The Effect of Climate Variables, Soil Characteristics, and Peanut Cultivars on the Rhizobial Bacteria Community
Abstract
:1. Introduction
2. Material and Methods
2.1. Soil and Nodule Sampling
2.2. Rhizobial Isolation and Soil Environmental Characterization
2.3. PCR Amplification and Sequencing
2.4. Phylogenetic Analysis of Housekeeping Genes
2.5. Phylogenetic Analyses for Symbiosis Genes and Nodulation Test for Representative Strains
2.6. Peanut Rhizobial Diversity and Correlation Analyses
3. Results
3.1. Soil Characteristics
3.2. Peanut Rhizobial Isolation and Selection for Representative Strains
3.3. Phylogeny and Diversity of Peanut Rhizobia in Different Sampling Sites
3.4. Correlation Between Soil, Climate Characteristics, and the Distribution of Peanut Rhizobia
3.5. Phylogenies of Symbiotic Genes and Nodulation Capacity of Peanut Rhizobia
4. Discussion
4.1. Soil Characteristics Varied in Different Sampling Sites
4.2. Peanut Rhizobia with High Genetic Diversity in China
4.3. Peanut Rhizobia Distribute in Southern China with Higher Diversity Indices
4.4. The Community of Peanut Rhizobia Was Mainly Affected by Soil Environmental Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
X9 | Peanut cultivar Xuhua 9. |
M6 | Peanut cultivar Minhua 6. |
H19 | Peanut cultivar Huayu 19. |
H30 | Peanut cultivar Huayu 30. |
H33 | Peanut cultivar Huayu 33. |
H29 | Peanut cultivar Huayu 29. |
YMA | Yeast mannitol agar medium. |
AN | Available nitrogen. |
AP | Available phosphorous. |
AK | Available potassium. |
TN | Total nitrogen. |
OC | Organic carbon. |
EC | Electrical conductivity. |
MAP | Mean annual precipitation. |
MAT | Mean annual temperature. |
PS | Precipitation seasonality. |
MLSA | Multilocus sequence analysis. |
References
- Hammons, R.O. The origin and history of the groundnut. In The Groundnut Crop: A Scientific Basis for Improvement; Smartt, J., Ed.; Springer: Dordrecht, The Netherlands, 1994; pp. 24–42. [Google Scholar]
- Lu, Q.; Huang, L.; Liu, H.; Garg, V.; Gangurde, S.S.; Li, H.; Chitikineni, A.; Guo, D.; Pandey, M.K.; Li, S.; et al. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat. Genet. 2024, 56, 530–540. [Google Scholar] [CrossRef]
- Santos, J.W.M.D.; Silva, J.F.D.; Ferreira, T.D.D.S.; Dias, M.A.M.; Fraiz, A.C.R.; Escobar, I.E.C.; Santos, R.C.D.; Lima, L.M.D.; Morgante, C.V.; Fernandes-Júnior, P.I. Molecular and symbiotic characterization of peanut bradyrhizobia from the semi-arid region of Brazil. Appl. Soil Ecol. 2017, 121, 177–184. [Google Scholar] [CrossRef]
- Yang, J.K.; Xie, F.L.; Zou, J.; Zhou, Q.; Zhou, J.C. Polyphasic characteristics of bradyrhizobia isolated from nodules of peanut (Arachis hypogaea) in China. Soil Biol. Biochem. 2005, 37, 141–153. [Google Scholar] [CrossRef]
- Zhuang, W.; Chen, H.; Yang, M.; Wang, J.; Pandey, M.K.; Zhang, C.; Chang, W.; Zhang, L.; Zhang, X.; Tang, R.; et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet. 2019, 51, 865–876. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, C.; Huang, F.; Zhou, Q.; Zheng, C.; Liu, R.; Huang, J. Quality evaluation of oil by cold-pressed peanut from different growing regions in China. Food Sci. Nutr. 2022, 10, 1975–1987. [Google Scholar] [CrossRef]
- Boogerd, F.C.; van Rossum, D. Nodulation of groundnut by Bradyrhizobium: A simple infection process by crack entry. FEMS Microbiol. Rev. 1997, 21, 5–27. [Google Scholar] [CrossRef]
- Horta Araújo, N.; Nouwen, N.; Arrighi, J. Nodulating another way: What can we learn from lateral root base nodulation in legumes? J. Exp. Bot. 2024, 75, 3214–3219. [Google Scholar] [CrossRef]
- Bhattacharjee, O.; Raul, B.; Ghosh, A.; Bhardwaj, A.; Bandyopadhyay, K.; Sinharoy, S. Nodule INception (NIN)-independent epidermal events lead to bacterial entry during nodule development in peanut (Arachis hypogaea). New Phytol. 2022, 236, 2265–2281. [Google Scholar] [CrossRef]
- Sizenando, C.I.T.; Ramos, J.P.C.; Fernandes-Junior, P.I.; Lima, L.M.D.; Freire, R.M.M.; Santos, R.C.D. Agronomic efficiency of Bradyrhizobium in peanut under different environments in Brazilian Northeast. Afr. J. Agric. Res. 2016, 11, 3482–3487. [Google Scholar]
- El-Akhal, M.R.; Rincón, A.; Arenal, F.; Lucas, M.M.; Mourabit, N.E.; Barrijal, S.; Pueyo, J.J. Genetic diversity and symbiotic efficiency of rhizobial isolates obtained from nodules of Arachis hypogaea in northwestern Morocco. Soil Biol. Biochem. 2008, 40, 2911–2914. [Google Scholar] [CrossRef]
- Ibañez, F.; Taurian, T.; Angelini, J.; Tonelli, M.L.; Fabra, A. Rhizobia phylogenetically related to common bean symbionts Rhizobium giardinii and Rhizobium tropici isolated from peanut nodules in Central Argentina. Soil Biol. Biochem. 2008, 40, 537–539. [Google Scholar] [CrossRef]
- Taurian, T.; Aguilar, O.M.; Fabra, A. Characterization of nodulating peanut rhizobia isolated from a native soil population in Córdobar Argentina. Symbiosis 2002, 33, 59–72. [Google Scholar]
- Jaiswal, S.K.; Msimbira, L.A.; Dakora, F.D. Phylogenetically diverse group of native bacterial symbionts isolated from root nodules of groundnut (Arachis hypogaea L.) in South Africa. Syst. Appl. Microbiol. 2017, 40, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, M.; Ma, H.; Wang, Y.; Wang, E.T.; Zhou, Z.; Gu, J. Genetic diversity and distribution of bradyrhizobia nodulating peanut in acid-neutral soils in Guangdong Province. Syst. Appl. Microbiol. 2016, 39, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, X.; Terefework, Z.; Kaijalainen, S.; Li, D.; Lindström, K. Diversity and compatibility of peanut (Arachis hypogaea L.) bradyrhizobia and their host plants. Plant Soil 2003, 255, 605–617. [Google Scholar] [CrossRef]
- Shao, S.; Chen, M.; Liu, W.; Hu, X.; Wang, E.; Yu, S.; Li, Y. Long-term monoculture reduces the symbiotic rhizobial biodiversity of peanut. Syst. Appl. Microbiol. 2020, 43, 126101. [Google Scholar] [CrossRef]
- Li, Y.H.; Wang, R.; Sui, X.H.; Wang, E.T.; Zhang, X.X.; Tian, C.F.; Chen, W.F.; Chen, W.X. Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in Southeast China. Syst. Appl. Microbiol. 2019, 42, 126002. [Google Scholar] [CrossRef]
- Lu, J.K.; Dou, Y.J.; Zhu, Y.J.; Wang, S.K.; Sui, X.H.; Kang, L.H. Bradyrhizobium ganzhouense sp. nov., an effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules. Int. J. Syst. Evol. Microbiol. 2014, 64, 1900–1905. [Google Scholar] [CrossRef]
- Wang, R.; Chang, Y.L.; Zheng, W.T.; Zhang, D.; Zhang, X.X.; Sui, X.H.; Wang, E.T.; Hu, J.Q.; Zhang, L.Y.; Chen, W.X. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst. Appl. Microbiol. 2013, 36, 101–105. [Google Scholar] [CrossRef]
- Chang, Y.L.; Wang, J.Y.; Wang, E.T.; Liu, H.C.; Sui, X.H.; Chen, W.X. Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int. J. Syst. Evol. Microbiol. 2011, 61, 2496–2502. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Han, K.; Sun, L.; Gao, K.; Liu, W.; Wang, E.T.; Chen, W. Distribution and biodiversity of rhizobia nodulating Chamaecrista mimosoides in the Shandong peninsula of China. Syst. Appl. Microbiol. 2022, 45, 126280. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.F.; Zhou, Y.J.; Zhang, Y.M.; Li, Q.Q.; Zhang, Y.Z.; Li, D.F.; Wang, S.; Wang, J.; Gilbert, L.B.; Li, Y.R.; et al. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc. Nat. Acad. Sci. USA 2012, 109, 8629–8634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Li, Y.; Chen, W.F.; Wang, E.T.; Tian, C.F.; Li, Q.Q.; Zhang, Y.Z.; Sui, X.H.; Chen, W.X. Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl. Environ. Microbiol. 2011, 77, 6331–6342. [Google Scholar] [CrossRef]
- Liu, G.; Liu, X.; Liu, W.; Gao, K.; Chen, X.; Wang, E.; Zhao, Z.; Du, W.; Li, Y. Biodiversity and geographic distribution of rhizobia nodulating with Vigna minima. Front. Microbiol. 2021, 12, 665839. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, S.; Li, S.; Song, J.; Brunel, B.; Wang, E.; James, E.K.; Chen, W.; Andrews, M. Arachis hypogaea L. from acid soils of Nanyang (China) is frequently associated with Bradyrhizobium guangdongense and occasionally with Bradyrhizobium ottawaense or three Bradyrhizobium genospecies. Microb. Ecol. 2022, 84, 556–564. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, Y.; Qi, J.; Gao, H.; Li, X.; Tian, Q.; Qian, X.; Wei, G.; Jiao, S. The climate-driven distribution and response to global change of soil-borne pathogens in agroecosystems. Glob. Ecol. Biogeogr. 2023, 32, 766–779. [Google Scholar] [CrossRef]
- Yang, S.; Tang, F.; Gao, M.; Krishnan, H.B.; Zhu, H. R gene-controlled host specificity in the legume-rhizobia symbiosis. Proc. Nat. Acad. Sci. USA 2010, 107, 18735–18740. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L.; Hu, D.; Wang, E.T.; Chuntao, G.; Wang, H. Diversity of common bean rhizobia in blackland of northeastern China and their symbiotic compatibility with two host varieties. Front. Microbiol. 2023, 14, 1195307. [Google Scholar] [CrossRef] [PubMed]
- Fields, B.; Moeskjær, S.; Deakin, W.J.; Moffat, E.K.; Roulund, N.; Andersen, S.U.; Young, J.P.W.; Friman, V. Rhizobium nodule diversity and composition are influenced by clover host selection and local growth conditions. Mol. Ecol. 2023, 32, 4259–4277. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, Y.; Wang, J.; Wang, E.; Andrews, M. Diverse Bradyrhizobium spp. with similar symbiosis genes nodulate peanut in different regions of China: Characterization of symbiovar sv. Arachis. Plants 2023, 12, 3776. [Google Scholar] [CrossRef]
- Hu, T.H.; Cheng, L.Q.; Wang, J.; Lv, J.W.; Rao, Q.L. Evaluation of shade tolerance of peanut with different genotypes and screening of identification indexes. Sci. Agric. Sin. 2020, 53, 1140–1153. [Google Scholar]
- Vincent, J.M. A Manual for the Practical Study of the Root-Nodule Bacteria; International Biological Program; Blackwell Scientific: Oxford, UK, 1970. [Google Scholar]
- Donohue, S.J. Reference soil and media diagnostic procedures for the southern region of the United States. J. Am. Ceram. Soc. 1992, 71, 219–221. [Google Scholar]
- Page, A.L.; Miller, R.H.; Dennis, R.K. Methods of Soil Analysis, Part 2: Chemical and Microbial Properties W. Madison; Series title; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Westerman, R.L. Soil Testing and Plant Analysis, 3rd ed.; Soil Science Society of America: Madison, WI, USA, 1990. [Google Scholar]
- Shen, J.; Li, R.; Zhang, F.; Fan, J.; Tang, C.; Rengel, Z. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crop Res. 2004, 86, 225–238. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Zhang, X.; Feng, Z.; Liu, J.; Wang, Y.; Shang, S.; Xu, J.; Liu, T.; Liu, L. Effects of salt stress on the rhizosphere soil microbial communities of Suaeda salsa (L.) Pall. in the Yellow River Delta. Ecol. Evol. 2024, 14, e70315. [Google Scholar] [PubMed]
- Vinuesa, P.; Silva, C.; Werner, D.; Martínez-Romero, E. Population genetics and phylogenetic inference in bacterial molecular systematics: The roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol. Phylogenet. Evol. 2005, 34, 29–54. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Nat. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Yan, J.; Han, X.Z.; Ji, Z.J.; Li, Y.; Wang, E.T.; Xie, Z.H.; Chen, W.F. Abundance and diversity of soybean-nodulating rhizobia in black soil are impacted by land use and crop management. Appl. Environ. Microb. 2014, 80, 5394–5402. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, W.; Shao, S.; Wang, E.; Li, Y. Diverse genomic backgrounds vs. highly conserved symbiotic genes in Sesbania-nodulating bacteria: Shaping of the rhizobial community by host and soil properties. Microb. Ecol. 2020, 80, 158–168. [Google Scholar] [CrossRef]
- St Pkowski, T.; Czaplińska, M.; Miedzinska, K.; Moulin, L. The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria. Syst. Appl. Microbiol. 2003, 26, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, R.; Lu, J.K.; Sui, X.H.; Wang, E.T.; Chen, W.X. Genetic diversity and evolution of bradyrhizobium populations nodulating Erythrophleum fordii, an evergreen tree indigenous to the southern subtropical region of China. Appl. Environ. Microbiolo 2014, 80, 6184–6194. [Google Scholar] [CrossRef]
- Vinuesa, P.; Rojas-Jimenez, K.; Contreras-Moreira, B.; Mahna, S.K.; Prasad, B.N.; Moe, H.; Selvaraju, S.B.; Thierfelder, H.; Werner, D. Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the asiatic continent. Appl. Environ. Microbiol. 2008, 74, 6987–6996. [Google Scholar] [CrossRef]
- Martens, M.; Dawyndt, P.; Coopman, R.; Gillis, M.; De Vos, P.; Willems, A. Advantages of multilocus sequence analysis for taxonomic studies: A case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int. J. Syst. Evol. Microbiol. 2008, 58, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Team RDC. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2004; Available online: http://www.R-project.org (accessed on 22 May 2004).
- Morris, C.D. Multivariate analysis of ecological data using Canoco 5, 2nd Edition. Afr. J. Range Sci. 2015, 32, 289–290. [Google Scholar] [CrossRef]
- Chen, W.; Tan, Z.; Gao, J.; Li, Y.; Wang, E. Rhizobium hainanense sp. nov., isolated from tropical legumes. Int. J. Syst. Evol. Microbiol. 1997, 47, 870–873. [Google Scholar] [CrossRef] [PubMed]
- Grönemeyer, J.L.; Chimwamurombe, P.; Reinhold-Hurek, B. Bradyrhizobium subterraneum sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts. Int. J. Syst. Evol. Microbiol. 2015, 65, 3241–3247. [Google Scholar] [CrossRef]
- Grönemeyer, J.L.; Hurek, T.; Bünger, W.; Reinhold-Hurek, B. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. Int. J. Syst. Evol. Microbiol. 2016, 66, 62–69. [Google Scholar] [CrossRef]
- Jain, D.; Sanadhya, S.; Saheewala, H.; Maheshwari, D.; Shukwal, A.; Singh, P.B.; Meena, R.H.; Choudhary, R.; Mohanty, S.R.; Singh, A. Molecular diversity analysis of plant growth promoting rhizobium isolated from groundnut and evaluation of their field efficacy. Curr. Microbiol. 2020, 77, 1550–1557. [Google Scholar] [CrossRef]
- Ormeño-Orrillo, E.; Martínez-Romero, E. A genomotaxonomy view of the Bradyrhizobium genus. Front. Microbiol. 2019, 10, 1334. [Google Scholar] [CrossRef]
- Taurian, T.; Ibañez, F.; Fabra, A.; Aguilar, O.M. Genetic Diversity of rhizobia nodulating Arachis hypogaea L. in Central Argentinean soils. Plant Soil 2006, 282, 41–52. [Google Scholar] [CrossRef]
- Zhou, R.; Ci, X.; Hu, J.; Zhang, X.; Cao, G.; Xiao, J.; Liu, Z.; Li, L.; Thornhill, A.H.; Conran, J.G.; et al. Transitional areas of vegetation as biodiversity hotspots evidenced by multifaceted biodiversity analysis of a dominant group in Chinese evergreen broad-leaved forests. Ecol. Indic. 2023, 147, 110001. [Google Scholar] [CrossRef]
- Wang, C.; Guo, L.; Shen, R.F. Rare microbial communities drive ecosystem multifunctionality in acidic soils of southern China. Appl. Soil Ecol. 2023, 189, 104895. [Google Scholar] [CrossRef]
- Guha, S.; Molla, F.; Sarkar, M.; Ibañez, F.; Fabra, A.; Dasgupta, M. Nod factor-independent ‘crack-entry’ symbiosis in dalbergoid legume Arachis hypogaea. Environ. Microbiol. 2022, 24, 2732–2746. [Google Scholar] [CrossRef]
- Zaiya Zazou, A.; Fonceka, D.; Fall, S.; Fabra, A.; Ibañez, F.; Pignoly, S.; Diouf, A.; Touré, O.; Faye, M.N.; Hocher, V.; et al. Genetic diversity and symbiotic efficiency of rhizobial strains isolated from nodules of peanut (Arachis hypogaea L.) in Senegal. Agric. Ecosyst. Environ. 2018, 265, 384–391. [Google Scholar] [CrossRef]
- Garau, G.; Reeve, W.; Bräu, L.; Deiana, P.; Yates, R.J.; James, D.L.; Tiwari, R.; O’Hara, G.; Howieson, J. The symbiotic requirements of different Medicago spp. suggest the evolution of Sinorhizobium meliloti and S. medicae with hosts differentially adapted to soil pH. Plant Soil 2005, 276, 263–277. [Google Scholar] [CrossRef]
- Muñoz, V.; Ibañez, F.; Tonelli, M.L.; Valetti, L.; Anzuay, M.S.; Fabra, A. Phenotypic and phylogenetic characterization of native peanut Bradyrhizobium isolates obtained from Córdoba, Argentina. Syst. Appl. Microbiol. 2011, 34, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Man, C.; Wang, H.; Chen, W.F.; Sui, X.; Wang, E.; Chen, W. Diverse rhizobia associated with soybean grown in the subtropical and tropical regions of China. Plant Soil 2008, 310, 77–87. [Google Scholar] [CrossRef]
- Efstathiadou, E.; Ntatsi, G.; Savvas, D.; Tampakaki, A. Genetic characterization at the species and symbiovar level of indigenous rhizobial isolates nodulating Phaseolus vulgaris in Greece. Sci. Rep. 2021, 11, 8674. [Google Scholar] [CrossRef]
- Angelini, J.; Ibáñez, F.; Taurian, T.; Tonelli, M.L.; Valetti, L.; Fabra, A. A study on the prevalence of bacteria that occupy nodules within single peanut plants. Curr. Microbiol. 2011, 62, 1752–1759. [Google Scholar] [CrossRef]
- Etesami, H. Root nodules of legumes: A suitable ecological niche for isolating non-rhizobial bacteria with biotechnological potential in agriculture. Curr. Res. Biotechnol. 2022, 4, 78–86. [Google Scholar] [CrossRef]
- Debnath, S.; Chakraborty, S.; Langthasa, M.; Choure, K.; Agnihotri, V.; Srivastava, E.A.; Rai, P.; Tilwari, A.; Maheshwari, D.; Pandey, P. Non-rhizobial nodule endophytes improve nodulation, change root exudation pattern and promote the growth of lentil, for prospective application in fallow soil. Front. Plant Sci. 2023, 14, 1152875. [Google Scholar] [CrossRef]
- Oono, R.; Schmitt, I.; Sprent, J.I.; Denison, R.F. Multiple evolutionary origins of legume traits leading to extreme rhizobial differentiation. New Phytol. 2010, 187, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, J.; Yong, Q.; Yuan, T.; Wang, Q.; Li, M.; Long, S.; Bai, X. Species diversity and geographical distribution patterns of Balsaminaceae in China. Diversity 2023, 15, 1012. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Y.; Huang, D.; Wang, H.; Cao, Q.; Fan, P.; Yang, N.; Zheng, P.; Wang, R. The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Sci. Total Environ. 2020, 744, 140786. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Gu, J.; Wang, E.T.; Ma, X.X.; Kang, S.T.; Huang, L.Z.; Cao, X.P.; Li, L.B.; Wu, Y.L. Wild peanut Arachis duranensis are nodulated by diverse and novel Bradyrhizobium species in acid soils. Syst. Appl. Microbiol. 2014, 37, 525–532. [Google Scholar] [CrossRef]
- Xun, W.; Liu, Y.; Ma, A.; Yan, H.; Miao, Y.; Shao, J.; Zhang, N.; Xu, Z.; Shen, Q.; Zhang, R. Dissection of rhizosphere microbiome and exploiting strategies for sustainable agriculture. New Phytol. 2024, 242, 2401–2410. [Google Scholar] [CrossRef]
- Qiao, M.; Sun, R.; Wang, Z.; Dumack, K.; Xie, X.; Dai, C.; Wang, E.; Zhou, J.; Sun, B.; Peng, X.; et al. Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification. Nat. Commun. 2024, 15, 2924. [Google Scholar] [CrossRef]
Sampling Sites | AK (mg/kg) | AP (mg/kg) | AN (mg/kg) | TN% | OC% | EC (μs/cm) | pH | Fertility Level A (OC/AN/AP/AK) | MAP (mL) | MAT (°C) | PS | TS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Haerbin | 437.0 ± 2.9 a | 41.1 ± 3.2 b,c | 94.5 ± 1.8 c,d | 0.214 ± 0.012 b,c | 1.462 ± 0.521 f,g | 170.0 ± 6.8 d,e | 6.97 ± 0.16 e | 4/3/1/1 | 530 | 2.2 | 1.10 | 6.83 |
Siping | 363.8 ± 5.3 d | 37.5 ± 1.8 b,c | 102.9 ± 2.3 c | 0.122 ± 0.007 c,d,e | 1.178 ± 0.362 h,i | 52.8 ± 4.5 j | 8.22 ± 0.37 a,b | 4/3/2/1 | 618 | 8.1 | 1.04 | 1.48 |
Fuxin | 239.5 ± 3.2 i | 82.8 ± 1.3 a | 91.6 ± 0.8 d | 0.121 ± 0.041 c,d,e | 1.145 ± 0.008 h,i | 69.4 ± 3.6 i | 7.32 ± 0.33 d | 4/3/1/1 | 503 | 7.8 | 1.10 | 1.57 |
Shihezi | 317.4 ± 8.6 e | 14.5 ± 0.9 f,g | 26.8 ± 3.6 h | 0.071 ± 0.017 e | 1.230 ± 0.517 g,h | 164.5 ± 10.3 e | 8.13 ± 0.26 b | 4/6/3/1 | 153 | 8.3 | 0.51 | 1.70 |
Baoding | 251.1 ± 3.2 h | 22.4 ± 2.3 e | 37.1 ± 1.4 g | 0.123 ± 0.076 c,d,e | 2.910 ± 0.006 b | 131.3 ± 6.1 f | 8.11 ± 0.08 b | 3/5/2/1 | 507 | 13.2 | 1.29 | 0.80 |
Fenyang | 326.2 ± 7.6 e | 11.3 ± 1.4 h | 80.5 ± 2.1 e | 0.082 ± 0.023 e | 2.290 ± 0.651 d | 208.0 ± 9.6 b | 8.64 ± 0.20 a | 3/4/3/1 | 462 | 10.4 | 1.01 | 0.96 |
Lanzhou | 269.1 ± 2.3 g | 11.0 ± 0.8 h | 81.2 ± 3.3 e | 0.112 ± 0.034 c,d,e | 0.881 ± 0.23 j,k | 288.0 ± 4.3 a | 6.90 ± 0.08 e | 5/4/3/1 | 345 | 8.7 | 0.89 | 1.09 |
Weifang | 395.6 ± 4.3 c | 32.0 ± 2.3 c | 73.1 ± 1.8 e | 0.104 ± 0.019 d,e | 1.089 ± 0.108 h,i,j | 172.9 ± 2.8 d | 7.99 ± 0.17 b | 4/4/2/1 | 690 | 13.0 | 1.06 | 0.77 |
Laixi | 291.8 ± 1.9 f | 32.9 ± 0.7 c | 58.3 ± 3.5 f | 0.080 ± 0.010 e | 0.754 ± 0.093 k | 139.4 ± 7.4 f | 6.95 ± 0.04 e | 5/5/2/1 | 698 | 12.8 | 0.92 | 0.73 |
Yantai | 237.2 ± 2.8 i | 20.6 ± 3.2 e,f | 38.5 ± 4.3 g | 0.079 ± 0.021 e | 0.753 ± 0.116 k | 104.0 ± 6.5 g | 7.66 ± 0.29 c,d | 5/5/2/1 | 698 | 12.0 | 0.93 | 0.78 |
Kaifeng | 314.0 ± 3.2 e | 42.5 ± 2.8 b,c | 61.8 ± 1.8 f | 0.104 ± 0.028 d,e | 0.934 ± 0.237 i,j,k | 160.7 ± 3.3 e | 8.31 ± 0.13 a,b | 5/4/1/1 | 628 | 14.6 | 0.87 | 0.65 |
Hefei | 315.1 ± 6.6 e | 27.2 ± 3.4 d,e | 38.3 ± 2.8 g | 0.139 ± 0.043 c,d,e | 1.041 ± 0.108 h,i,j | 92.1 ± 4.8 h | 5.85 ± 0.21 f,g | 4/5/2/1 | 1146 | 16.0 | 0.52 | 0.55 |
Ganzhou | 199.4 ± 2.7 j | 41.1 ± 1.5 bc | 119.0 ± 5.6 b | 0.134 ± 0.012 c,d,e | 1.043 ± 0.072 h,i,j | 70.6 ± 7.7 i | 5.81 ± 0.32 f,g | 4/3/1/2 | 1492 | 18.9 | 0.50 | 0.38 |
Shaoyang | 294.4 ± 3.6 f | 46.3 ± 2.5 b | 71.8 ± 6.4 e | 0.180 ± 0.046 b,c,d | 1.002 ± 0.009 i,j,k | 134.1 ± 2.7 f | 4.92 ± 0.23 h | 5/4/1/1 | 1353 | 17.3 | 0.47 | 0.46 |
Nanchong | 228.6 ± 4.3 i | 29.7 ± 0.8 d | 98.7 ± 3.6 c,d | 0.153 ± 0.008 c,d,e | 1.101 ± 0.211 h,i,j | 106.2 ± 5.5 g | 7.96 ± 0.09 b,c | 4/3/2/1 | 1090 | 17.5 | 0.78 | 0.41 |
Guiyang | 264.4 ± 5.9 g | 10.1 ± 1.6 h | 94.9 ± 1.7 c,d | 0.252 ± 0.025 b | 2.603 ± 0.139 c | 198.0 ± 8.6 c | 7.12 ± 0.17 e | 3/3/3/1 | 1113 | 15.2 | 0.68 | 0.43 |
Kunming | 199.2 ± 5.1 j | 13.3 ± 2.3 h | 141.2 ± 2.5 a | 0.117 ± 0.036 c,d,e | 0.844 ± 0.097 j,k | 169.5 ± 8.9 d,e | 6.10 ± 0.35 f | 5/2/3/2 | 928 | 14.9 | 0.81 | 0.29 |
Hezhou | 412.2 ± 6.8 b | 34.2 ± 2.1 c | 122.2 ± 6.8 b | 0.407 ± 0.048 a | 4.561 ± 0.630 a | 70.2 ± 1.2 i | 5.68 ± 0.17 g | 1/2/2/1 | 1567 | 20.1 | 0.59 | 0.33 |
Zhanjiang | 239.8 ± 3.8 i | 14.0 ± 1.8 h | 63.0 ± 7.3 f | 0.166 ± 0.053 b,c,d | 1.823 ± 0.026 e | 102.1 ± 1.5 g | 5.89 ± 0.23 f,g | 4/4/3/1 | 1763 | 23.3 | 0.69 | 0.21 |
Danzhou | 259.1 ± 2.7 g,h | 12.9 ± 2.6 h | 73.2 ± 1.9 e | 0.183 ± 0.009 b,c,d | 1.671 ± 0.139 e,f | 72.1 ± 4.3 i | 4.92 ± 0.18 h | 4/4/3/1 | 1708 | 24.1 | 0.74 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yang, Z.-D.; Wang, E.-T.; Sun, L.-Q.; Li, Y. The Effect of Climate Variables, Soil Characteristics, and Peanut Cultivars on the Rhizobial Bacteria Community. Microorganisms 2025, 13, 926. https://doi.org/10.3390/microorganisms13040926
Li J, Yang Z-D, Wang E-T, Sun L-Q, Li Y. The Effect of Climate Variables, Soil Characteristics, and Peanut Cultivars on the Rhizobial Bacteria Community. Microorganisms. 2025; 13(4):926. https://doi.org/10.3390/microorganisms13040926
Chicago/Turabian StyleLi, Juan, Zhong-De Yang, En-Tao Wang, Li-Qin Sun, and Yan Li. 2025. "The Effect of Climate Variables, Soil Characteristics, and Peanut Cultivars on the Rhizobial Bacteria Community" Microorganisms 13, no. 4: 926. https://doi.org/10.3390/microorganisms13040926
APA StyleLi, J., Yang, Z.-D., Wang, E.-T., Sun, L.-Q., & Li, Y. (2025). The Effect of Climate Variables, Soil Characteristics, and Peanut Cultivars on the Rhizobial Bacteria Community. Microorganisms, 13(4), 926. https://doi.org/10.3390/microorganisms13040926