Advances, Challenges, and Perspectives in Glomalin-Related Soil Protein Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Bibliometric Analysis Methods
3. Results and Discussion
3.1. Tendency and Growth of Publications in GRSP Research
3.2. Top 10 Highly Cited Articles on GRSP
Rank | First Author | Year | Journal | Title | Total Citations |
---|---|---|---|---|---|
1 | Rillig M.C. [19] | 2006 | New Phytol | Mycorrhizas and soil structure | 911 |
2 | Wright S.F. [3] | 1998 | Plant Soil | A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi | 772 |
3 | Rillig M.C. [21] | 2004 | Can J Soil Sci | Arbuscular mycorrhizae, glomalin, and soil aggregation | 551 |
4 | Wilson G.W.T. [22] | 2009 | Ecol Lett | Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments | 470 |
5 | Khan A.G. [28] | 2005 | J Trace Elem Med Bio | Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation | 383 |
6 | Rillig M.C. [7] | 2001 | Plant Soil | Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils | 381 |
7 | Rillig M.C. [29] | 2004 | Ecol Lett | Arbuscular mycorrhizae and terrestrial ecosystem processes | 380 |
8 | Rillig M.C. [6] | 2002 | Plant Soil | The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species | 341 |
9 | González-Chávez M.C. [27] | 2004 | Environ Pollut | The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements | 311 |
10 | Driver J.D. [1] | 2005 | Soil Biol Biochem | Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi | 239 |
Rank | First Author | Year | Journal | Title | Local Citations |
---|---|---|---|---|---|
1 | Wright S.F. [3] | 1998 | Plant Soil | A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi | 452 |
2 | Rillig M.C. [21] | 2004 | Can J Soil Sci | Arbuscular mycorrhizae, glomalin, and soil aggregation | 318 |
3 | Rillig M.C. [7] | 2001 | Plant Soil | Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils | 223 |
4 | Driver J.D. [1] | 2005 | Soil Biol Biochem | Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi | 181 |
5 | Lovelock C.E. [24] | 2004 | J Ecol | Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape | 145 |
6 | Rillig M.C. [6] | 2002 | Plant Soil | The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species | 141 |
7 | Rillig M.C. [20] | 2003 | Plant Soil | Glomalin, an arbuscular–mycorrhizal fungal soil protein, responds to land–use change | 140 |
8 | Rillig M.C. [19] | 2006 | New Phytol | Mycorrhizas and soil structure | 136 |
9 | González-Chávez M.C. [27] | 2004 | Environ Pollut | The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements | 125 |
10 | Treseder K.K. [25] | 2007 | Soil Sci Soc Am J | Glomalin in ecosystems | 120 |
3.3. High-Frequency Keywords About GRSP
3.4. Historical Direct Citations About GRSP
4. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Driver, J.D.; Holben, W.E.; Rillig, M.C. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 2005, 37, 101–106. [Google Scholar] [CrossRef]
- Wright, S.F.; Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 1996, 161, 575–586. [Google Scholar] [CrossRef]
- Wright, S.F.; Upadhyaya, A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 1998, 198, 97–107. [Google Scholar] [CrossRef]
- Koide, R.T.; Peoples, M.S. Behavior of Bradford-reactive substances is consistent with predictions for glomalin. Appl. Soil Ecol. 2013, 63, 8–14. [Google Scholar] [CrossRef]
- Wu, Q.; Li, Y.; Zou, Y.; He, X. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza 2015, 25, 121–130. [Google Scholar] [CrossRef]
- Rillig, M.C.; Wright, S.F.; Eviner, V.T. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant Soil 2002, 238, 325–333. [Google Scholar] [CrossRef]
- Rillig, M.C.; Wright, S.F.; Nichols, K.A.; Schmidt, W.F.; Torn, M.S. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 2001, 233, 167–177. [Google Scholar] [CrossRef]
- Yuan, B.; Li, H.; Hong, H.; Wang, Q.; Tian, Y.; Lu, H.; Liu, J.; Lin, L.; Wu, G.; Yan, C. Immobilization of lead(Ⅱ) and zinc(Ⅱ) onto glomalin-related soil protein (GRSP): Adsorption properties and interaction mechanisms. Ecotoxicol. Environ. Saf. 2022, 236, 113489. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Liang, C.; Ai, Z.; Wu, Y.; Xu, H.; Xue, S.; Liu, G. Glomalin-related soil protein affects soil aggregation and recovery of soil nutrient following natural revegetation on the Loess Plateau. Geoderma 2020, 357, 113921. [Google Scholar] [CrossRef]
- Li, Q.; Song, Z.; Xia, S.; Kuzyakov, Y.; Yu, C.; Fang, Y.; Chen, J.; Wang, Y.; Shi, Y.; Luo, Y.; et al. Microbial necromass, lignin, and glycoproteins for determining and optimizing blue carbon formation. Environ. Sci. Technol. 2024, 58, 468–479. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, Q.; Huang, Y.; Cai, Z.; Li, D.; Wu, L.; Meersmans, J.; Colinet, G.; Zhang, W. Long-term manuring facilitates glomalin-related soil proteins accumulation by chemical composition shifts and macro-aggregation formation. Soil Till. Res. 2024, 235, 105904. [Google Scholar]
- Zhou, J.; Bilyera, N.; Guillaume, T.; Yang, H.; Li, F.; Shi, L. Microbial necromass and glycoproteins for determining soil carbon formation under arbuscular mycorrhiza symbiosis. Sci. Total Environ. 2024, 955, 176732. [Google Scholar] [PubMed]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar]
- Wu, H.; Wan, S.; Ruan, C.; Wan, W.; Han, M.; Chen, G.; Liu, Y.; Zhu, K.; Liang, C.; Wang, G. Soil microbial necromass: The state-of-the-art, knowledge gaps, and future perspectives. Eur. J. Soil Biol. 2023, 115, 103472. [Google Scholar] [CrossRef]
- Opsahl, T.; Agneessens, F.; Skvoretz, J. Node centrality in weighted networks: Generalizing degree and shortest paths. Soc. Networks 2010, 32, 245–251. [Google Scholar]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Garfield, E. Historiographic mapping of knowledge domains literature. J. Inf. Sci. 2004, 30, 119–145. [Google Scholar] [CrossRef]
- Miller, R.M.; Jastrow, J.D. Mycorrhizal Fungi Influence Soil Structure; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Rillig, M.C.; Mummey, D.L. Mycorrhizas and soil structure. New Phytol. 2006, 171, 41–53. [Google Scholar]
- Rillig, M.C.; Ramsey, P.W.; Morris, S.; Paul, E.A. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 2003, 253, 293–299. [Google Scholar]
- Rillig, M.C. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 2004, 84, 355–363. [Google Scholar]
- Wilson, G.W.T.; Rice, C.W.; Rillig, M.C.; Springer, A.; Hartnett, D.C. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecol. Lett. 2009, 12, 452–461. [Google Scholar] [PubMed]
- Rillig, M.C.; Steinberg, P.D. Glomalin production by an arbuscular mycorrhizal fungus: A mechanism of habitat modification? Soil Biol. Biochem. 2002, 34, 1371–1374. [Google Scholar]
- Lovelock, C.E.; Wright, S.F.; Clark, D.A.; Ruess, R.W. Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J. Ecol. 2004, 92, 278–287. [Google Scholar]
- Treseder, K.K.; Turner, K.M. Glomalin in ecosystems. Soil Sci. Soc. Am. J. 2007, 71, 1257–1266. [Google Scholar]
- Nichols, K.A.; Wright, S.F. Comparison of glomalin and humic acid in eight native U.S. soils. Soil Sci. 2005, 170, 985–997. [Google Scholar]
- González-Chávez, M.C.; Carrillo-González, R.; Wright, S.F.; Nichols, K.A. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ. Pollut. 2004, 130, 317–323. [Google Scholar] [PubMed]
- Khan, A.G. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol. 2005, 18, 355–364. [Google Scholar]
- Rillig, M.C. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol. Lett. 2004, 7, 740–754. [Google Scholar]
- Lovelock, C.E.; Wright, S.F.; Nichols, K.A. Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: An example from a tropical rain forest soil. Soil Biol. Biochem. 2004, 36, 1009–1012. [Google Scholar] [CrossRef]
- Wright, S.F.; Starr, J.L.; Paltineanu, I.C. Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci. Soc. Am. J. 1999, 63, 1825–1829. [Google Scholar]
- Steinberg, P.D.; Rillig, M.C. Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biol. Biochem. 2003, 35, 191–194. [Google Scholar]
- Rosier, C.L.; Hoye, A.T.; Rillig, M.C. Glomalin-related soil protein: Assessment of current detection and quantification tools. Soil Biol. Biochem. 2006, 38, 2205–2211. [Google Scholar]
- Gadkar, V.; Rillig, M.C. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol. Lett. 2006, 263, 93–101. [Google Scholar]
- Purin, S.; Rillig, M.C. The arbuscular mycorrhizal fungal protein glomalin: Limitations, progress, and a new hypothesis for its function. Pedobiologia 2007, 51, 123–130. [Google Scholar]
- Schindler, F.V.; Mercer, E.J.; Rice, J.A. Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol. Biochem. 2007, 39, 320–329. [Google Scholar]
- Vodnik, D.; Grčman, H.; Maček, I.; Van Elteren, J.T.; Kovačevič, M. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci. Total Environ. 2008, 392, 130–136. [Google Scholar]
- Cornejo, P.; Meier, S.; Borie, G.; Rillig, M.C.; Borie, F. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci. Total Environ. 2008, 406, 154–160. [Google Scholar] [PubMed]
- Janos, D.P.; Garamszegi, S.; Beltran, B. Glomalin extraction and measurement. Soil Biol. Biochem. 2008, 40, 728–739. [Google Scholar]
- Bedini, S.; Pellegrino, E.; Avio, L.; Pellegrini, S.; Bazzoffi, P.; Argese, E.; Giovannetti, M. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol. Biochem. 2009, 41, 1491–1496. [Google Scholar]
- Gillespie, A.W.; Farrell, R.E.; Walley, F.L.; Ross, A.R.S.; Leinweber, P.; Eckhardt, K.; Regier, T.Z.; Blyth, R.I.R. Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biol. Biochem. 2011, 43, 766–777. [Google Scholar]
- Wu, Q.; He, X.; Zou, Y.; He, K.; Sun, Y.; Cao, M. Spatial distribution of glomalin-related soil protein and its relationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease and β-glucosidase in the rhizosphere of Citrus unshiu. Soil Biol. Biochem. 2012, 45, 181–183. [Google Scholar] [CrossRef]
- Sun, X.; Xing, Y.; Yan, G.; Liu, G.; Wang, X.; Wang, Q. Dynamics of glomalin-related soil protein and soil aggregates during secondary succession in the temperate forest. Catena 2024, 234, 107602. [Google Scholar]
- Holátko, J.; Brtnický, M.; Kučerík, J.; Kotianová, M.; Elbl, J.; Kintl, A.; Kynický, J.; Benada, O.; Datta, R.; Jansa, J. Glomalin—Truths, myths, and the future of this elusive soil glycoprotein. Soil Biol. Biochem. 2021, 153, 108116. [Google Scholar]
- Wang, Q.; Mei, D.; Chen, J.; Lin, Y.; Liu, J.; Lu, H.; Yan, C. Sequestration of heavy metal by glomalin-related soil protein: Implication for water quality improvement in mangrove wetlands. Water Res. 2019, 148, 142–152. [Google Scholar] [PubMed]
- Gao, Y.; Jia, X.; Zhao, Y.; Zhao, J.; Ding, X.; Zhang, C.; Feng, X. Effect of arbuscular mycorrhizal fungi (Glomus mosseae) and elevated air temperature on Cd migration in the rhizosphere soil of alfalfa. Ecotoxicol. Environ. Saf. 2022, 248, 114342. [Google Scholar] [PubMed]
- Lin, L.; He, L.; Hong, H.; Li, H.; Xiao, X.; Yuan, B.; Liu, S.; Lu, H.; Liu, J.; Yan, C. Sequestration of strontium, nickel, and cadmium on glomalin-related soil protein: Interfacial behaviors and ecological functions. Sci. Total Environ. 2023, 881, 163461. [Google Scholar] [CrossRef]
- Cissé, G.; Essi, M.; Nicolas, M.; Staunton, S. Bradford quantification of glomalin-related soil protein in coloured extracts of forest soils. Geoderma 2020, 372, 114394. [Google Scholar]
- Moragues Saitua, L.; Merino Martín, L.; Stokes, A.; Staunton, S. Towards meaningful quantification of glomalin-related soil protein (GRSP) taking account of interference in the Coomassie Blue (Bradford) assay. Eur. J. Soil Sci. 2019, 70, 727–735. [Google Scholar]
- Guo, Z.; Liu, J.; Wu, J.; Yang, D.; Mei, K.; Li, H.; Lu, H.; Yan, C. Spatial heterogeneity in chemical composition and stability of glomalin-related soil protein in the coastal wetlands. Sci. Total Environ. 2022, 835, 155351. [Google Scholar]
- Tian, Y.; Yan, C.; Wang, Q.; Ma, W.; Yang, D.; Liu, J.; Lu, H. Glomalin-related soil protein enriched in δ13C and δ15N excels at storing blue carbon in mangrove wetlands. Sci. Total Environ. 2020, 732, 138327. [Google Scholar] [CrossRef]
- Wang, Q.; Hong, H.; Liao, R.; Yuan, B.; Li, H.; Lu, H.; Liu, J.; Yan, C. Glomalin-related soil protein: The particle aggregation mechanism and its insight into coastal environment improvement. Ecotoxicol. Environ. Saf. 2021, 227, 112940. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, A.M.; Ritz, K.; Nunan, N.; Clode, P.L.; Pett-Ridge, J.; Kilburn, M.R.; Murphy, D.V.; O Donnell, A.G.; Stockdale, E.A. Nano-scale secondary ion mass spectrometry—A new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biol. Biochem. 2007, 39, 1835–1850. [Google Scholar]
- Irving, T.B.; Alptekin, B.; Kleven, B.; Ane, J. Acritical review of 25 years of glomalin research: A better mechanical understanding and robust quantification techniques are required. New Phytol. 2021, 232, 10. [Google Scholar]
- Agnihotri, R.; Sharma, M.P.; Prakash, A.; Ramesh, A.; Bhattacharjya, S.; Patra, A.K.; Manna, M.C.; Kurganova, I.; Kuzyakov, Y. Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: Review of mechanisms and controls. Sci. Total Environ. 2022, 806, 150571. [Google Scholar]
- Deng, C.; Zou, Y.; Hashem, A.; Kuča, K.; Abd-Allah, E.F.; Wu, Q. The visualized knowledge map and hot topic analysis of glomalin-related soil proteins in the carbon field based on Citespace. Chem. Biol. Technol. Agric. 2023, 10, 48. [Google Scholar]
- Liu, R.; Meng, L.; Zou, Y.; He, X.; Wu, Q. Introduction of earthworms into mycorrhizosphere of white clover facilitates N storage in glomalin-related soil protein and contribution to soil total N. Appl. Soil Ecol. 2022, 179, 104597. [Google Scholar]
- Liu, S.; Wang, Q.; Qian, L.; Zhang, B.; Chen, X.; Hong, H.; Wu, S.; Liu, J.; Yan, C.; Lu, H. Mapping the scientific knowledge of glomalin-related soil protein with implications for carbon sequestration. Ecosyst. Health Sustain. 2022, 8, 2085185. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, T.; Wang, J.; Chen, S.; Ling, W. Research progress and prospect of glomalin-related soil protein in the remediation of slightly contaminated soil. Chemosphere 2023, 344, 140394. [Google Scholar]
Rank | Keywords | Occurrences | Degree Centrality |
---|---|---|---|
1 | glomalin | 311 | 1.000 |
2 | arbuscular mycorrhizal fungi | 259 | 0.845 |
3 | protein | 179 | 0.562 |
4 | aggregate stability | 171 | 0.553 |
5 | carbon | 162 | 0.530 |
6 | organic matter | 148 | 0.501 |
7 | nitrogen | 137 | 0.456 |
8 | hyphae | 131 | 0.401 |
9 | growth | 112 | 0.360 |
10 | diversity | 107 | 0.344 |
Rank | First Author | Year | Title | Local Total Citations |
---|---|---|---|---|
1 | Wright S.F. [3] | 1998 | A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi | 452 |
2 | Wright S.F. [31] | 1999 | Changes in aggregate stability and concentration of glomalin during tillage management transition | 85 |
3 | Rillig M.C. [7] | 2001 | Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils | 223 |
4 | Rillig M.C. [23] | 2002 | Glomalin production by an arbuscular mycorrhizal fungus: A mechanism of habitat modification? | 84 |
5 | Rillig M.C. [6] | 2002 | The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species | 141 |
6 | Rillig M.C. [20] | 2003 | Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change | 140 |
7 | Steinberg P.D. [32] | 2003 | Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin | 86 |
8 | Rillig M.C. [21] | 2004 | Arbuscular mycorrhizae, glomalin, and soil aggregation | 318 |
9 | Lovelock C.E. [24] | 2004 | Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape | 145 |
10 | González-Chávez M.C. [27] | 2004 | The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements | 125 |
11 | Lovelock C.E. [30] | 2004 | Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: An example from a tropical rain forest soil | 63 |
12 | Driver J.D. [1] | 2005 | Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi | 181 |
13 | Nichols K.A. [26] | 2005 | Comparison of glomalin and humic acid in eight native U.S. soils | 57 |
14 | Rosier C.L. [33] | 2006 | Glomalin-related soil protein: Assessment of current detection and quantification tools | 95 |
15 | Gadkar V. [34] | 2006 | The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60 | 86 |
16 | Rillig M.C. [19] | 2006 | Mycorrhizas and soil structure | 136 |
17 | Purin S. [35] | 2007 | The arbuscular mycorrhizal fungal protein glomalin: Limitations, progress, and a new hypothesis for its function | 64 |
18 | Schindler F.V. [36] | 2007 | Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content | 111 |
19 | Treseder K.K. [25] | 2007 | Glomalin in Ecosystems | 120 |
20 | Vodnik D. [37] | 2008 | The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil | 81 |
21 | Cornejo P. [38] | 2008 | Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration | 100 |
22 | Janos D.P. [39] | 2008 | Glomalin extraction and measurement | 61 |
23 | Bedini S. [40] | 2009 | Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices | 105 |
24 | Wilson G.W.T. [22] | 2009 | Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments | 74 |
25 | Gillespie A.W. [41] | 2011 | Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials | 95 |
26 | Wu Q.S. [42] | 2012 | Spatial distribution of glomalin-related soil protein and its relationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease and β-glucosidase in the rhizosphere of Citrus unshiu | 57 |
27 | Koide R.T. [4] | 2013 | Behavior of Bradford-reactive substances is consistent with predictions for glomalin | 57 |
28 | Wu Q.S. [5] | 2015 | Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels | 57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, Q.; Wu, H.; Xie, L.; Zhao, Y.; Huang, Q.; Zhang, Q.; Liu, J.; Hu, P.; Tang, T.; Xiao, J.; et al. Advances, Challenges, and Perspectives in Glomalin-Related Soil Protein Research. Microorganisms 2025, 13, 740. https://doi.org/10.3390/microorganisms13040740
Ling Q, Wu H, Xie L, Zhao Y, Huang Q, Zhang Q, Liu J, Hu P, Tang T, Xiao J, et al. Advances, Challenges, and Perspectives in Glomalin-Related Soil Protein Research. Microorganisms. 2025; 13(4):740. https://doi.org/10.3390/microorganisms13040740
Chicago/Turabian StyleLing, Qiumei, Hanqing Wu, Lei Xie, Yuan Zhao, Qibo Huang, Qian Zhang, Ji Liu, Peilei Hu, Tiangang Tang, Jun Xiao, and et al. 2025. "Advances, Challenges, and Perspectives in Glomalin-Related Soil Protein Research" Microorganisms 13, no. 4: 740. https://doi.org/10.3390/microorganisms13040740
APA StyleLing, Q., Wu, H., Xie, L., Zhao, Y., Huang, Q., Zhang, Q., Liu, J., Hu, P., Tang, T., Xiao, J., Du, H., Zhao, J., Zhang, W., Chen, H., & Wang, K. (2025). Advances, Challenges, and Perspectives in Glomalin-Related Soil Protein Research. Microorganisms, 13(4), 740. https://doi.org/10.3390/microorganisms13040740