Fungistatic and Bactericidal Activity of Hydroalcoholic Extracts of Root of Jatropha dioica Sessé
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Material and Preparation of the Extract
2.2. Inoculum Preparation
2.3. Preparation of Stock Solution and Fungistatic Activity
2.4. Bactericidal Activity
2.5. Total Phenol Analysis
2.6. Preparation of Gallic Acid Standard and Analysis of Flavonoids
3. Results
3.1. Total Content of Phenols and Flavonoids
3.2. Fungistatic Activity
3.3. Bactericidal Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Díaz Padilla, G.; Sánchez Cohen, I.; Guajardo Panes, R.A.; Ángel Pérez, A.L.; Ruíz Corral, A.; Medina García, G.; Ibarra Castillo, D. Mapeo del índice de aridez y su distribución poblacional en México. Rev. Chapingo Cienc. For. Y Del Ambiente 2011, 17, 267–275. [Google Scholar] [CrossRef]
- Guzzon, F.; Arandia Rios, L.W.; Caviedes Cepeda, G.M.; Céspedes Polo, M.; Chavez Cabrera, A.; Muriel Figueroa, J.; Medina Hoyos, A.E.; Jara Calvo, T.W.; Molnar, T.; Narro León, L.A.; et al. Conservation and use of latin american maize diversity: Pillar of nutrition security and cultural heritage of humanity. Agronomy 2021, 11, 172. [Google Scholar] [CrossRef]
- Villavicencio Gutiérrez, E.E.; Cano Pineda, A.; Castillo Quiroz, D.; Hernández Ramos, A.; Martínez Burciaga, O.U. Sustainable forest management of non-wood resources in the semidesert of northern Mexico. Rev. Mex. De Cienc. For. 2021, 12, 31–63. [Google Scholar]
- Comisión Nacional Forestal. Catálogo de Recursos Forestales Maderables y no Maderables. Available online: https://www.conafor.gob.mx/biblioteca/Catalogo_de_recursos_forestales_M_y_N.pdf (accessed on 3 March 2024).
- Dávila Rangel, I.E.; Charles Rodríguez, A.V.; López Romero, J.C.; Flores López, M.L. Plants from Arid and Semi-Arid Zones of Mexico Used to Treat Respiratory Diseases: A Review. Plants 2024, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Llauradó Maury, G.; Méndez Rodríguez, D.; Hendrix, S.; Escalona Arranz, J.C.; Fung Boix, Y.; Ochoa Pacheco, A.; García Díaz, J.; Morris Quevedo, H.J.; Ferrer Dubois, A.; Isaac Aleman, I.; et al. Antioxidants in plants: A valorization potential emphasizing the need for the conservation of plant biodiversity in Cuba. Antioxidants 2020, 9, 1048. [Google Scholar] [CrossRef] [PubMed]
- Martinez Calderas, J.M.; Palacio Núñez, J.; Sanchez Rojas, G.; Martinez Montoya, J.F.; Olmos Oropeza, G.; Clemente Sanchez, F. Distribución y abundancia de Jatropha dioica en el centro-norte de México. Agrociencia 2019, 53, 433–446. [Google Scholar]
- Ramírez Moreno, A.; García Garza, R.; Pedroza Escobar, D.; Soto Domínguez, A.; Flores Loyola, E.; Castillo Maldonado, I.; Keita, H.; Núñez, I.; Delgadillo Guzmán, D. Antioxidant effect of Jatropha dioica extract on immunoreactivity of claudin 2 in the kidney of rats with induced diabetes. Nat. Prod. Commun. 2023, 18, 3. [Google Scholar] [CrossRef]
- Araujo Espino, D.I.; Zamora Perez, A.L.; Zúñiga González, G.M.; Gutiérrez Hernández, R.; Morales Velazquez, G.; Lazald Ramos, B.P. Genotoxic and cytotoxic evaluation of Jatropha dioica Sessé ex Cerv. by the micronucleus test in mouse peripheral blood. Regul. Toxicol. Pharmacol. 2020, 86, 260–264. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar]
- Jabłońska Trypuć, A.; Wydro, U.; Wołejko, E.; Makuła, M.; Krętowski, R.; Naumowicz, M.; Sokołowska, G.; Serra Majem, L.; Cechowska Pasko, M.; Łozowicka, B.; et al. Selected Fungicides as Potential EDC Estrogenic Micropollutants in the Environment. Molecules 2023, 28, 7437. [Google Scholar] [CrossRef]
- Herrera González, J.A.; Bautista Baños, S.; Salazar García, S.; Gutiérrez Martínez, P. Manejo Postcosecha aguacate Situación actual del manejo poscosecha y de enfermedades fungosas del aguacate ‘Hass’ para exportación. Rev. Mex. De Cienc. Agrícolas 2020, 11, 1647–1660. [Google Scholar]
- Castillo Henríquez, L.; Alfaro Aguilar, K.; Ugalde Álvarez, J.; Vega Fernández, L.; Montes de Oca Vásquez, G.; Vega Baudrit, J.R. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the Agricultural area. Nanomaterials 2020, 10, 1763. [Google Scholar] [CrossRef] [PubMed]
- López Sánchez, A.; Luque Badillo, A.C.; Orozco Nunnelly, D.; Alencastro Larios, N.S.; Ruiz Gómez, J.A.; García Cayuela, T.; Gradilla Hernández, M.S. Food loss in the agricultural sector of a developing country: Transitioning to a more sustainable approach. The case of Jalisco, Mexico. Environ. Chall. 2021, 5, 100327. [Google Scholar] [CrossRef]
- Organización de las Naciones Unidas para la Alimentación y la Agricultura. Available online: https://www.fao.org/home/es (accessed on 3 August 2024).
- Chandrasekaran, I.; Geetha, P. Postharvest technology and value addition of tomatoes. Food Sci. Res. J. 2020, 11, 217–229. [Google Scholar]
- Savary, S.; Ficke, A.; Aubertot, J.N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 2012, 4, 519–537. [Google Scholar] [CrossRef]
- Różewicz, M.; Wyzińska, M.; Grabiński, J. The most important fungal diseases of cereals, problems and possible solutions. Agronomy 2021, 11, 4. [Google Scholar] [CrossRef]
- Poletto, T.; Brião Muniz, M.F.; Spolaor Fantinel, V.; Harakava, R.; Mengue Rolim, J. Characterization and pathogenicity of Fusarium oxysporum associated with Carya illinoinensis seedlings. Floresta E Ambiente 2020, 27, 2. [Google Scholar] [CrossRef]
- Velarde Félix, S.; Garzón Tiznado, J.A.; Hernández Verdugo, S.; López Orona, C.A.; Retes Manjarrez, J.E. Occurrence of Fusarium oxysporum causing wilt on pepper in Mexico. Can. J. Plant Pathol. 2018, 40, 238–247. [Google Scholar] [CrossRef]
- Nelson, P.E.; Toussoun, T.A.; Marasas, W.F.O. Fusarium Species: An Illustrated Manual for Identification, 1st ed.; Pennsylvania State University Press: University Park, PA, USA, 1983; Available online: https://books.google.com.mx/books/about/Fusarium_species.html?id=qJIMAQAAMAAJ&redir_esc=y (accessed on 12 December 2024).
- Ahmed, F.; Sipes, B.; Alvarez, A. Postharvest diseases of tomato and natural products for disease management. Afr. J. Agric. 2017, 12, 684–691. [Google Scholar]
- Romanazzi, G.; Feliziani, E. Botrytis cinerea (Gray Mold). In Postharvest Decay; Bautista Baños, S., Ed.; Elsevier: Yautepec Morelos, México, 2014; pp. 131–146. [Google Scholar]
- Hua, L.; Yong, C.; Zhanquan, Z.; Boqiang, L.; Guozheng, Q.; Shiping, T. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Qual. Saf. 2018, 2, 111–119. [Google Scholar] [CrossRef]
- Preston, G.M. Pseudomonas syringae pv. tomato: The right pathogen, of the right plant, at the right time. Mol. Plant Pathol. 2001, 1, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, J.R.; Messéan, A.; Morris, C.E. Insights into epidemiology and control of diseases of annual plants caused by the Pseudomonas syringae species complex. J. Gen. Plant Pathol. 2015, 81, 331–350. [Google Scholar] [CrossRef]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Manoharachary, C. Future Challenges in Crop Protection Against Fungal Pathogens; Springer: New York, NY, USA, 2008. [Google Scholar]
- Jasso, D.; Salas Méndez, E.; Rodríguez García, R.; Hernández Castillo, F.D.; Díaz Jiménez, M.L.V.; Sáenz Galindo, A.; González Morales, S.; Flores López, M.L.; Villarreal Quintanilla, J.A.; Peña Ramos, F.M.; et al. Antifungal activity in vitro of ethanol and aqueous extracts of leaves and branches of Flourensia spp. Against postharvest fungi. Ind. Crops Prod. 2017, 107, 499–508. [Google Scholar] [CrossRef]
- Villa, P.; Alfonso, I.; Rivero, M.J.; González, G. Evaluación de cepas de Bacillus subtilis bioantagonistas de hongos fitopatógenos del género Fusarium. ICIDCA Sobre Los Deriv. De La Caña De Azúcar 2007, XLI, 52–56. [Google Scholar]
- Comisión Nacional del Agua. Precipitación y Temperatura Actual Diaria. Available online: https://www.gob.mx/conagua (accessed on 24 March 2023).
- Al Sa’ady, A.T. Antibacterial screening for five local medicinal plants against nosocomial pathogens: Klebsiella pneumoniae and Staphylococcus epidermidis. Eur Asian J. Biosci. 2020, 14, 553–559. [Google Scholar]
- Silva Belmares, Y.; Rivas Morales, C.; Viveros Valdez, E.; De la Cruz Galicia, M.; Carranza Rosales, P. Antimicrobial and citotoxic activities from Jatropha dioica roots. Pak. J. Biol. Sci. 2014, 17, 748–750. [Google Scholar] [CrossRef]
- Phuyal, N.; Kumar, P.; Raturi, P.P.; Rajbhandary, S. Total Phenolic, Flavonoid Contents, and Antioxidant Activities of Fruit, Seed, and Bark Extracts of Zanthoxylum armatum DC. Sci. World J. 2020, 2020, 8780704. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Ramírez Moreno, E.; Morales, P.; Cortes Sanchez, M.; Carvalho, A.M.; Ferreira, I. Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (Opuntia joconostle F.A.C. Weber ex Diguet and Opuntia matudae Scheinvar) of high consumption in México. Food Res. Int. 2012, 46, 279–285. [Google Scholar]
- El-Nagar, A.; Elzaawely, A.A.; Taha, N.A.; Nehela, Y. The antifungal activity of gallic acid and its derivatives against Alternaria solani, the causal agent of tomato early blight. Agronomy 2020, 10, 1402. [Google Scholar] [CrossRef]
- Przybylska, A.; Szablewski, T.; Cegielska, R.; Góral, T.; Kurasiak, D.; Stuper, K. Assessment of antimicrobial properties of phenolic acid extracts from grain infected with fungi from the genus Fusarium. Molecules 2020, 27, 1741. [Google Scholar] [CrossRef] [PubMed]
- Pungin, A.; Lartseva, L.; Loskutnikova, V.; Shakhov, V.; Krol, O.; Popova, E.; Kolomiets, A.; Nikolaeva, N.; Volodina, A. The content of certain groups of phenolic compounds and the biological activity of extracts of various halophyte parts of Spergularia marina (L. ) Griseb. and Glaux maritima L. at different levels of soil salinization. Plants 2022, 11, 1738. [Google Scholar] [PubMed]
- Appell, M.; Tu, Y.S.; Compton, D.L.; Evans, K.O.; Wang, L.C. Quantitative structure-activity relationship study for prediction of antifungal properties of phenolic compounds. Struct. Chem. 2020, 31, 1621–1630. [Google Scholar] [CrossRef]
- Costa, J.H.; Fernandes, L.S.; Akiyama, D.Y.; Fill, T.P. Exploring the interaction between citrus flavonoids and phytopathogenic fungi through enzymatic activities. Bioorganic Chem. 2020, 102, 104126. [Google Scholar] [CrossRef]
- Gutiérrez Tlahque, J.; Aguirre Mancilla, C.L.; López Palestina, C.; Sánchez Fernández, R.E.; Hernández Fuentes, A.D.; Torres Valencia, J.M. Constituents, antioxidant and antifungal properties of Jatropha dioica var. dioica. Nat. Prod. Commun. 2019, 14, 5. [Google Scholar] [CrossRef]
- Terrazas Hernández, J.A. Efecto de la esterilización sobre compuestos bioactivos de los extractos del fruto xoconostle ulapa (opuntia oligacantha) y de la planta sangre de drago (jatropha dioica sessé ex cerv.) con posible aplicación antimicrobiana en productos bucales. Doctoral Thesis, Autonomous University of the State of Hidalgo, Pachuca, Hidalgo, 2019. [Google Scholar]
- Wan Najiyah, H.W.N.; Narul Najiha, A.I.; Woon Kuo, H.; Azliana Abu, B.S.; Noor Soffalina, S.S.; Wan Aida, W.M.; Hafeedza Abdul, R. Effects of different drying methods and solvents on biological activities of Curcuma aeruginosa leaves extract. Sains Malays. 2021, 50, 2207–2218. [Google Scholar]
- Martínez Las Heras, R.; Heredia, A.; Castelló, M.L.; Andrés, A. Influence of drying method and extraction variables on the antioxidant properties of persimmon leaves. Food Biosci. 2014, 6, 1–8. [Google Scholar] [CrossRef]
- Ramírez Moreno, A.; Serrano Gallardo, L.B.; Barragán Ledezma, L.E.; Quintanar Escorza, M.A.; Arellano Pérez, D.; Delgadillo Guzmán, D. Determinación de los compuestos polifenólicos en extractos de Jatropha dioica y su capacidad antioxidante. Rev. Mex. De Cienc. Farm. 2016, 47, 42–48. [Google Scholar]
- González Machado, A.C.; Torres León, C.; Castillo Maldonado, I.; Delgadillo Guzmán, D.; Hernández Morales, C.; Flores Loyola, E.; Marszalek, J.E.; Balagurusamy, N.; Vega Menchaca, M.; Ascacio Valdés, J.A.; et al. Content of polyphenolic compounds, flavonoids, antioxidant activity and antibacterial activity of Jatropha dioica hydroalcoholic extracts against Streptococcus mutans. Int. J. Food Sci. Technol. 2023, 58, 12. [Google Scholar] [CrossRef]
- Wong Paz, J.E.; Contreras Esquivel, J.C.; Muñiz Márquez, D.; Belmares, R. Microwave assisted extraction of phenolic antioxidants from semiarid plants. Am. J. Agric. Biol. Sci. 2014, 9, 299–310. [Google Scholar] [CrossRef]
- Aranda Ledesma, N.E.; Aguilar Zárate, P.; Bautista Hernández, I.; Rojas, R.; Robledo Jiménez, C.L.; Martínez Ávila, G.C.G. The optimization of ultrasound assisted extraction for bioactive compounds from Flourensia cernua and Jatropha dioica and the evaluation of their functional properties. Horticulturae 2024, 10, 7. [Google Scholar] [CrossRef]
- Chibuye, B.; Singh, S.I.; Chimuka, L.; Maseka, K.K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci. Afr. 2023, 19, e01585. [Google Scholar]
- Osorio Tobón, J.F. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. J. Food Sci. Technol. 2020, 57, 12. [Google Scholar] [CrossRef] [PubMed]
- Chetoui, I.; Messaoud, C.; Boussaid, M.; Zaouali, Y. Antioxidant activity, total phenolic and flavonoid content variation among Tunisian natural populations of Rhus tripartita (Ucria) Grande and Rhus pentaphylla Desf. Ind. Crops Prod. 2013, 51, 171–177. [Google Scholar]
- Pandey, G.; Khatoon, S.; Pandey, M.M.; Rawat, A.K.S. Altitudinal variation of berberine, total phenolics and flavonoid content in Thalictrum foliolosum and their correlation with antimicrobial and antioxidant activities. J. Ayurveda Integr. Med. 2018, 9, 3. [Google Scholar] [CrossRef]
- Rieger, G.; Müller, M.; Guttenberger, H.; Bucar, F. Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus. J. Agric. Food Chem. 2008, 56, 19. [Google Scholar] [CrossRef]
- Papoti, V.T.; Xystouris, S.; Papagianni, G.; Tsimidou, M.Z. Total flavonoid content assesment via aluminum complexation reactions. What we really measure? Ital. J. Food Sci. 2011, 23, 252–258. [Google Scholar]
- Subedi, L.; Timalsena, S.; Duwadi, P.; Thapa, R.; Paudel, A.; Parajuli, K. Antioxidant activity and phenol and flavonoid contents of eight medicinal plants from Western Nepal. J. Tradit. Chin. Med. 2014, 34, 584–590. [Google Scholar] [CrossRef]
- Tarun Kumar, P.; Kamlesh, S.; Ramsingh, K.; Seema, U.; Rajendra, J.; Ravishankar, C. Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spectroscopy. Mol. Biomol. Spectrosc. 2020, 242, 10. [Google Scholar]
- Nguyen, N.Q.; Nguyen, M.T.; Nguyen, V.T.; Le, V.M.; Trieu, L.H.; Le, X.T.; Khang, T.V.; Giang, N.T.L.; Thach, N.Q.; Hung, T.T. The effects of different extraction conditions on the polyphenol, flavonoids components and antioxidant activity of Polyscias fruticosa roots. Conf. Ser. : Mater. Sci. Eng. 2020, 736, 022067. [Google Scholar] [CrossRef]
- Amjad, M.S.; Talaat, A.A.; Mizanur, R.; Yousef, H. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. Food Sci. Technol. 2021, 150, 11. [Google Scholar]
- Raposo, F.; Borja, R.; Gutiérrez González, J.A. A comprehensive and critical review of the unstandardized Folin-Ciocalteu assay to determine the total content of polyphenols: The conundrum of the experimental factors and method validation. Talanta 2024, 272, 125771. [Google Scholar] [CrossRef] [PubMed]
- Tereschuk, M.L.; Quarenghi, M.; González, M.; Baigorí, M.D. Antimicrobial activity of isolated flavonoids from argentine Tagetes. Boletín Latinoam. Y Del Caribe De Plantas Med. Y Aromáticas 2007, 6, 6. [Google Scholar]
- Dahua Gualinga, R.D.; Rivera Barreto, J.L.; Rodríguez Almeida, N.N.; Sancho Aguilera, D. Actividad antimicrobiana, antifúngica y tamizaje fitoquímico de Simira cordifolia. Código Científico Rev. De Investig. 2024, 5, 1. [Google Scholar] [CrossRef]
- Wu, Z.; Bi, Y.; Zhang, J.; Gao, T.; Li, X.; Hao, J.; Li, G.; Liu, P.; Liu, X. Multidrug resistance of Botrytis cinerea associated with its adaptation to plant secondary metabolites. Plant Microbiol. 2024, 15, e02237-23. [Google Scholar] [CrossRef]
- Shao, W.; Zhao, Y.; Ma, Z. Advances in understanding fungicide resistance in Botrytis cinerea in China. Phytopathology 2021, 111, 455–463. [Google Scholar] [CrossRef]
- Weber, R.W.S.; Petridis, A. Fungicide resistance in Botrytis spp. and regional strategies for its management in Northern European strawberry production. BioTech 2023, 12, 64. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Li, J.; Liu, C.; Mo, Q.; Liu, P.; Tang, W.; Gong, H.; Qi, B.; Liu, P.; et al. In vitro evaluation of Actinidia chinensis cultivars for their resistance to Pseudomonas syringae pv. Actinidiae. Sci. Hortic. 2023, 313, 111896. [Google Scholar] [CrossRef]
- Amini, M.M.; Mirzaei, S.; Heidari, A. A growing threat: Investigating the high incidence of benzimidazole fungicides resistance in Iranian Botrytis cinerea isolates. PLoS ONE 2023, 18, e0294530. [Google Scholar]
- Avenot, H.F.; Morgan, D.P.; Quattrini, J.; Michailides, T.J. Phenotypic and molecular characterization of fenhexamid resistance in Botrytis cinerea isolates collected from pistachio orchards and grape vineyards in California. Crop Prot. 2020, 133, 105133. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, W.; Xue, M.; Liu, Z.; Zhang, Q.; Hou, J.; Xing, M.; Wang, R.; Liu, T. The combination of a biocontrol agent Trichoderma asperellum SC012 and Hymexazol reduces the effective fungicide dose to control Fusarium wilt in cowpea. J. Fungi 2021, 7, 685. [Google Scholar] [CrossRef] [PubMed]
- Malandrakis, A.A.; Krasagakis, N.; Kavroulakis, N.; Ilias, A.; Tsagkarakou, A.; Vontas, J.; Markakis, E. Fungicide resistance frequencies of Botrytis cinerea greenhouse isolates and molecular detection of a novel SDHI resistance mutation. Pestic. Biochem. Physiol. 2022, 183, 105058. [Google Scholar] [CrossRef]
- Siti Fairuz, Y.; Farah Farhanah, H.; Mahmud Tengku, M.; Norhayu, A.; Siti Zaharah, S.; Faizab Abu, K.; Siti Izera, I. Antifungal Activity and phytochemical screening of Vernonia amygdalina extract against Botrytis cinerea causing gray mold disease on tomato fruits. Biology 2020, 9, 286. [Google Scholar] [CrossRef]
- Nechita, A.; Filimon, R.; Filimon, R.; Colibaba, L.; Gherghel, D.; Damian, D.; Pașa, R.; Cotea, V. In vitro Antifungal Activity of a new bioproduct obtained from grape seed proanthocyanidins on Botrytis cinerea mycelium and spores. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 418–425. [Google Scholar] [CrossRef]
- Dėnė, L.; Valiuškaitė, A. Sensitivity of Botrytis cinerea isolates complex to plant extracts. Molecules 2021, 26, 4595. [Google Scholar] [CrossRef]
- Dellavalle, P.D.; Cabrera, A.; Alem, D.; Larrañaga, P.; Ferreira, F.; Dalla Riza, M. Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria spp. Chil. J. Agric. Res. 2011, 71, 231–239. [Google Scholar] [CrossRef]
- Cotoras, M.; Mendoza, L.; Muñoz, A.; Yáñez, K.; Castro, P.; Aguirre, M. Fungitoxicity against Botrytis cinerea of a flavonoid isolated from Pseudognaphalium robustum. Molecules 2011, 16, 5. [Google Scholar] [CrossRef]
- Gordillo Salinas, L.S. Actividad Antifúngica de Sechium Compositum contra Botrytis Cinerea y Colletotrichum Gloeosporioides en Condiciones In Vitro. Master’s Thesis, Colegio de Postgraduados, Texcoco de Mora, Mexico, 2019. Available online: http://colposdigital.colpos.mx:8080/jspui/bitstream/handle/10521/3527/Gordillo_Salinas_LS_MC_RGP_Fruticultura_2019.pdf?sequence=1∓isAllowed=y (accessed on 12 December 2024).
- Domínguez Ruvalcaba, J.E.; Calderón Santoyo, M.; González Gutiérrez, K.N.; Ragazzo Sanchez, J.A. Extracto polifenólico de hojas de mango (Mangifera indica L.): Microencapsulación, caracterización fisicoquímica y actividad antifúngica in vivo. Biotecnia 2024, 26, e2439. [Google Scholar] [CrossRef]
- Topolovec Pintaric, S. Plant Diseases: Current Threats and Management Trends; Intech Open: Zagreb, Croacia, 2020. [Google Scholar]
- Ashwani, K.; Nirmal, P.; Mukul, K.; Anina, J.; Vidisha, T.; Emel, O.; Charalampos, P.; Maomao, Z.; Tahra, E.; Sneha, K.; et al. Major phytochemicals: Recent advances in health benefits and extraction method. Molecules 2023, 28, 2. [Google Scholar] [CrossRef]
- Rongai, D.; Pulcini, P.; Pesce, B.; Milano, F. Antifungal activity of some botanical extracts on Fusarium oxysporum. Open Life Sci. 2015, 10, 409–416. [Google Scholar] [CrossRef]
- Frérot, B.; Leppik, E.; Groot, A.T.; Unbehend, M.; Holopainen, J.K. Chemical signatures in plant insect interactions. In Advances in Botanical Research; Sauvion, N., Thiéry, D., Eds.; Calatayud; Academic Press: Italia, Francia, 2017; Volume 81, pp. 139–177. [Google Scholar]
- Pandey, A.K.; Hubballi, M.; Sharma, H.K.; Ramesh, R.; Roy, S.; Dinesh, K.; Babu, A. Molecular delineation and genetic diversity of Fusarium species complex causing tea dieback in India and their sensitivity to fungicides. Crop Prot. 2024, 181, 106707. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, W.; Wang, J.; Chen, W.; Sang, C.; Chen, C. Resistance risk assessment of Fusarium oxysporum f. Sp. Melonis against phenamacril, a myosin inhibitor. Pestic. Biochem. Physiol. 2018, 147, 127–132. [Google Scholar] [CrossRef]
- Ghaffar, N.; Perveen, A. Solvent polarity effects on extraction yield, phenolic content, and antioxidant properties of Malvaceae family seeds: A comparative study. New Zealand J. Bot. 2024, 1–11. [Google Scholar] [CrossRef]
- Tucuch Pérez, M.A.; Arredondo Valdés, R.; Hernández Castillo, F.D. Antifungal activity of phytochemical compounds of extracts from Mexican semi desert plants against Fusarium oxysporum from tomato by microdilution in plate method. Nova Sci. 2020, 12, 25. [Google Scholar] [CrossRef]
- Jiménez Ortega, L.A.; Valdez Baro, O.; Heredia Bátiz, J.M.; García Estrada, R.S.; Basilio, H.J. Control de fitopatógenos con extractos de biomasa de chile y de maíz. TIP Rev. Espec. En Cienc. Químico Biológicas 2023, 26, 1. [Google Scholar] [CrossRef]
- Al Rahmah, A.N.; Mostafa, A.A.; Abdel Megeed, A.; Yakout, S.M.; Husssein, S.A. Fungicidal activities of certain methanolic plant extracts against tomato phytopathogenic fungi. Afr. J. Microbiol. Res. 2013, 7, 517–524. [Google Scholar]
- Arcusa, R.; Villaño, D.; Marhuenda, J.; Cano, M.; Cerdà, B.; Zafrilla, P. Potential role of ginger (Zingiber officinale Roscoe) in the prevention of neurodegenerative diseases. Front. Nutr. 2022, 9, 809621. [Google Scholar] [CrossRef]
- Saleem, A.; Afzal, M.; Naveed, M.; Makhdoom, S.I.; Mazhar, M.; Aziz, T.; Khan, A.A.; Kamal, Z.; Shahzad, M.; Alharbi, M.; et al. HPLC, FTIR and GC-MS analyses of Thymus vulgaris phytochemicals executing in vitro and in vivo biological activities and effects on COX-1, COX-2 and gastric cancer genes computationally. Molecules 2022, 27, 23. [Google Scholar] [CrossRef]
- Sanches Silva, A.; Tewari, D.; Sureda, A.; Suntar, I.; Belwal, T.; Battino, M.; Nabavi, S.M.; Nabavi, S.F. The evidence of health benefits and food applications of Thymus vulgaris L. Trends Food Sci. Technol. 2021, 117, 218–227. [Google Scholar] [CrossRef]
- Villota Burbano, J.E.; Vazquez Ochoa, O.Y. Evaluación in vitro del extracto etanólico de hojas de borraja (Borago officinalis) contra la actividad fungistática. Agron. Costarric. 2021, 45, 9–27. [Google Scholar] [CrossRef]
- Anokwuru, C.P.; Anyasor, G.N.; Ajibaye, O.; Fakoya, O.; Okebugwu, P. Effect of extraction solvents on phenolic, flavonoid and antioxidant activities of three Nigerian medicinal plants. Nat. Sci. 2011, 9, 53–61. [Google Scholar]
- Bennett, R.N.; Wallsgrove, R.M. Secondary metabolites in plant defense mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef]
- Guerra Ramírez, P.; Guerra Ramírez, D.; Zavaleta Mejía, E.; Aranda Ocampo, S.; Nava Díaz, C.; Rojas Martínez, R.I. Extracts of Stevia rebaudiana against Fusarium oxysporum associated with tomato cultivation. Sci. Hortic. 2020, 259, 108683. [Google Scholar] [CrossRef]
- Kahkashan, A.; Samir, K.B.; Mohd, R. Biochemical evidences of defence response in tomato against Fusarium wilt induced by plant extracts. Plant Pathol. J. 2012, 11, 2. [Google Scholar]
- Mani López, E.; Cortés Zavaleta, O.; López Malo, A. A review of the methods used to determine the target site or the mechanism of action of essential oils and their components against fungi. SN Appl. Sci. 2021, 3, 44. [Google Scholar] [CrossRef]
- Rasheed, H.A.; Rehman, A.; Karim, A.; Al Asmari, F.; Cui, H.; Lin, L. A comprehensive insight into plant derived extracts bioactives: Exploring their antimicrobial mechanisms and potential for high-performance food applications. Food Biosci. 2024, 59, 104035. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Rahman, A.; Dung, N.T.; Huh, M.K.; Kang, S.C. In vitro inhibition of food spoilage and foodborne pathogenic bacteria by essential oil and leaf extracts of Magnolia liliflora Desr. J. Food Sci. 2008, 73, 6. [Google Scholar] [CrossRef]
- Saeed, H.; Rabin, G.; Salam, I. Microbial Pathogens Strategies for Combating Them: Science, Technology and Education. In Antimicrobial Natural Products; MDPI: Basel, Switzerland, 2013; pp. 910–921. Available online: https://www.researchgate.net/publication/268035740_Antimicrobial_Natural_Products (accessed on 12 December 2024).
- Verhaegen, M.; Bergot, T.; Liebana, E.; Stancanelli, G.; Streissl, F.; Mingeot Leclercq, M.P.; Mahillon, J.; Bragard, C. On the use of antibiotics to control plant pathogenic bacteria: A genetic and genomic perspective. Front. Microbiol. 2023, 14, 1221478. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, G.H.; Song, Y.R.; Oh, C.S.; Koh, Y.J.; Jung, J.S. Streptomycin resistant isolates of Pseudomonas syringae pv. actinidiae in Korea. Res. Plant Dis. 2020, 26, 44–47. [Google Scholar] [CrossRef]
- Husseini, A.; Akköprü, A. The possible mechanisms of copper resistance in the pathogen Pseudomonas syringae pathovars in stone fruit trees. Phytoparasitica 2020, 48, 705–718. [Google Scholar] [CrossRef]
- Castro Ríos, R.; Melchor Martínez, E.M.; Solís Cruz, G.Y.; Rivas Galindo, V.M.; Silva Mares, D.A.; Cavazos Rocha, N.C. HPLC method validation for Jatropha dioica extracts analysis. J. Chromatogr. Sci. 2020, 58, 445–453. [Google Scholar] [CrossRef]
- Lozano Gamboa, M.S. Terpenos Derivados de Jatropha Dioica Modulan la Multiresistencia a Fármacos en Línea Celulares de Carcinoma Mamario Humano Tesis de Maestría, Instituto Potosino de Investigación Científica y Tecnológica, A.C. 2020. Available online: https://repositorio.ipicyt.edu.mx/handle/11627/5488 (accessed on 12 December 2024).
- Rodríguez Garza, N.E.; Gomez Flores, R.; Quintanilla Licea, R.; Elizondo Luévano, J.H.; Romo Sáenz, C.I.; Marín, M.; Sánchez Montejo, J.; Muro, A.; Peláez, R.; López Abán, J. In vitro anthelmintic effect of Mexican plant extracts and partitions against Trichinella spiralis and Strongyloides venezuelensis. Plants 2024, 13, 3484. [Google Scholar] [CrossRef]
- Martínez, N.; Almaguer, G.; Vázquez Alvarado, P.; Figueroa, A.; Zúñiga, C.; Hernández Ceruelos, A. Análisis fitoquímico de Jatropha dioica y determinación de su efecto antioxidante y quimioprotector sobre el potencial genotóxico de ciclofosfamida, daunorrubicina y metilmetanosulfonato evaluado mediante el ensayo cometa. Boletín Latinoam. Y Del Caribe De Plantas Med. Y Aromáticas 2014, 13, 437–457. [Google Scholar]
- Fernández Villascan, C.; Patiño Herrera, R.; Patino, I.; Sánchez Vargas, L.; Salado Leza, D.; Pérez, E. Invasive Candidiasis: A promising approach using Jatropha dioica extracts and nanotechnology. Chem. Biodivers. 2025, 22, e202402339. [Google Scholar] [CrossRef]
- Pérez Pérez, J.U.; Guerra Ramírez, D.; Reyes Trejo, B.; Cuevas Sánchez, J.A.; Guerra Ramírez, P. Actividad antimicrobiana in vitro de extractos de Jatropha dioica Seseé contra bacterias fitopatógenas de tomate. Polibotánica 2020, 49, 125–133. [Google Scholar] [CrossRef]
- Feizi, H.; Tahan, V.; Kariman, K. In vitro antibacterial activity of essential oils from Carum copticum and Ziziphora clinopodioides plants against the phytopathogen Pseudomonas syringae pv. Syringae. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2022, 157, 487–492. [Google Scholar]
- Mougou, I.; Boughalleb, N. Biocontrol of Pseudomonas syringae pv. Syringae affecting citrus orchards in Tunisia by using indigenous Bacillus spp. and garlic extract. Egypt. J. Biol. Pest Control 2018, 28, 60. [Google Scholar] [CrossRef]
- Lidiková, J.; Čeryová, N.; Tomáš, T.; Musilová, J.; Vollmannová, A.; Kushvara, M. Garlic (Allium sativum L.): Characterization of bioactive compounds and related health benefits. In Herbs and Spices; Ivanišová, E., Ed.; intechOpen: London, UK, 2022; p. 280. [Google Scholar] [CrossRef]
- Lu, M.; Pan, J.; Hu, Y.; Ding, L.; Li, Y.; Cui, X.; Zhang, M.; Zhang, Z.; Li, C. Advances in the study of vascular related protective effect of garlic (Allium sativum) extract and compounds. J. Nutr. Biochem. 2024, 124, 109531. [Google Scholar] [CrossRef]
- Álvarez Martínez, F.J.; Barrajón Catalán, E.; Herranz López, M.; Micol, V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine Int. J. Phytother. Phytopharm. 2021, 90, 153626. [Google Scholar] [CrossRef]
- Dotulong, V.; Wonggo, D.; Montolalau, L. Phytochemical content, total phenols, and antioxidant activity of mangrove sonneratia albaYoung leaf through different extraction methods and solvents. Int. J. ChemTech Res. 2018, 11, 11. [Google Scholar] [CrossRef]
- Nahar, L.; Hesham, S.; Khalifa, S.A.M.; Mohammadhosseini, M.; Sarker, S.D. Ruta essential oils: Composition and bioactivities. Molecules 2021, 26, 16. [Google Scholar] [CrossRef] [PubMed]
Concentration (µg mL−1) | Extract (mL) | H2O Distilled (mL) |
---|---|---|
500 | 5.8 | 44.2 |
1000 | 11.5 | 38.5 |
1500 | 17.3 | 32.7 |
2000 | 23.1 | 26.9 |
4000 | 46.2 | 3.8 |
Concentration (µg mL−1) | Extracts (µL) | H2O Distilled (µL) |
---|---|---|
1000 | 20 | 980 |
2500 | 50 | 950 |
5000 | 100 | 900 |
7500 | 150 | 850 |
10,000 | 200 | 800 |
20,000 | 400 | 600 |
Solvent | Total Phenol Content (TPC) mg EAG/g | Flavonoid Content (TFC) mg QE/g |
Ethanol | 8.92 ± 0.25 | 20.49 ± 0.33 |
Methanol | 12.10 ± 0.34 | 28.21 ± 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Galaviz, L.; Cadena-Iñiguez, J.; García-Flores, D.A.; Loera-Alvarado, G.; Rivera-Escareño, D.; Ortega-Amaro, M.A. Fungistatic and Bactericidal Activity of Hydroalcoholic Extracts of Root of Jatropha dioica Sessé. Microorganisms 2025, 13, 1027. https://doi.org/10.3390/microorganisms13051027
Aguilar-Galaviz L, Cadena-Iñiguez J, García-Flores DA, Loera-Alvarado G, Rivera-Escareño D, Ortega-Amaro MA. Fungistatic and Bactericidal Activity of Hydroalcoholic Extracts of Root of Jatropha dioica Sessé. Microorganisms. 2025; 13(5):1027. https://doi.org/10.3390/microorganisms13051027
Chicago/Turabian StyleAguilar-Galaviz, Lizeth, Jorge Cadena-Iñiguez, Dalia Abigail García-Flores, Gerardo Loera-Alvarado, Diego Rivera-Escareño, and María Azucena Ortega-Amaro. 2025. "Fungistatic and Bactericidal Activity of Hydroalcoholic Extracts of Root of Jatropha dioica Sessé" Microorganisms 13, no. 5: 1027. https://doi.org/10.3390/microorganisms13051027
APA StyleAguilar-Galaviz, L., Cadena-Iñiguez, J., García-Flores, D. A., Loera-Alvarado, G., Rivera-Escareño, D., & Ortega-Amaro, M. A. (2025). Fungistatic and Bactericidal Activity of Hydroalcoholic Extracts of Root of Jatropha dioica Sessé. Microorganisms, 13(5), 1027. https://doi.org/10.3390/microorganisms13051027