The Multifaceted Landscape of Healthcare-Associated Infections Caused by Carbapenem-Resistant Acinetobacter baumannii
Abstract
:1. Introduction
2. Methods
3. The Multifaceted Landscape of CRAB Infections
4. Mechanisms of Resistance
- β-lactamase production: These enzymes inactivate β-lactam antibiotics, such as penicillins and carbapenems.
- Outer membrane protein alterations: This reduces the permeability of the cell membrane, preventing antibiotics from reaching their targets.
- Efflux pumps: These systems actively expel antibiotics from the bacterial cell.
- Target site modifications: Mutations in genes encoding antibiotic targets can prevent drug binding.
- Mutations in Iron Transport Genes: Cefiderocol leverages the bacterial cell’s iron transport proteins for entry. Mutations in these genes can alter the protein structures, preventing cefiderocol from binding and being transported into the cell. This resistance mechanism is particularly insidious, as it exploits the iron transport system, which is essential for bacterial survival.
- Increased Efflux: Although cefiderocol circumvents some efflux pumps, the overexpression of others can still contribute to resistance. These pumps can expel cefiderocol from the cell, reducing its intracellular concentration and rendering it ineffective.
- β-Lactamase Alterations: While cefiderocol is designed to resist hydrolysis by certain β-lactamases, mutations in these enzymes can broaden their activity spectrum, enabling them to inactivate cefiderocol as well.
- Porin Loss or Modification: Even though cefiderocol uses an iron transport mechanism, porins still play a role in antibiotic entry. The loss or modification of porins can reduce outer membrane permeability, limiting cefiderocol’s access to the iron transport system.
5. Current Treatment Options
6. Prevention and Infection Control Measures
- Hand hygiene: Proper hand hygiene is essential to prevent A. baumannii transmission.
- Contact precautions: Patients infected or colonized with A. baumannii should be isolated to prevent pathogen spread.
- Environmental cleaning and disinfection: Thorough cleaning and disinfection of the hospital environment can reduce A. baumannii contamination.
- Antibiotic stewardship: Overuse and inappropriate antibiotic use contribute to resistance emergence. Prudent antibiotic use is essential to preserve drug effectiveness.
7. Proposed Therapeutic Algorithm for Invasive CRAB Infections
- Evaluate CRAB colonization.
- Perform microbiological identification and antimicrobial susceptibility testing. Predominant role for fast microbiology.
- Assess resistance mechanisms (e.g., carbapenemases, efflux pumps).
- Consider local epidemiology and resistance patterns.
Infection Site | First-Line Therapy According to Guidelines | Alternative Therapy According to Recent Real-World Evidence |
Bloodstream Infections | Colistin or Polymyxin B + High-dose Sulbactam ± Tigecycline | Cefiderocol ± Fosfomycin ± Eravacycline (Sulbactam-Durlobactam) |
Ventilator-Associated Pneumonia | Colistin or Polymyxin B + High-dose Sulbactam ± Meropenem (if MIC ≤ 8 mg/L) | Cefiderocol ± Fosfomycin ± Inhaled Colistin or Amikacin ± Eravacycline (Sulbactam-Durlobactam) |
Meningitis | High-dose IV and Intrathecal/Intraventricular Colistin or Polymyxin B ± Sulbactam | Meropenem ± Rifampin ± Tigecycline Cefiderocol |
Urinary Tract Infections | Cefiderocol or IV Colistin ± Fosfomycin | Aminoglycosides (Amikacin/Plazomicin) ± Sulbactam |
Wound and Soft Tissue Infections | High-dose Sulbactam ± Colistin or Tigecycline | Cefiderocol ± Fosfomycin |
Osteomyelitis and Septic Arthritis | Colistin or Polymyxin B + High-dose Sulbactam | Cefiderocol ± Tigecycline ± Rifampin |
Endocarditis | Colistin or Polymyxin B + High-dose Sulbactam ± Rifampin | Cefiderocol ± Tigecycline or Eravacycline ± Fosfomycin |
Peritonitis | Colistin or Polymyxin B + High-dose Sulbactam ± Meropenem | Cefiderocol ± Tigecycline or Eravacycline |
- Combination Therapy: Preferred to prevent resistance and enhance efficacy.
- High-Dose Sulbactam: If susceptibility confirmed.
- Colistin Dosing: IV loading dose followed by maintenance; inhaled therapy for pneumonia.
- Cefiderocol: Effective against CRAB, especially MBL-producing strains.
- Evaluate clinical response within 48–72 h.
- Therapeutic drug monitoring (TDM) for polymyxins and aminoglycosides.
- De-escalate therapy based on susceptibility results and clinical improvement.
- The rise in multidrug-resistant A. baumannii has drastically limited treatment options, often necessitating the use of older, potentially toxic drugs like colistin.
- Combination therapy is increasingly employed, but optimal combinations and durations remain areas of active research.
- The development of new antibiotics and alternative therapies like bacteriophages is vital to combat this growing threat.
- Strict infection control practices within healthcare facilities are paramount to prevent the spread of this pathogen.
- The continued monitoring of resistance patterns is extremely important.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and pathophysiological overview of Acinetobacter infections: A century of challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef]
- Harding, C.M.; Hennon, S.W.; Feldman, M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 2018, 16, 91–102. [Google Scholar] [CrossRef]
- Castanheira, M.; Mendes, R.E.; Gales, A.C. Global Epidemiology and Mechanisms of Resistance of Acinetobacter baumannii-calcoaceticus Complex. Clin. Infect. Dis. 2023, 76 (Suppl. S2), S166–S178. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Paterson, D.L.; Tamma, P.D. Navigating Available Treatment Options for Carbapenem-Resistant Acinetobacter baumannii-calcoaceticus Complex Infections. Clin. Infect. Dis. 2023, 76 (Suppl. S2), S179–S193. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Polani, R.; De Francesco, A.; Tomolillo, D.; Artuso, I.; Equestre, M.; Trirocco, R.; Arcari, G.; Antonelli, G.; Villa, L.; Prosseda, G.; et al. Cefiderocol Resistance Conferred by Plasmid-Located Ferric Citrate Transport System in KPC-Producing Klebsiella pneumoniae. Emerg. Infect. Dis. 2025, 31, 123–124. [Google Scholar] [CrossRef] [PubMed]
- Deroche, L.; Rozenholc, A.; Arrivé, F.; Martellosio, J.P.; Moal, G.L.; Thille, A.W.; Barraud, O.; Marchand, S.; Buyck, J.M. Emergence of cefiderocol resistance during therapy in NDM-5-producing Klebsiella pneumoniae isolates harboring siderophore receptors mutations. Int. J. Infect. Dis. 2025, 151, 107321. [Google Scholar] [CrossRef]
- Alteri, C.; Teri, A.; Liporace, M.F.; Muscatello, A.; Terranova, L.; Schianca, M.C.; Salari, F.; Orena, B.S.; Silverj, F.G.; Bernazzani, M.; et al. Transmission cluster of cefiderocol-non-susceptible carbapenem-resistant Acinetobacter baumannii in cefiderocol-naïve individuals. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 104. [Google Scholar] [CrossRef]
- Hong, H.; Fan, L.; Shi, W.; Zhu, Y.; Liu, P.; Wei, D.; Liu, Y. Overexpression of β-lactamase genes (blaKPC,blaSHV) and novel CirA deficiencies contribute to decreased cefiderocol susceptibility in carbapenem-resistant Klebsiella pneumoniae before its approval in China. Antimicrob. Agents Chemother. 2024, 68, e0075424. [Google Scholar] [CrossRef]
- Shields, R.K.; Dorazio, A.J.; Tiseo, G.; Squires, K.M.; Leonildi, A.; Giordano, C.; Kline, E.G.; Barnini, S.; Iovleva, A.; Griffith, M.P.; et al. Frequency of cefiderocol heteroresistance among patients treated with cefiderocol for carbapenem-resistant Acinetobacter baumannii infections. JAC Antimicrob. Resist. 2024, 6, dlae146. [Google Scholar] [CrossRef] [PubMed]
- Longshaw, C.; Santerre Henriksen, A.; Dressel, D.; Malysa, M.; Silvestri, C.; Takemura, M.; Yamano, Y.; Baba, T.; Slover, C.M. Heteroresistance to cefiderocol in carbapenem-resistant Acinetobacter baumannii in the CREDIBLE-CR study was not linked to clinical outcomes: A post hoc analysis. Microbiol. Spectr. 2023, 11, e0237123. [Google Scholar] [CrossRef]
- Tiseo, G.; Galfo, V.; Falcone, M. What is the clinical significance of ‘heteroresistance’ in nonfermenting Gram-negative strains? Curr. Opin. Infect. Dis. 2023, 36, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Mezcord, V.; Escalante, J.; Nishimura, B.; Traglia, G.M.; Sharma, R.; Vallé, Q.; Tuttobene, M.R.; Subils, T.; Marin, I.; Pasteran, F.; et al. Induced Heteroresistance in Carbapenem-Resistant Acinetobacter baumannii (CRAB) via Exposure to Human Pleural Fluid (HPF) and Its Impact on Cefiderocol Susceptibility. Int. J. Mol. Sci. 2023, 24, 11752. [Google Scholar] [CrossRef]
- Stracquadanio, S.; Bonomo, C.; Marino, A.; Bongiorno, D.; Privitera, G.F.; Bivona, D.A.; Mirabile, A.; Bonacci, P.G.; Stefani, S. Acinetobacter baumannii and Cefiderocol, between Cidality and Adaptability. Microbiol. Spectr. 2022, 10, e0234722. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; De Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin. Infect. Dis. 2024, ciae403. [Google Scholar] [CrossRef]
- Tiseo, G.; Brigante, G.; Giacobbe, D.R.; Maraolo, A.E.; Gona, F.; Falcone, M.; Giannella, M.; Grossi, P.; Pea, F.; Rossolini, G.M.; et al. Diagnosis and management of infections caused by multidrug-resistant bacteria: Guideline endorsed by the Italian Society of Infection and Tropical Diseases (SIMIT), the Italian Society of Anti-Infective Therapy (SITA), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Association of Clinical Microbiologists (AMCLI) and the Italian Society of Microbiology (SIM). Int. J. Antimicrob. Agents 2022, 60, 106611. [Google Scholar]
- Falcone, M.; Tiseo, G.; Leonildi, A.; Della Sala, L.; Vecchione, A.; Barnini, S.; Farcomeni, A.; Menichetti, F. Cefiderocol- compared to colistin-based regimens for the treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e0214221. [Google Scholar] [CrossRef]
- Russo, A.; Bruni, A.; Gullì, S.; Borrazzo, C.; Quirino, A.; Lionello, R.; Serapide, F.; Garofalo, E.; Serraino, R.; Romeo, F.; et al. Efficacy of cefiderocol- vs colistin-containing regimen for treatment of bacteraemic ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in patients with COVID-19. Int. J. Antimicrob. Agents 2023, 62, 106825. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Dalfino, L.; Stufano, M.; Bavaro, D.F.; Diella, L.; Belati, A.; Stolfa, S.; Romanelli, F.; Ronga, L.; Di Mussi, R.; Murgolo, F.; et al. Effectiveness of First-Line Therapy with Old and Novel Antibiotics in Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii: A Real Life, Prospective, Observational, Single-Center Study. Antibiotics 2023, 12, 1048. [Google Scholar] [CrossRef] [PubMed]
- Pascale, R.; Pasquini, Z.; Bartoletti, M.; Caiazzo, L.; Fornaro, G.; Bussini, L.; Volpato, F.; Marchionni, E.; Rinaldi, M.; Trapani, F.; et al. Cefiderocol treatment for carbapenem-resistant Acinetobacter baumannii infection in the ICU during the COVID-19 pandemic: A multicentre cohort study. JAC Antimicrob. Resist. 2021, 3, dlab174. [Google Scholar] [CrossRef] [PubMed]
- Mazzitelli, M.; Gregori, D.; Sasset, L.; Trevenzoli, M.; Scaglione, V.; Lo Menzo, S.; Marinello, S.; Mengato, D.; Venturini, F.; Tiberio, I.; et al. Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic. Microorganisms 2023, 11, 984. [Google Scholar] [CrossRef]
- Gatti, M.; Cosentino, F.; Giannella, M.; Viale, P.; Pea, F. Clinical efficacy of cefiderocol-based regimens in patients affected by carbapenem-resistant Acinetobacter baumannii infections: A systematic review with meta-analysis. Int. J. Antimicrob. Agents 2024, 63, 107047. [Google Scholar] [CrossRef]
- Zaidan, N.; Hornak, J.P.; Reynoso, D. Extensively Drug-Resistant Acinetobacter baumannii Nosocomial Pneumonia Successfully Treated with a Novel Antibiotic Combination. Antimicrob. Agents Chemother. 2021, 65, e0092421. [Google Scholar] [CrossRef]
- Lyu, C.; Zhang, Y.; Liu, X.; Wu, J.; Zhang, J. Clinical efficacy and safety of polymyxins based versus non-polymyxins based therapies in the infections caused by carbapenem-resistant Acinetobacter baumannii: A systematic review and meta-analysis. BMC Infect. Dis. 2020, 20, 296. [Google Scholar] [CrossRef]
- Seifert, H.; Blondeau, J.; Lucaßen, K.; Utt, E.A. Global update on the in vitro activity of tigecycline and comparators against isolates of Acinetobacter baumannii and rates of resistant phenotypes (2016–2018). J. Glob. Antimicrob. Resist. 2022, 31, 82–89. [Google Scholar] [CrossRef]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019, 39, 10–39. [Google Scholar]
- Nang, S.C.; Azad, M.A.K.; Velkov, T.; Zhou, Q.T.; Li, J. Rescuing the Last-Line Polymyxins: Achievements and Challenges. Pharmacol. Rev. 2021, 73, 679–728. [Google Scholar] [CrossRef]
- Kassamali, Z.; Jain, R.; Danziger, L.H. An update on the arsenal for multidrug-resistant Acinetobacter infections: Polymyxin antibiotics. Int. J. Infect. Dis. 2015, 30, 125–132. [Google Scholar]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Durante-Mangoni, E.; Signoriello, G.; Andini, R.; Mattei, A.; De Cristoforo, M.; Murino, P.; Bassetti, M.; Malacarne, P.; Petrosillo, N.; Galdieri, N.; et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: A multicenter, randomized clinical trial. Clin. Infect. Dis. 2013, 3, 349–358. [Google Scholar]
- Sirijatuphat, R.; Thamlikitkul, V. Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant Acinetobacter baumannii infections. Antimicrob. Agents Chemother. 2014, 9, 5598–5601. [Google Scholar]
- Flamm, R.K.; Shortridge, D.; Castanheira, M.; Sader, H.S.; Pfaller, M.A. In Vitro Activity of Minocycline against U.S. Isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus Species Complex, Stenotrophomonas maltophilia, and Burkholderia cepacia Complex: Results from the SENTRY Antimicrobial Surveillance Program, 2014 to 2018. Antimicrob. Agents Chemother. 2019, 63, e01154-19. [Google Scholar]
- Lodise, T.P.; Van Wart, S.; Sund, Z.M.; Bressler, A.M.; Khan, A.; Makley, A.T.; Hamad, Y.; Salata, R.A.; Silveira, F.P.; Sims, M.D.; et al. Pharmacokinetic and Pharmacodynamic Profiling of Minocycline for Injection following a Single Infusion in Critically Ill Adults in a Phase IV Open-Label Multicenter Study (ACUMIN). Antimicrob. Agents Chemother. 2021, 65, e01809-20. [Google Scholar]
- De Pascale, G.; Lisi, L.; Ciotti, G.M.P.; Vallecoccia, M.S.; Cutuli, S.L.; Cascarano, L.; Gelormini, C.; Bello, G.; Montini, L.; Carelli, S.; et al. Pharmacokinetics of high-dose tigecycline in critically ill patients with severe infections. Ann. Intensive Care 2020, 10, 94. [Google Scholar]
- Ni, W.; Wang, Y.; Ma, X.; He, Y.; Zhao, J.; Guan, J.; Li, Y.; Gao, Z. In vitro and in vivo efficacy of cefiderocol plus tigecycline, colistin, or meropenem against carbapenem-resistant Acinetobacter baumannii. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1451–1457. [Google Scholar]
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef]
- Guastalegname, M.; Trecarichi, E.M.; Russo, A. Intravenous fosfomycin: The underdog player in the treatment of carbapenem-resistant Acinetobacter baumannii infections. Clin. Infect. Dis. 2023, 77, 1736–1737. [Google Scholar] [CrossRef]
- Russo, A.; Bassetti, M.; Bellelli, V. Efficacy of a Fosfomycin-Containing Regimen for Treatment of Severe Pneumonia Caused by Multidrug-Resistant Acinetobacter baumannii: A Prospective, Observational Study. Infect. Dis. Ther. 2021, 10, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Assimakopoulos, S.F.; Karamouzos, V.; Eleftheriotis, G.; Lagadinou, M.; Bartzavali, C.; Kolonitsiou, F.; Paliogianni, F.; Fligou, F.; Marangos, M. Efficacy of Fosfomycin-Containing Regimens for Treatment of Bacteremia Due to Pan-Drug Resistant Acinetobacter baumannii in Critically Ill Patients: A Case Series Study. Pathogens 2023, 12, 286. [Google Scholar] [CrossRef]
- Penwell, W.F.; Shapiro, A.B.; Giacobbe, R.A.; Gu, R.F.; Gao, N.; Thresher, J.; McLaughlin, R.E.; Huband, M.D.; DeJonge, B.L.; Ehmann, D.E.; et al. Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2015, 59, 1680–1689. [Google Scholar] [CrossRef]
- Kuo, S.C.; Lee, Y.T.; Yang Lauderdale, T.L.; Huang, W.C.; Chuang, M.F.; Chen, C.P.; Su, S.C.; Lee, K.R.; Chen, T.L. Contribution of Acinetobacter-derived cephalosporinase-30 to sulbactam resistance in Acinetobacter baumannii. Front. Microbiol. 2015, 6, 231. [Google Scholar]
- Durand-Réville, T.F.; Guler, S.; Comita-Prevoir, J.; Chen, B.; Bifulco, N.; Huynh, H.; Lahiri, S.; Shapiro, A.B.; McLeod, S.M.; Carter, N.M.; et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat. Microbiol. 2017, 2, 17104. [Google Scholar] [CrossRef]
- Principe, L.; Di Bella, S.; Conti, J.; Perilli, M.; Piccirilli, A.; Mussini, C.; Decorti, G. Acinetobacter baumannii Resistance to Sulbactam/Durlobactam: A Systematic Review. Antibiotics 2022, 11, 1793. [Google Scholar] [CrossRef] [PubMed]
- Rodvold, K.A.; Gotfried, M.H.; Isaacs, R.D.; O’Donnell, J.P.; Stone, E. Plasma and Intrapulmonary Concentrations of ETX2514 and Sulbactam following Intravenous Administration of ETX2514SUL to Healthy Adult Subjects. Antimicrob. Agents Chemother. 2018, 62, e01089-18. [Google Scholar] [CrossRef]
- Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; O’Donnell, J.; Chen, L.; et al. Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect. Dis. 2023, 23, 1072–1084. [Google Scholar]
- Giuliano, S.; Sbrana, F.; Tascini, C. Sulbactam-durlobactam for infections caused by Acinetobacter baumannii-calcoaceticus complex. Lancet Infect. Dis. 2023, 23, e274. [Google Scholar] [CrossRef]
- Kaye, K.S.; McLeod, S.M.; O’Donnell, J.P.; Altarac, D. Sulbactam-durlobactam for infections caused by Acinetobacter baumannii-calcoaceticus complex—Authors’ reply. Lancet Infect. Dis. 2023, 23, e275–e276. [Google Scholar]
- Petropoulou, D.; Siopi, M.; Vourli, S.; Pournaras, S. Activity of Sulbactam-Durlobactam and Comparators Against a National Collection of Carbapenem-Resistant Acinetobacter baumannii Isolates From Greece. Front. Cell Infect. Microbiol. 2022, 11, 814530. [Google Scholar]
- National Library of Medicine. Available online: https://clinicaltrials.gov/ (accessed on 14 February 2025).
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef]
- Syed, Y.Y. Cefiderocol: A Review in Serious Gram-Negative Bacterial Infections. Drugs 2021, 81, 1559–1571. [Google Scholar]
- Kollef, M.; Dupont, H.; Greenberg, D.E.; Viale, P.; Echols, R.; Yamano, Y.; Nicolau, D.P. Prospective role of cefiderocol in the management of carbapenem-resistant Acinetobacter baumannii infections: Review of the evidence. Int. J. Antimicrob. Agents 2023, 62, 106882. [Google Scholar]
- Karlowsky, J.A.; Hackel, M.A.; Takemura, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In Vitro Susceptibility of Gram-Negative Pathogens to Cefiderocol in Five Consecutive Annual Multinational SIDERO-WT Surveillance Studies, 2014 to 2019. Antimicrob. Agents Chemother. 2022, 66, e0199021. [Google Scholar]
- Poirel, L.; Sadek, M.; Nordmann, P. Contribution of PER-Type and NDM-Type β-Lactamases to Cefiderocol Resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2021, 65, e0087721. [Google Scholar] [PubMed]
- Choby, J.E.; Ozturk, T.; Satola, S.W.; Jacob, J.T.; Weiss, D.S. Widespread cefiderocol heteroresistance in carbapenem-resistant Gram-negative pathogens. Lancet Infect. Dis. 2021, 21, 597–598. [Google Scholar]
- Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, N.; Katsube, T.; Echols, R.; Wajima, T. Population Pharmacokinetic and Pharmacokinetic/Pharmacodynamic Analyses of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Patients with Pneumonia, Bloodstream Infection/Sepsis, or Complicated Urinary Tract Infection. Antimicrob. Agents Chemother. 2021, 65, e01437-20. [Google Scholar]
- Palombo, M.; Bovo, F.; Amadesi, S.; Gaibani, P. Synergistic Activity of Cefiderocol in Combination with Piperacillin-Tazobactam, Fosfomycin, Ampicillin-Sulbactam, Imipenem-Relebactam and Ceftazidime-Avibactam against Carbapenem-Resistant Gram-Negative Bacteria. Antibiotics 2023, 12, 858. [Google Scholar] [CrossRef]
- Mohd Sazlly Lim, S.; Heffernan, A.; Naicker, S.; Wallis, S.; Roberts, J.A.; Sime, F.B. Evaluation of Fosfomycin-Sulbactam Combination Therapy against Carbapenem-Resistant Acinetobacter baumannii Isolates in a Hollow-Fibre Infection Model. Antibiotics 2022, 11, 1578. [Google Scholar] [CrossRef] [PubMed]
- Koomanachai, P.; Crandon, J.L.; Kuti, J.L.; Nicolau, D.P. Comparative pharmacodynamics for intravenous antibiotics against Gram-negative bacteria in Europe between 2002 and 2006: A report from the OPTAMA program. Int. J. Antimicrob. Agents 2009, 33, 348–353. [Google Scholar] [CrossRef]
- Bavaro, D.F.; Belati, A.; Diella, L.; Stufano, M.; Romanelli, F.; Scalone, L.; Stolfa, S.; Ronga, L.; Maurmo, L.; Dell’Aera, M.; et al. Cefiderocol-Based Combination Therapy for “Difficult-to-Treat” Gram-Negative Severe Infections: Real-Life Case Series and Future Perspectives. Antibiotics 2021, 10, 652. [Google Scholar] [CrossRef] [PubMed]
- Holger, D.J.; Kunz Coyne, A.J.; Zhao, J.J.; Sandhu, A.; Salimnia, H.; Rybak, M.J. Novel Combination Therapy for Extensively Drug-Resistant Acinetobacter baumannii Necrotizing Pneumonia Complicated by Empyema: A Case Report. Open Forum Infect. Dis. 2022, 9, ofac092. [Google Scholar] [CrossRef]
- Lopez-Novoa, J.M.; Quiros, Y.; Vicente, L.; Morales, A.I.; Lopez-Hernandez, F.J. New insights into the mechanism of aminoglycoside nephrotoxicity: An integrative point of view. Kidney Int. 2011, 79, 33–45. [Google Scholar] [CrossRef]
- Najmeddin, F.; Shahrami, B.; Azadbakht, S.; Dianatkhah, M.; Rouini, M.R.; Najafi, A.; Ahmadi, A.; Sharifnia, H.; Mojtahedzadeh, M. Evaluation of Epithelial Lining Fluid Concentration of Amikacin in Critically Ill Patients With Ventilator-Associated Pneumonia. J. Intensive Care Med. 2020, 35, 400–404. [Google Scholar] [CrossRef]
- Mohammadi, M.; Khayat, H.; Sayehmiri, K.; Soroush, S.; Sayehmiri, F.; Delfani, S.; Bogdanovic, L.; Taherikalani, M. Synergistic Effect of Colistin and Rifampin Against Multidrug Resistant Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Open Microbiol. J. 2017, 11, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, M.F.; Durante-Mangoni, E.; Fortunato, R.; Utili, R.; Zarrilli, R. Comparative activities of colistin, rifampicin, imipenem and sulbactam/ampicillin alone or in combination against epidemic multidrug-resistant Acinetobacter baumannii isolates producing OXA-58 carbapenemases. Int. J. Antimicrob. Agents 2007, 30, 537–540. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Xiang, K.; Li, D.; Liu, H. Combined Rifampin and Sulbactam Therapy for Multidrug-Resistant Acinetobacter baumannii Ventilator-Associated Pneumonia in Pediatric Patients. J. Anesth. Perioper. Med. 2018, 5, 176–185. [Google Scholar] [CrossRef]
- Trebosc, V.; Kemmer, C.; Lociuro, S.; Gitzinger, M.; Dale, G.E. Rifabutin for infusion (BV100) for the treatment of severe carbapenem-resistant Acinetobacter baumannii infections. Drug Discov. Today. 2021, 26, 2099–2104. [Google Scholar] [CrossRef]
- Falagas, M.E.; Vardakas, K.Z.; Roussos, N.S. Trimethoprim/sulfamethoxazole for Acinetobacter spp.: A review of current microbiological and clinical evidence. Int. J. Antimicrob. Agents 2015, 46, 231–241. [Google Scholar]
- Raz-Pasteur, A.; Liron, Y.; Amir-Ronen, R.; Abdelgani, S.; Ohanyan, A.; Geffen, Y.; Paul, M. Trimethoprim-sulfamethoxazole vs. colistin or ampicillin-sulbactam for the treatment of carbapenem-resistant Acinetobacter baumannii: A retrospective matched cohort study. J. Glob. Antimicrob. Resist. 2019, 17, 168–172. [Google Scholar]
- Russo, A.; Gullì, S.P.; D’Avino, A.; Borrazzo, C.; Carannante, N.; Dezza, F.C.; Covino, S.; Polistina, G.; Fiorentino, G.; Trecarichi, E.M.; et al. Intravenous fosfomycin for treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii: A multicenter clinical experience. Int. J. Antimicrob. Agents 2024, 64, 107190. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Carvalhaes, C.G.; Streit, J.M.; Castanheira, M.; Flamm, R.K. Antimicrobial activity of cefoperazone-sulbactam tested against Gram-Negative organisms from Europe, Asia-Pacific, and Latin America. Int. J. Infect. Dis. 2020, 91, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Tuon, F.F.; Yamada, C.H.; de Andrade, A.P.; Arend, L.N.V.S.; Dos Santos Oliveira, D.; Telles, J.P. Oral doxycycline to carbapenem-resistant Acinetobacter baumannii infection as a polymyxin-sparing strategy: Results from a retrospective cohort. Braz. J. Microbiol. 2023, 54, 1795–1802. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Serapide, F.; Guastalegname, M.; Gullì, S.P.; Lionello, R.; Bruni, A.; Garofalo, E.; Longhini, F.; Trecarichi, E.M.; Russo, A. Antibiotic Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections in View of the Newly Developed β-Lactams: A Narrative Review of the Existing Evidence. Antibiotics 2024, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Quirino, A.; Cicino, C.; Scaglione, V.; Marascio, N.; Serapide, F.; Scarlata, G.G.M.; Lionello, R.; Divenuto, F.; La Gamba, V.; Pavia, G.; et al. In vitro Activity of Cefiderocol Against Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates: A Single Center Experience. Mediterr. J. Hematol. Infect. Dis. 2023, 15, e2023043. [Google Scholar] [CrossRef]
- Russo, A.; Bassetti, M.; Ceccarelli, G.; Carannante, N.; Losito, A.R.; Bartoletti, M.; Corcione, S.; Granata, G.; Santoro, A.; Giacobbe, D.R.; et al. Bloodstream infections caused by carbapenem-resistant Acinetobacter baumannii: Clinical features, therapy and outcome from a multicenter study. J. Infect. 2019, 79, 130–138. [Google Scholar] [CrossRef]
- Russo, A.; Falcone, M.; Gutiérrez-Gutiérrez, B.; Calbo, E.; Almirante, B.; Viale, P.L.; Oliver, A.; Ruiz-Garbajosa, P.; Gasch, O.; Gozalo, M.; et al. Predictors of outcome in patients with severe sepsis or septic shock due to extended-spectrum β-lactamase-producing Enterobacteriaceae. Int. J. Antimicrob. Agents 2018, 52, 577–585. [Google Scholar] [CrossRef]
- Bassetti, M.; Russo, A.; Carnelutti, A.; La Rosa, A.; Righi, E. Antimicrobial resistance and treatment: An unmet clinical safety need. Expert. Opin. Drug Saf. 2018, 17, 669–680. [Google Scholar] [CrossRef]
- Medioli, F.; Bacca, E.; Faltoni, M.; Burastero, G.J.; Volpi, S.; Menozzi, M.; Orlando, G.; Bedini, A.; Franceschini, E.; Mussini, C.; et al. Is It Possible to Eradicate Carbapenem-Resistant Acinetobacter baumannii (CRAB) from Endemic Hospitals? Antibiotics 2022, 11, 1015. [Google Scholar] [CrossRef] [PubMed]
- Meschiari, M.; Lòpez-Lozano, J.M.; Di Pilato, V.; Gimenez-Esparza, C.; Vecchi, E.; Bacca, E.; Orlando, G.; Franceschini, E.; Sarti, M.; Pecorari, M.; et al. A five-component infection control bundle to permanently eliminate a carbapenem-resistant Acinetobacter baumannii spreading in an intensive care unit. Antimicrob. Resist. Infect. Control 2021, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- Meschiari, M.; Kaleci, S.; Orlando, G.; Selmi, S.; Santoro, A.; Bacca, E.; Menozzi, M.; Franceschini, E.; Puzzolante, C.; Bedini, A.; et al. Risk factors for nosocomial rectal colonization with carbapenem-resistant Acinetobacter baumannii in hospital: A matched case-control study. Antimicrob. Resist. Infect. Control 2021, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Franceschini, E.; Meschiari, M.; Menozzi, M.; Zona, S.; Venturelli, C.; Digaetano, M.; Rogati, C.; Guaraldi, G.; Paul, M.; et al. Epidemiology and Risk Factors Associated With Mortality in Consecutive Patients With Bacterial Bloodstream Infection: Impact of MDR and XDR Bacteria. Open Forum Infect. Dis. 2020, 7, ofaa461. [Google Scholar] [CrossRef]
- Wong, S.C.; Chen, J.H.; Kwok, M.O.; Siu, C.Y.; Yuen, L.L.; AuYeung, C.H.; Li, C.K.; Li, B.H.; Chan, B.W.; So, S.Y.; et al. Air dispersal of multi-drug-resistant organisms including meticillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii and carbapenemase-producing Enterobacterales in general wards: Surveillance culture of air grilles. J. Hosp. Infect. 2024, 149, 26–35. [Google Scholar] [CrossRef]
- Viscardi, S.; Topola, E.; Sobieraj, J.; Duda-Madej, A. Novel Siderophore Cephalosporin and Combinations of Cephalosporins with β-Lactamase Inhibitors as an Advancement in Treatment of Ventilator-Associated Pneumonia. Antibiotics 2024, 13, 445. [Google Scholar] [CrossRef]
Type of Infection | Description | Risk Factors |
---|---|---|
Bloodstream Infections | CRAB is a leading cause of hospital-acquired bacteremia, often associated with high mortality. | Prolonged intensive care unit stay, central venous catheters, immunosuppression, prior antibiotic use. |
Ventilator-Associated Pneumonia | CRAB is a major pathogen in ventilated patients, leading to severe pneumonia. | Mechanical ventilation, prolonged intubation, prior antibiotic exposure, prolonged intensive care unit. |
(including tracheobronchitis) | ||
Meningitis | CRAB meningitis is rare but associated with neurosurgical interventions. | Neurosurgical procedures, external ventricular drains, head trauma. |
Urinary Tract Infections | CRAB can colonize or infect the urinary tract, particularly in catheterized patients. | Indwelling urinary catheters, prolonged hospitalization, antibiotic overuse. |
Wound and Soft Tissue Infections | Often associated with war injuries, burns, or surgical site infections. | Trauma, burns, invasive procedures, diabetes, immunosuppression. |
Osteomyelitis and Septic Arthritis | CRAB can cause bone and joint infections, especially in trauma-related cases. | Open fractures, orthopedic implants, diabetic foot infections. |
Endocarditis | CRAB can rarely cause infective endocarditis, mostly in critically ill patients. | Presence of prosthetic heart valves, central lines, IV drug use. |
Peritonitis | CRAB is an emerging cause of peritoneal infections, particularly in peritoneal dialysis patients. | Peritoneal dialysis, intra-abdominal surgery, intestinal perforation. |
Mechanism of Resistance | Description | Examples and Details |
---|---|---|
Carbapenemases Production | Enzymes that hydrolyze carbapenems and other β-lactams, leading to resistance. These enzymes belong to different molecular classes. | - Class D OXA-type β-lactamases: OXA-23, OXA-24/40, OXA-51 (intrinsic), OXA-58. These are the most common in CRAB. - Class B Metallo-β-lactamases (MBLs): NDM-1, IMP, VIM (require zinc for activity, hydrolyze carbapenems but not monobactams). |
Efflux Pump Overexpression | Actively expel antibiotics from the bacterial cell, reducing intracellular drug concentration. Efflux pumps contribute to multidrug resistance (MDR). | - RND (Resistance-Nodulation-Division) family: AdeABC, AdeIJK, AdeFGH (expel carbapenems, aminoglycosides, fluoroquinolones). - MFS (Major Facilitator Superfamily): TetA/B (mediates tetracycline resistance). - SMR (Small Multidrug Resistance) family: AbeS. |
Porin Loss or Modification | Decreased expression or alteration of outer membrane proteins (OMPs), limiting antibiotic entry. | - CarO porin loss or mutation: Reduces carbapenem penetration, commonly associated with imipenem resistance. - OmpA, OmpW alterations: Can further contribute to antibiotic resistance and virulence. |
Target Site Modifications | Mutations or alterations in bacterial targets reduce drug binding, leading to resistance. | - Penicillin-binding proteins (PBPs) alterations: Mutations in PBP2 and PBP3 reduce β-lactam efficacy. - GyrA and ParC mutations: Confer resistance to fluoroquinolones (ciprofloxacin, levofloxacin). |
Antibiotic Inactivation | Enzymes modify or degrade antibiotics before they reach their target. | - β-lactamases: Hydrolyze β-lactams (penicillins, cephalosporins, carbapenems). - Aminoglycoside-modifying enzymes (AMEs): Acetyltransferases, phosphotransferases, nucleotidyltransferases modify aminoglycosides (gentamicin, amikacin). |
Biofilm Formation | Bacteria form a protective matrix, reducing antibiotic penetration and enhancing persistence. | - EPS (Extracellular Polymeric Substances) production: Protects bacteria from host immune response and antibiotics. - Regulated by quorum sensing (QS) systems: abaI/abaR, influencing resistance and virulence. |
Treatment Strategy | Description | Examples and Details |
---|---|---|
Polymyxins (Colistin, Polymyxin B) | Last-resort antibiotics that disrupt bacterial membranes. Used in combination therapy to reduce resistance. | - Colistin (Polymyxin E): Often administered as colistin methanesulfonate. - Polymyxin B: Similar to colistin but does not require conversion from a prodrug. - Risk of nephrotoxicity and neurotoxicity. |
Tetracyclines (Tigecycline, Eravacycline) | Inhibit protein synthesis; effective against MDR A. baumannii but limited for bloodstream infections. | - Tigecycline: FDA-approved for complicated intra-abdominal and skin infections, but lower serum levels limit its use in bacteremia. - Eravacycline: Newer tetracycline with improved activity against CRAB. |
Sulbactam-Based Therapies | Sulbactam is a β-lactamase inhibitor with intrinsic activity against A. baumannii. | - Ampicillin/Sulbactam: High-dose regimens may be effective against sulbactam-susceptible strains. - Sulbactam-Durlobactam: New combination with enhanced activity, recently approved. |
Carbapenem-Based Combinations | Used despite resistance, often in synergy with other drugs. | - Meropenem + Colistin: Synergistic effect against some CRAB isolates. - Meropenem + Vaborbactam or Imipenem + Relebactam: Limited activity against CRAB due to OXA-type carbapenemases. |
Other β-Lactam/β-Lactamase Inhibitor Combination | Some combinations show activity against specific CRAB strains. | - Ceftazidime/Avibactam: Limited activity against OXA-type carbapenemase-producing A. baumannii. |
Siderophore-cefalosporin | New mechanism of action using ferric iron transporter system. | - Cefiderocol: A siderophore cephalosporin with good efficacy against CRAB, including MBL-producing strains. |
Aminoglycosides (Gentamicin, Amikacin, Plazomicin) | Bind to the 30S ribosomal subunit, inhibiting protein synthesis. Used in combination therapy. | - Amikacin: More active than gentamicin against CRAB. - Plazomicin: May be active against aminoglycoside-resistant strains. - Often combined with polymyxins or carbapenems. |
Fosfomycin | Inhibits bacterial cell wall synthesis. Used in combination therapy for synergy. | - Limited systemic efficacy but used in combination regimens. - More commonly used for urinary tract infections. |
Adjunctive Therapies (Phage Therapy, Immunotherapy, Antimicrobial Peptides) | Emerging strategies to enhance treatment effectiveness. | - Phage therapy: Investigational, strain-specific bacteriophages. - Immunotherapy: Monoclonal antibodies targeting A. baumannii. - Antimicrobial peptides: Under development as alternative therapeutics. |
Strategy | Description | Examples and Details |
---|---|---|
Hand Hygiene | Proper hand hygiene is crucial to prevent transmission in healthcare settings. | - Alcohol-based hand rubs (preferred) or soap and water for visibly soiled hands. - Compliance with WHO’s “Five Moments for Hand Hygiene”. |
Contact Precautions | Isolation and protective measures to limit spread in hospitals. | - Use of gloves and gowns when interacting with infected patients. - Cohorting or single-room isolation for CRAB-positive patients. |
Environmental Cleaning and Disinfection | CRAB can survive on surfaces for long periods; rigorous cleaning is essential. | - Use of hospital-grade disinfectants (e.g., hydrogen peroxide, chlorine-based agents). - Focus on high-touch surfaces (bed rails, IV pumps, doorknobs). |
Surveillance and Screening | Early detection of colonized or infected patients helps prevent outbreaks. | - Active surveillance cultures in high-risk units (ICU, transplant wards). - Molecular or culture-based methods to detect CRAB colonization. |
Antimicrobial Stewardship | Rational use of antibiotics to reduce resistance development. | - Avoid unnecessary use of carbapenems and broad-spectrum antibiotics. - Guidelines-based prescribing and de-escalation strategies. |
Patient and Staff Education | Training healthcare workers and informing patients about CRAB risks. | - Regular infection control training for hospital staff. - Patient awareness programs to improve hygiene compliance. |
Medical Equipment Decontamination | CRAB can persist on medical devices, requiring strict decontamination protocols. | - Single-use devices when possible to prevent cross-contamination. - High-level disinfection or sterilization of reusable medical equipment. |
Restriction of Patient Transfers | Limiting movement of colonized/infected patients between facilities to prevent spread. | - Strict inter-facility communication when transferring CRAB-positive patients. - Screening prior to transfer in outbreak settings. |
Outbreak Management | Rapid response to CRAB outbreaks to contain and control infections. | - Immediate isolation and cohorting of affected patients. - Environmental sampling and whole-genome sequencing to track transmission. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, A.; Serapide, F. The Multifaceted Landscape of Healthcare-Associated Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Microorganisms 2025, 13, 829. https://doi.org/10.3390/microorganisms13040829
Russo A, Serapide F. The Multifaceted Landscape of Healthcare-Associated Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Microorganisms. 2025; 13(4):829. https://doi.org/10.3390/microorganisms13040829
Chicago/Turabian StyleRusso, Alessandro, and Francesca Serapide. 2025. "The Multifaceted Landscape of Healthcare-Associated Infections Caused by Carbapenem-Resistant Acinetobacter baumannii" Microorganisms 13, no. 4: 829. https://doi.org/10.3390/microorganisms13040829
APA StyleRusso, A., & Serapide, F. (2025). The Multifaceted Landscape of Healthcare-Associated Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Microorganisms, 13(4), 829. https://doi.org/10.3390/microorganisms13040829