | – * | – | – * |
Organic electron donors | – | –* | – | – * |
Electron acceptors | NO3−,O2 | NO3−, O2* | NO3−, S0 | NO3− * |
Vitamin dependent | – | – * | – | – * |
G + C content (%) | 33.1 | 32.1 | 37.8 | 37.6 |
Vitamin | ng/g DCW | Vitamin | ng/g DCW |
---|---|---|---|
Water-Soluble | Fat-Soluble | ||
Riboflavin | 3546.1 ± 2004.1 | Retinol | 21,750.7 ± 2257.7 |
Pyridoxine | 2275.7 ± 1301.2 | 25-Hydroxyvitamin D3 | 117.4 ± 19.4 |
Nicotinamide | 1708.2 ± 232.7 | 25-Hydroxyvitamin D2 | 22.3 ± 2.3 |
Thiamine | 601.8 ± 214.1 | ||
Pantothenic acid | 217.6 ± 20.8 | ||
Pyridoxal 5′-phosphate | 73.2 ± 37.0 | ||
Nicotinic acid | 55.6 ± 36.8 | ||
Folic acid | 44.7 ± 12.7 | ||
Pyridoxal | 37.6 ± 24.7 | ||
Cyanocobalamin | 5.7 ± 0.5 | ||
Biotin | 1.7 ± 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Sun, Q.; Xu, K.; Zhuo, J.; Sun, Y.; Qian, G.; Zhang, X.; Sun, L. Deep-Sea Cold Seep Campylobacterota: Diversity, Growth, Metabolic Characteristics, and Nutrient Production. Microorganisms 2025, 13, 1028. https://doi.org/10.3390/microorganisms13051028
Yan X, Sun Q, Xu K, Zhuo J, Sun Y, Qian G, Zhang X, Sun L. Deep-Sea Cold Seep Campylobacterota: Diversity, Growth, Metabolic Characteristics, and Nutrient Production. Microorganisms. 2025; 13(5):1028. https://doi.org/10.3390/microorganisms13051028
Chicago/Turabian StyleYan, Xiaoman, Qinglei Sun, Ke Xu, Jintao Zhuo, Yuanyuan Sun, Guowei Qian, Xin Zhang, and Li Sun. 2025. "Deep-Sea Cold Seep Campylobacterota: Diversity, Growth, Metabolic Characteristics, and Nutrient Production" Microorganisms 13, no. 5: 1028. https://doi.org/10.3390/microorganisms13051028
APA StyleYan, X., Sun, Q., Xu, K., Zhuo, J., Sun, Y., Qian, G., Zhang, X., & Sun, L. (2025). Deep-Sea Cold Seep Campylobacterota: Diversity, Growth, Metabolic Characteristics, and Nutrient Production. Microorganisms, 13(5), 1028. https://doi.org/10.3390/microorganisms13051028