The Antiviral Effect of Ephedrine Alkaloids-Free Ephedra Herb Extract, EFE, on Murine Coronavirus Growth in the Lung and Liver of Infected Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Viral Culture
2.3. Animals
2.4. In Vivo MHV Inoculation and Animal Evaluation
2.5. Murine Hepatitis Viral Titer
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
ACE2 | angiotensin-converting enzyme 2 |
ANOVA | analysis of variance |
CEACAM1 | carcinoembryonic antigen-related cell adhesion molecule 1 |
EFE | Ephedrine alkaloids-free Ephedra Herb extract |
EMCT | Ephedra Herb macromolecule condensed tannin |
MHV | murine hepatitis virus |
MI | MHV inoculation |
NI | no inoculation |
PFU | plaque-forming unit |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
SE | standard error |
References
- Kono, T.; Shimada, M.; Yamamoto, M.; Kaneko, A.; Oomiya, Y.; Kubota, K.; Kase, Y.; Lee, K.; Uezono, Y. Complementary and synergistic therapeutic effects of compounds found in Kampo medicine: Analysis of daikenchuto. Front. Pharmacol. 2015, 6, 159. [Google Scholar] [CrossRef]
- Motoo, Y.; Seki, T.; Tsutani, K. Traditional Japanese medicine, Kampo: Its history and current status. Chin. J. Integr. Med. 2011, 17, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Arai, I.; Kawahara, N. Kampo pharmaceutical products in the Japanese health-care system: Legal status and quality assurance. Tradit. Kampo Med. 2019, 6, 3–11. [Google Scholar] [CrossRef]
- Nakae, H.; Takayama, S.; Namiki, T. Editorial: Potentials of kampo medicine in modern society. Front. Nutr. 2022, 9, 912874. [Google Scholar] [CrossRef] [PubMed]
- Motoo, Y.; Arai, I.; Kogure, T.; Tsutani, K. Review of the first 20 years of the Evidence-Based Medicine Committee of the Japan Society for Oriental Medicine. Tradit. Kampo Med. 2021, 8, 123–129. [Google Scholar] [CrossRef]
- Namiki, T.; Hoshino, T.; Egashira, N.; Kogure, T.; Endo, M.; Homma, M. A review of frequently used Kampo prescriptions part 1. Daikenchuto. Tradit. Kampo Med. 2022, 9, 151–179. [Google Scholar] [CrossRef]
- Yasunaga, H.; Miyata, H.; Horiguchi, H.; Kuwabara, K.; Hashimoto, H.; Matsuda, S. Effect of the Japanese herbal kampo medicine dai-kenchu-to on postoperative adhesive small bowel obstruction requiring long-tube decompression: A propensity score analysis. Evid. Based Complement. Altern. Med. 2011, 2011, 264289. [Google Scholar] [CrossRef]
- Yamada, C.; Hattori, T.; Ohnishi, S.; Takeda, H. Ghrelin enhancer, the latest evidence of Rikkunshito. Front. Nutr. 2021, 8, 761631. [Google Scholar] [CrossRef]
- Fujitsuka, N.; Uezono, Y. Rikkunshito, a ghrelin potentiator, ameliorates anorexia-cachexia syndrome. Front. Pharmacol. 2014, 5, 271. [Google Scholar] [CrossRef]
- Kainuma, M.; Imazu, Y.; Imazu, H.; Tanaka, K.; Uezono, Y.; Tominaga, K.; Fujimoto, M. A review of frequently used Kampo prescriptions. Part 5. Tradit. Kampo Med. 2024, 11, 89–113. [Google Scholar] [CrossRef]
- Mizoguchi, K.; Ikarashi, Y. Cellular pharmacological effects of the traditional Japanese Kampo medicine Yokukansan on Brain Cells. Front. Pharmacol. 2017, 8, 655. [Google Scholar] [CrossRef]
- Mizoguchi, K.; Ikarashi, Y. Multiple psychopharmacological effects of the traditional Japanese Kampo medicine Yokukansan, and the brain regions it affects. Front. Pharmacol. 2017, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- Ikarashi, Y.; Mizoguchi, K. Neuropharmacological efficacy of the traditional Japanese Kampo medicine yokukansan and its active ingredients. Pharmacol. Ther. 2016, 166, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Mizukami, K. Kampo therapy and behavioral and psychological symptoms of dementia. Tradit. Kampo Med. 2014, 1, 11–18. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Yoshino, T.; Oizumi, H.; Arita, R.; Nogami, T.; Takayama, S. A review of frequently used Kampo prescriptions. Part 3. Yokukansan. Tradit. Kampo Med. 2023, 10, 197–223. [Google Scholar] [CrossRef]
- Nagai, T.; Kataoka, E.; Aoki, Y.; Hokari, R.; Kiyohara, H.; Yamada, H. Alleviative effects of a kampo (A Japanese herbal) medicine “Maoto (Ma-Huang-Tang)” on the early phase of influenza virus infection and its possible mode of action. Evid. Based Complement. Altern. Med. 2014, 2014, 187036. [Google Scholar] [CrossRef]
- Nishi, A.; Kaifuchi, N.; Shimobori, C.; Ohbuchi, K.; Iizuka, S.; Sugiyama, A.; Ogura, K.; Yamamoto, M.; Kuroki, H.; Nabeshima, S.; et al. Effects of maoto (ma-huang-tang) on host lipid mediator and transcriptome signature in influenza virus infection. Sci. Rep. 2021, 11, 4232. [Google Scholar] [CrossRef]
- Yoshino, T.; Arita, R.; Horiba, Y.; Watanabe, K. The use of maoto (Ma-Huang-Tang), a traditional Japanese Kampo medicine, to alleviate flu symptoms: A systematic review and meta-analysis. BMC Complement. Altern. Med. 2019, 19, 68. [Google Scholar] [CrossRef]
- Nabeshima, S.; Kashiwagi, K.; Ajisaka, K.; Masui, S.; Takeoka, H.; Ikematsu, H.; Kashiwagi, S. A randomized, controlled trial comparing traditional herbal medicine and neuraminidase inhibitors in the treatment of seasonal influenza. J. Infect. Chemother. 2012, 18, 534–543. [Google Scholar] [CrossRef]
- Masui, S.; Nabeshima, S.; Ajisaka, K.; Yamauchi, K.; Itoh, R.; Ishii, K.; Soejima, T.; Hiromatsu, K. Maoto, a traditional Japanese herbal medicine, inhibits uncoating of influenza virus. Evid. Based Complement. Altern. Med. 2017, 2017, 1062065. [Google Scholar] [CrossRef]
- Fujikane, A.; Sakamoto, A.; Fujikane, R.; Nishi, A.; Ishino, Y.; Hiromatsu, K.; Nabeshima, S. Ephedrae Herba and Cinnamomi Cortex interactions with G glycoprotein inhibit respiratory syncytial virus infectivity. Commun. Biol. 2022, 5, 94. [Google Scholar] [CrossRef]
- Wei, W.; Wan, H.; Peng, X.; Zhou, H.; Lu, Y.; He, Y. Antiviral effects of Ma Huang Tang against H1N1 influenza virus infection in vitro and in an ICR pneumonia mouse model. Biomed. Pharmacother. 2018, 102, 1161–1175. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, A.K.; Singh, R.B. Epidemiology of COVID-19. Prog. Mol. Biol. Transl. Sci. 2024, 202, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, A.K.; Dehgani-Mobaraki, P. Long Covid. Prog. Mol. Biol. Transl. Sci. 2024, 202, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Takayama, S.; Yoshino, T.; Koizumi, S.; Irie, Y.; Suzuki, T.; Fujii, S.; Katori, R.; Kainuma, M.; Kobayashi, S.; Nogami, T.; et al. Conventional and Kampo medicine treatment for mild-to-moderate COVID-19: A multicenter, retrospective, observational study by the integrative management in Japan for epidemic disease (IMJEDI Study-observation). Intern. Med. 2023, 62, 187–199. [Google Scholar] [CrossRef]
- Takayama, S.; Namiki, T.; Arita, R.; Ono, R.; Kikuchi, A.; Ohsawa, M.; Saito, N.; Suzuki, S.; Nakae, H.; Kobayashi, S.; et al. Multicenter, randomized controlled trial of traditional Japanese medicine, kakkonto with shosaikotokakikyosekko, for mild and moderate coronavirus disease patients. Front. Pharmacol. 2022, 13, 1008946. [Google Scholar] [CrossRef]
- Hyuga, S.; Shiraishi, M.; Hyuga, M.; Goda, Y.; Hanawa, T. Ephedrae herba, a major component of maoto, inhibits the HGF-induced motility of human breast cancer MDA-MB-231 cells through suppression of c-Met tyrosine phosphorylation and c-Met expression. J. Tradit. Med. 2011, 28, 128–138. [Google Scholar] [CrossRef]
- Mantani, N.; Andoh, T.; Kawamata, H.; Terasawa, K.; Ochiai, H. Inhibitory effect of Ephedrae herba, an oriental traditional medicine, on the growth of influenza A/PR/8 virus in MDCK cells. Antivir. Res. 1999, 44, 193–200. [Google Scholar] [CrossRef]
- Haller, C.A.; Benowitz, N.L. Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloids. N. Engl. J. Med. 2000, 343, 1833–1838. [Google Scholar] [CrossRef]
- Shekelle, P.G.; Hardy, M.L.; Morton, S.C.; Maglione, M.; Mojica, W.A.; Suttorp, M.J.; Rhodes, S.L.; Jungvig, L.; Gagne, J. Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: A meta-analysis. JAMA 2003, 289, 1537–1545. [Google Scholar] [CrossRef]
- Gambardella, J.; Fiordelisi, A.; Avvisato, R.; Buonaiuto, A.; Cerasuolo, F.A.; Sorriento, D.; Iaccarino, G. Adrenergic receptors in endothelial and vascular smooth muscle cells. Curr. Opin. Physiol. 2023, 36, 100721. [Google Scholar] [CrossRef]
- Limberger, R.P.; Jacques, A.L.B.; Schmitt, G.C.; Arbo, M.D. Pharmacological effects of ephedrine. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1217–1237. [Google Scholar]
- Michel, M.C.; Vrydag, W. Alpha1-, alpha2- and beta-adrenoceptors in the urinary bladder, urethra and prostate. Br. J. Pharmacol. 2006, 147 (Suppl. S2), S88–S119. [Google Scholar] [CrossRef] [PubMed]
- Vansal, S.S.; Feller, D.R. Direct effects of ephedrine isomers on human beta-adrenergic receptor subtypes. Biochem. Pharmacol. 1999, 58, 807–810. [Google Scholar] [CrossRef]
- Woo, A.Y.H.; Xiao, R.-P. β-Adrenergic receptor subtype signaling in heart: From bench to bedside. Acta Pharmacol. Sin. 2012, 33, 335–341. [Google Scholar] [CrossRef]
- Oshima, N.; Yamashita, T.; Hyuga, S.; Hyuga, M.; Kamakura, H.; Yoshimura, M.; Maruyama, T.; Hakamatsuka, T.; Amakura, Y.; Hanawa, T.; et al. Efficiently prepared ephedrine alkaloids-free Ephedra Herb extract: A putative marker and antiproliferative effects. J. Nat. Med. 2016, 70, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Hyuga, S.; Hyuga, M.; Oshima, N.; Maruyama, T.; Kamakura, H.; Yamashita, T.; Yoshimura, M.; Amakura, Y.; Hakamatsuka, T.; Odaguchi, H.; et al. Ephedrine alkaloids-free Ephedra Herb extract: A safer alternative to ephedra with comparable analgesic, anticancer, and anti-influenza activities. J. Nat. Med. 2016, 70, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Hyuga, S.; Nakamori, S.; Amakura, Y.; Hyuga, M.; Uchiyama, N.; Kobayashi, Y.; Hakamatsuka, T.; Goda, Y.; Odaguchi, H.; Hanawa, T. Chapter 34—Analgesic effects of Ephedra herb and ephedrine alkaloids-free Ephedra herb extract (EFE). In Treatments, Mechanisms, and Adverse Reactions of Anesthetics and Analgesics; Rajendram, R., Patel, V.B., Preedy, V.R., Martin, C.R., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 385–400. [Google Scholar]
- Nakamori, S.; Takahashi, J.; Hyuga, S.; Yang, J.; Takemoto, H.; Maruyama, T.; Oshima, N.; Uchiyama, N.; Amakura, Y.; Hyuga, M.; et al. Analgesic effects of Ephedra Herb extract, ephedrine alkaloids-free Ephedra Herb extract, ephedrine, and pseudoephedrine on formalin-induced pain. Biol. Pharm. Bull. 2019, 42, 1538–1544. [Google Scholar] [CrossRef]
- Odaguchi, H.; Sekine, M.; Hyuga, S.; Hanawa, T.; Hoshi, K.; Sasaki, Y.; Aso, M.; Yang, J.; Hyuga, M.; Kobayashi, Y.; et al. A double-blind, randomized, crossover comparative study for evaluating the clinical safety of ephedrine alkaloids-free Ephedra Herb extract (EFE). Evid. Based Complement. Altern. Med. 2018, 2018, 4625358. [Google Scholar] [CrossRef]
- Takemoto, H.; Takahashi, J.; Hyuga, S.; Odaguchi, H.; Uchiyama, N.; Maruyama, T.; Yamashita, T.; Hyuga, M.; Oshima, N.; Amakura, Y.; et al. Ephedrine alkaloids-free Ephedra Herb extract, EFE, has no adverse effects uuch as excitation, insomnia, and arrhythmias. Biol. Pharm. Bull. 2018, 41, 247–253. [Google Scholar] [CrossRef]
- Fujikane, A.; Fujikane, R.; Hyuga, S.; Sechi, Y.; Hiyoshi, T.; Sakamoto, A.; Nishi, A.; Odaguchi, H.; Hiromatsu, K.; Goda, Y.; et al. Antiviral effect of alkaloids-free Ephedra Herb extract on respiratory syncytial virus infection. Front. Pharmacol. 2024, 15, 1410470. [Google Scholar] [CrossRef]
- Huang, X.; Hyuga, S.; Ito, M.; Goda, Y.; Kobayashi, Y. Preventive and therapeutic effects of ephedrine alkaloids-free Ephedra Herb extract on paclitaxel-induced neuropathic pain. J. Nat. Med. 2025, 79, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Uema, M.; Hyuga, M.; Yonemitsu, K.; Hyuga, S.; Amakura, Y.; Uchiyama, N.; Mizoguchi, K.; Odaguchi, H.; Goda, Y. Antiviral effect of ephedrine alkaloids-free Ephedra Herb extract against SARS-CoV-2 In Vitro. Microorganisms 2023, 11, 534. [Google Scholar] [CrossRef] [PubMed]
- Odaguchi, H.; Hyuga, S.; Sekine, M.; Michimae, H.; Hyuga, M.; Uchiyama, N.; Uema, M.; Kumagai, Y.; Suzuki, Y.; Nabeshima, S.; et al. Safety and efficacy of ephedrine alkaloids-free Ephedra Herb extract (EFE) for mild COVID-19: A double-blind, placebo-controlled, randomized comparative trial. Microorganisms 2025, 13, 641. [Google Scholar] [CrossRef]
- Caldera-Crespo, L.A.; Paidas, M.J.; Roy, S.; Schulman, C.I.; Kenyon, N.S.; Daunert, S.; Jayakumar, A.R. Experimental models of COVID-19. Front. Cell. Infect. Microbiol. 2021, 11, 792584. [Google Scholar] [CrossRef] [PubMed]
- De Albuquerque, N.; Baig, E.; Ma, X.; Zhang, J.; He, W.; Rowe, A.; Habal, M.; Liu, M.; Shalev, I.; Downey, G.P.; et al. Murine hepatitis virus strain 1 produces a clinically relevant model of severe acute respiratory syndrome in A/J mice. J. Virol. 2006, 80, 10382–10394. [Google Scholar] [CrossRef]
- Korner, R.W.; Majjouti, M.; Alcazar, M.A.A.; Mahabir, E. Of mice and men: The coronavirus MHV and mouse models as a translational approach to understand SARS-CoV-2. Viruses 2020, 12, 880. [Google Scholar] [CrossRef]
- Yang, Z.; Du, J.; Chen, G.; Zhao, J.; Yang, X.; Su, L.; Cheng, G.; Tang, H. Coronavirus MHV-A59 infects the lung and causes severe pneumonia in C57BL/6 mice. Virol. Sin. 2014, 29, 393–402. [Google Scholar] [CrossRef]
- Rodriguez, L.; Nogales, A.; Martinez-Sobrido, L. Influenza A virus studies in a mouse model of infection. J. Vis. Exp. 2017, 127, 55898. [Google Scholar] [CrossRef]
- Eifart, P.; Ludwig, K.; Bottcher, C.; de Haan, C.A.; Rottier, P.J.; Korte, T.; Herrmann, A. Role of endocytosis and low pH in murine hepatitis virus strain A59 cell entry. J. Virol. 2007, 81, 10758–10768. [Google Scholar] [CrossRef]
- Williams, R.K.; Jiang, G.S.; Holmes, K.V. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc. Natl. Acad. Sci. USA 1991, 88, 5533–5536. [Google Scholar] [CrossRef]
- Focosi, D.; Franchini, M.; Maggi, F.; Shoham, S. COVID-19 therapeutics. Clin. Microbiol. Rev. 2024, 37, e0011923. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Ren, J.; Kong, L.; Yan, G.; Liu, C.; Han, Y.; Sun, H.; Wang, X.J. Ephedrae Herba: A review of its phytochemistry, pharmacology, clinical application, and alkaloid toxicity. Molecules 2023, 28, 663. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Mu, X.; Pan, S.; Luan, R.; Zhao, P. Ephedrae herba: A comprehensive review of its traditional uses, phytochemistry, pharmacology, and toxicology. J. Ethnopharmacol. 2023, 307, 116153. [Google Scholar] [CrossRef]
- Hyuga, S.; Hyuga, M.; Yoshimura, M.; Amakura, Y.; Goda, Y.; Hanawa, T. Herbacetin, a constituent of ephedrae herba, suppresses the HGF-induced motility of human breast cancer MDA-MB-231 cells by inhibiting c-Met and Akt phosphorylation. Planta Med. 2013, 79, 1525–1530. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, M.; Amakura, Y.; Hyuga, S.; Hyuga, M.; Nakamori, S.; Maruyama, T.; Oshima, N.; Uchiyama, N.; Yang, J.; Oka, H.; et al. Quality evaluation and characterization of fractions with biological activity from Ephedra Herb extract and ephedrine alkaloids-free Ephedra Herb extract. Chem. Pharm. Bull. 2020, 68, 140–149. [Google Scholar] [CrossRef]
No Inoculation | Inoculation | EFE | |||
---|---|---|---|---|---|
700 × 2 mg/kg | 700 mg/kg | 350 × 2 mg/kg | |||
Body weight | 16.6 ± 0.9 a | 14.3 ± 1.1 b | 14.1 ± 0.9 b | 14.1 ± 1.0 b | 14.1 ± 0.9 b |
Rectal temperature | 36.5 ± 0.3 a | 37.2 ± 0.6 a | 37.0 ± 1.0 a | 37.4 ± 0.3 a | 37.5 ± 0.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishi, A.; Hyuga, S.; Hyuga, M.; Uema, M.; Uchiyama, N.; Odaguchi, H.; Goda, Y. The Antiviral Effect of Ephedrine Alkaloids-Free Ephedra Herb Extract, EFE, on Murine Coronavirus Growth in the Lung and Liver of Infected Mice. Microorganisms 2025, 13, 830. https://doi.org/10.3390/microorganisms13040830
Nishi A, Hyuga S, Hyuga M, Uema M, Uchiyama N, Odaguchi H, Goda Y. The Antiviral Effect of Ephedrine Alkaloids-Free Ephedra Herb Extract, EFE, on Murine Coronavirus Growth in the Lung and Liver of Infected Mice. Microorganisms. 2025; 13(4):830. https://doi.org/10.3390/microorganisms13040830
Chicago/Turabian StyleNishi, Akinori, Sumiko Hyuga, Masashi Hyuga, Masashi Uema, Nahoko Uchiyama, Hiroshi Odaguchi, and Yukihiro Goda. 2025. "The Antiviral Effect of Ephedrine Alkaloids-Free Ephedra Herb Extract, EFE, on Murine Coronavirus Growth in the Lung and Liver of Infected Mice" Microorganisms 13, no. 4: 830. https://doi.org/10.3390/microorganisms13040830
APA StyleNishi, A., Hyuga, S., Hyuga, M., Uema, M., Uchiyama, N., Odaguchi, H., & Goda, Y. (2025). The Antiviral Effect of Ephedrine Alkaloids-Free Ephedra Herb Extract, EFE, on Murine Coronavirus Growth in the Lung and Liver of Infected Mice. Microorganisms, 13(4), 830. https://doi.org/10.3390/microorganisms13040830