Integrating Cover Crops and Manure to Boost Goji Berry Yield: Responses of Soil Physicochemical Properties and Microbial Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site and Experimental Design
2.2. Soil Sampling, Testing Methods, and Fruit Yield Estimation
2.3. DNA Extraction, PCR Amplification, and Sequencing
2.4. Data Processing and Analysis
3. Results
3.1. Changes in Soil Properties and Fruit Yield
3.2. Soil Microbial Diversity Patterns
3.3. Soil Microbial Community Compositions
3.4. Soil Microbial Co-Occurrence Patterns
3.5. Treatment Effects on Fruit Yield, Soil Properties, and Microbial Diversity
4. Discussion
4.1. Cover Cropping with Manure Alters Soil Microbial Community Structure and Network Complexity
4.2. Soil Properties and Fruit Yield Are Improved by Cover Cropping with Manure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.; Chen, B.; Fu, W. Research Frontiers in Soil Ecology. Sci. Technol. Rev. 2022, 40, 25–31. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, F.; Gong, X.; Wang, Y.; Li, L.; Liu, D.; Yao, Y. Effects of Organic Fertilizers on Soil Microbial Community Characteristics: Research Progress. Chin. Agric. Sci. Bull. 2023, 39, 88–96. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, J.; Yang, Y.; Yu, H.; Zhang, S.; Chen, F. Response of Soil Microbial Community to Vegetation Reconstruction Modes in Mining Areas of the Loess Plateau, China. Front. Microbiol. 2021, 12, 714967. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Six, J. Soil Structure and Microbiome Functions in Agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
- Wang, F.; Li, W.H.; Chen, H.N.; Weil, R.; Zhu, L.Z.; Nan, X.X. Forage Radish Cover Crops Improve Soil Quality and Fruit Yield of Lycium barbarum L. in An Arid Area of Northwest China. Agronomy 2023, 13, 1634. [Google Scholar] [CrossRef]
- Ma, J.J.; Yao, H.; Liu, H.; Tian, M.R. Evolution Characteristics of Soil Nutrients and Microorganisms During Alfalfa Restoration of Mining Area in Yanshan Mountain. J. Environ. Eng. Technol. 2023, 13, 270–279. [Google Scholar] [CrossRef]
- Li, Y.X.; Wang, S.D.; Ke, Y.; Luo, J.H.; Chen, X.Q.; Zhang, X.J. Characteristics of Soil Nutrients and Present Situation of Fertilization in the Major Wolfberry Producing Areas of Ningxia. Agric. Res. Arid Areas 2016, 34, 113–118. [Google Scholar] [CrossRef]
- Dikgwatlhe, S.; Kong, F.; Chen, Z.; Lal, R.; Chen, F. Tillage and Residue Management effects on Temporal Changes in Soil Organic Carbon and Fractions of a Silty Loam Soil in the North China Plain. Soil Use Manag. 2014, 30, 496–506. [Google Scholar] [CrossRef]
- Rusu, T. Energy Efficiency and Soil Conservation in Conventional, Minimum Tillage and No-tillage. Int. Soil Water Conserv. Res. 2014, 2, 42–49. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Peng, X.H. Bio-tillage: A New Perspective for Sustainable Agriculture. Soil Tillage Res. 2021, 206, 104844. [Google Scholar] [CrossRef]
- Ding, T.T.; Duan, T.Y. Research Progress on the Influence of Orchard Green Manure on Fruit Tree Soil-microbe System. J. Fruit Sci. 2021, 38, 2196–2208. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Tian, Y.; Wu, X.; Yang, J.; Luo, Y.; Li, H.; Awasthi, M.; Zhao, Z. Temporal and Spatial Variation of Soil Microorganisms and Nutrient Under White Clover cover. Soil Tillage Res. 2020, 202, 104666. [Google Scholar] [CrossRef]
- Jin, X.; Wang, Y.; Liu, C.; Chen, X.; Long, M.; He, S. Effects on Soil Nutrients and Bacterial Communities of Different Cover Crops in an Organic Kiwifruit Orchard in the Guanzhong Region of China. Acta Prataculturae Sin. 2022, 31, 53–63. [Google Scholar] [CrossRef]
- Zhong, Z.; Huang, X.; Feng, D.; Xing, S.; Weng, B. Long-term Effects of Legume Mulching on Soil Chemical Properties and Bacterial Community Composition and Structure. Agric. Ecosyst. Environ. 2018, 268, 24–33. [Google Scholar] [CrossRef]
- Sun, R.B.; Chen, Y.; Han, W.X.; Dong, W.X.; Zhang, Y.M.; Hu, C.S.; Liu, B.B.; Wang, F.H. Different Contribution of Species Sorting and Exogenous Species Immigration from Manure to Soil Fungal Diversity and Community Assemblage under long-term Fertilization. Soil Biol. Biochem. 2020, 151, 108049. [Google Scholar] [CrossRef]
- Sedghi, N.; Weil, R. Fall Cover Crop Nitrogen Uptake Drives Reductions in Winter-spring Leaching. J. Environ. Qual. 2022, 51, 337–351. [Google Scholar] [CrossRef]
- Wang, F.; Weil, R.; Nan, X. Total and Permanganate-oxidizable Organic Carbon in the Corn Rooting Zone of US Coastal Plain Soils as Affected by Forage Radish Cover Crops and N fertilizer. Soil Tillage Res. 2017, 165, 247–257. [Google Scholar] [CrossRef]
- Peng, T.; Ma, S.; Ma, C.; Song, Y.; Gao, N.; Li, K.; Zhang, C.; Li, J.; Na, X.; Wang, L. Effects of Long-term Monocropping on Soil Microbial Metabolic Activity and Diversity in Topsoil and Subsoil Horizons of Lycium barbarum Fields. Acta Prataculturae Sin. 2023, 32, 89–98. [Google Scholar] [CrossRef]
- Bao, S. Soil Analysis Manual, 3rd ed.; China Agriculture Press: Beijing, China, 2005. [Google Scholar]
- Xu, N.; Tan, G.; Wang, H.; Gai, X. Effect of Biochar Additions to Soil on Nitrogen Leaching, Microbial Biomass and Bacterial Community Structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Adams, R.; Miletto, M.; Taylor, J.; Bruns, T. Dispersal in Microbes: Fungi in Indoor Air are Dominated by Outdoor Air and Show Dispersal Limitation at Short Distances. ISME J. 2013, 7, 1262–1273. [Google Scholar] [CrossRef]
- Chen, G.; Weil, R.R. Root Growth and Yield of Maize as Affected by Soil Compaction and Cover crops. Soil Tillage Res. 2011, 117, 17–27. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences Into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Kou, R.; Feng, G.Y.; Li, C.; Dong, H.Y.; Fan, X.J. The Composition, Interaction Network, and Source of Microbia Community in Shanxi Mature Vinegar Produced by Liquid-solid Fermentation. Microbiol. China 2023, 50, 2556–2568. [Google Scholar] [CrossRef]
- Blanco, C.H.; Shaver, T.M.; Lindquis, J.; Shapiro, C.; Elmore, R.; Francis, C.; Hergert, G. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Rashid, M.I.; Mujawar, L.H.; Almeelbi, T.; Shahzad, T.; Almeelbi, T.; Ismail, I.M.I.; Oves, M. Bacteria and Fungi can Contribute to Nutrients Bioavailability and Aggregate Formation in Degraded Soils. Microbiol. Res. 2016, 183, 26–41. [Google Scholar] [CrossRef]
- Romaniuk, R.; Giuffré, L.; Costantini, A.; Nannipieri, P. Assessment of Soil Microbial Diversity Measurements as Indicators of Soil Functioning in Organic and Conventional Horticulture Systems. Ecol. Indic. 2011, 11, 1345–1353. [Google Scholar] [CrossRef]
- Muhammad, I.; Wang, J.; Sainju, U.; Zhang, S.; Zhao, F.; Khan, A. Cover Cropping Enhances Soil Microbial Biomass and Affects Microbial Community Structure: A meta-analysis. Geoderma 2021, 381, 114696. [Google Scholar] [CrossRef]
- Xiong, H.; Liu, Y.; Li, Y.; Zhang, Y.; Huang, X.; Yang, Y.; Zhu, H.; Jiang, T. Effects of Long-term fertilization Patterns on Bacterial Community Structure and Soil Nutrients in Dryland of Yellow Soil. Chin. J. Appl. Ecol. 2023, 34, 1949–1956. [Google Scholar] [CrossRef]
- Xu, Z.S.; Liu, J.H.; Lu, X.P.; Chen, X.J.; Zhang, B.W.; Zhang, X.L.; Zhu, W.; Yang, Y.M. The Application of Organic Fertilizer Improves the Activity of the Soil Enzyme, Increases the Number and the Species Variety of Bacteria in Black Soil. Soil Fertiltzer Sci. China 2020, 50–55. [Google Scholar] [CrossRef]
- He, J.; Zhang, H.; Luo, W.; Zhang, P.; Li, W.; Luo, P. Soil Bacterial Community Structure Improved in Young Rubber Plantation Covered with Kudzu vines. Soil Fertil. Sci. China 2021, 69–76. [Google Scholar] [CrossRef]
- Liu, Z.H.; Huang, F.Y.; Li, J.L.; Zhang, P.; Yang, B.P.; Ding, R.X.; Nie, J.F.; Jia, Z.K. Effects of Farmland Mulching Patterns on Soil Microbial Diversity and Community Structure in Dryland. Acta Ecol. Sin. 2021, 41, 2750–2760. [Google Scholar] [CrossRef]
- Yan, B.F.; Liu, N.; Liu, M.H.; Du, X.Y.; Shang, F.; Huang, Y. Soil Actinobacteria Tend to Have Neutral Interactions with other Coccurring Microorganisms, Especially under Oligotrophic Conditions. Environ. Microbiol. 2021, 23, 4126–4140. [Google Scholar] [CrossRef]
- Liu, J.J.; Sui, Y.Y.; Yu, Z.H.; Shi, Y.; Chu, H.Y.; Jin, J.; Liu, X.B.; Wang, G.H. High Throughput Sequencing Analysis of Biogeographical Distribution of Bacterial Communities in the Black Soils of Northeast China. Soil Biol. Biochem. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Zhang, X.J.; Zhang, G.Z.; Yang, H.T. Genomics Basis of Arthrobacter Spp Environmental Adaptability—A review. Acta Microbiol. Sin. 2016, 56, 570–577. [Google Scholar] [CrossRef]
- Du, H.J.; Yu, L.Y.; Zhang, Y.Q. Recent Advance on the Genus Nocardioides—A review. Acta Microbiol. Sin. 2012, 52, 671–678. [Google Scholar] [CrossRef]
- Bastida, F.; Torres, I.F.; Moreno, J.L.; Baldrian, P.; Ondoño, S.; Ruiz, N.A.; Hernández, T.; Richnow, H.H.; Starke, R.; García, C.; et al. The Active Microbial Diversity Drives Ecosystem Multifunctionality and is Physiologically Related to Carbon Availability in Mediterranean Semi-arid soils. Mol. Ecol. 2016, 25, 4660–4673. [Google Scholar] [CrossRef]
- Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; Callaghan, T.M.; et al. Towards a Unified Paradigm for Sequence-based Identification of Fungi. Mol. Ecol. 2013, 22, 5271–5277. [Google Scholar] [CrossRef]
- Geng, H.T.; Wang, X.D.; Shi, S.B.; Yi, Z.Q.; Zhou, W.J. Effects of Combined Application of Fungal Residue and Chemical Fertilizer on Soil Microbial Community Composition and Diversity in Paddy soil. Environ. Sci. 2023, 44, 2338–2347. [Google Scholar] [CrossRef]
- Huang, Q.E.; Wu, T.; Zhang, K.J.; He, W.Y.; Cao, J.Q.; Xu, J.Y.; Qing, L.P.; Zhu, B. Fungal Community Structure Diversity and Biological Activity of Culturable Endophytic Fungi from Actinidia Eriantha. Chin. Tradit. Herb. Drugs 2024, 55, 3497–3505. [Google Scholar] [CrossRef]
- Hossain, M.; Sultana, F.; Kubota, M.; Koyama, H.; Hyakumachi, M. The Plant Growth-Promoting Fungus Penicillium Simplicissimum GP17-2 Induces Resistance in Arabidopsis Thaliana by Activation of Multiple Defense Signals. Plant Cell Physiol. 2007, 48, 1724–1736. [Google Scholar] [CrossRef]
- Ozimek, E.; Hanaka, A. Mortierella Species as the Plant Growth-Promoting Fungi Present in the Agricultural Soils. Agriculture 2021, 11, 7. [Google Scholar] [CrossRef]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate Solubilizing Microbes: Sustainable Approach for Managing Phosphorus Deficiency in Agricultural Soils. SpringerPlus 2013, 2, 587. [Google Scholar] [CrossRef]
- Wang, S.H.; Chang, S.L.; Li, X.; Zhang, Y.T. Soil Fungal Diversity and its Community Structure in Tianshan Forest. Acta Ecol. Sin. 2021, 41, 124–134. [Google Scholar] [CrossRef]
- Jiang, P.; Wang, Y.Z.; Zhang, Y.P.; Fei, J.C.; Rong, X.M.; Peng, J.W.; Yin, L.C.; Zhou, X.; Luo, G.W. Enhanced Productivity of Maize Through Intercropping is Associated with Community Composition, Core Species, and Network Complexity of Abundant Microbiota in Rhizosphere Soil. Geoderma 2024, 442, 116786. [Google Scholar] [CrossRef]
- Cazzaniga, S.G.; Braat, L.; Elsen, S.V.D.; Lombaers, C.; Visser, J.; Obinu, L.; Macia-Vicente, J.G.; Postma, J.; Mommer, L.; Helder, J. Pinpointing the Distinctive Impacts of Ten cover Crop Species on the Resident and Active Fractions of the Soil Microbiome. Appl. Soil Ecol. 2023, 190, 105012. [Google Scholar] [CrossRef]
- Normand, P.; Daffonchio, D.; Gtari, M. The Family Geodermatophilaceae. In The Prokaryotes; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 11, pp. 361–379. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Cui, X.Y.; Xue, K.; Zhang, Y.; Yu, Z. Habitat Filtering Shapes the Differential Structure of Microbial Communities in the Xilingol Grassland. Sci. Rep. 2019, 9, 19326. [Google Scholar] [CrossRef]
- Gómez, S.; Fernández, F.J.; Vega, M.C. Chapter 4–Heterologous Expression of Proteins in Aspergillus. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 55–68. [Google Scholar] [CrossRef]
- Dall’Asta, C.; Cirlini, M.; Falavigna, C. Chapter Three–Mycotoxins from Alternaria: Toxicological Implications. In Advances in Molecular Toxicology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 8, pp. 107–121. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhang, Y.X.; Hou, S.S.; Li, H.B.; Zhang, R.F.; Wang, H.; Wang, X.X. Research Progress on Benefits and Rational Selection of Cover Crops. Trans. Chin. Soc. Agric. Eng. 2023, 39, 23–34. [Google Scholar] [CrossRef]
- Yang, L.; Bai, J.; Liu, J.; Zeng, N.; Cao, W. Green Manuring Effect on Changes of Soil nitrogen Fractions, Maize Growth and Nutrient Uptake. Agronomy 2018, 8, 261. [Google Scholar] [CrossRef]
- Weil, R.; White, C.; Lawley, Y. Forage radish: New Multi-Purpose Cover Crop for the Mid-Atlantic. Fact Sheet 2009, 824, 1–8. [Google Scholar]
- Wei, Y.; Bo, Q.; Tang, A.; Gao, J.; Ma, T.; Wei, X.; Zhang, F.; Zhou, X.; Yue, S.; Li, S. Effects of Long-term Film Mulching and Application of Prganic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau. Sci. Agric. Sin. 2023, 56, 1708–1717. [Google Scholar] [CrossRef]
- Welch, R.Y.; Behnke, G.D.; Davis, A.S.; Masiunas, J. Using Cover Crops in Headlands of Organic Grain Farms: Effects on Soil Properties, Weeds and Crop Yields. Agric. Ecosyst. Environ. 2016, 216, 322. [Google Scholar] [CrossRef]
- Connell, R.; Zeglin, L.; Blair, J. Plant Legacies and Soil Microbial Community Dynamics Control Soil Respiration. Soil Biol. Biochem. 2021, 160, 108350. [Google Scholar] [CrossRef]
- Gao, S.; Gao, J.; Cao, W.; Zou, C.; Huang, J.; Bai, J.; Dou, F. Effects of Long-term Green Manure Application on the Content and Structure of Dissolved Organic Matter in Red Paddy Soil. J. Integr. Agric. 2018, 17, 1852–1860. [Google Scholar] [CrossRef]
- Du, W.; Wang, Z.Q.; He, W.X.; Gao, Y.J.; Cao, W.D. Effects of Leguminous Green Manure on Soil Nutrients and Their Ecological Stoichiometry Characteristics in Weibei Rainfed Highland. Acta Pedol. Sin. 2017, 54, 999–1008. [Google Scholar] [CrossRef]
Treatment | pH | BD (g·cm−3) | EC (µs·cm−1) | TN (g·kg−1) | AN (mg·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) | MBC (mg·kg−1) | MBN (mg·kg−1) |
---|---|---|---|---|---|---|---|---|---|
MM0 | 8.97 ± 0.28 a | 1.45 ± 0.01 a | 109.37 ± 12.81 c | 0.76 ± 0.24 b | 19.71 ± 7.87 c | 15.41 ± 9.74 b | 52.65 ± 25.71 b | 71.62 ± 16.44 c | 13.22 ± 4.84 b |
MM1 | 8.85 ± 0.15 a | 1.45 ± 0.01 a | 133.33 ± 16.98 bc | 0.71 ± 0.25 b | 35.2 ± 5.74 ab | 17.05 ± 4.92 b | 38.89 ± 11.42 b | 106.27 ± 7.93 c | 24.84 ± 10.30 b |
MM2 | 8.93 ± 0.34 a | 1.45 ± 0.02 a | 155.6 ± 30.32 b | 0.88 ± 0.44 ab | 35.2 ± 12.03 ab | 15.84 ± 7.12 b | 78.04 ± 35.74 ab | 83.57 ± 9.32 c | 16.14 ± 5.77 b |
IM0 | 9.01 ± 0.02 a | 1.42 ± 0.02 ab | 116.8 ± 4.79 c | 1.34 ± 0.12 ab | 27.21 ± 2.71 bc | 35.96 ± 10.51 ab | 51.00 ± 0.72 b | 72.16 ± 17.47 c | 24.90 ± 2.71 b |
IM1 | 8.97 ± 0.17 a | 1.40 ± 0.03 b | 136.23 ± 22.61 bc | 1.51 ± 0.55 a | 40.69 ± 5.28 ab | 31.39 ± 15.55 ab | 74.59 ± 18.55 ab | 225.80 ± 18.33 a | 89.65 ± 10.18 a |
IM2 | 8.85 ± 0.13 a | 1.45 ± 0.01 a | 191.07 ± 10.57 a | 1.33 ± 0.28 ab | 49.50 ± 8.37 a | 47.63 ± 15.77 a | 114.47 ± 31.43 a | 170.09 ± 11.45 b | 39.43 ± 10.09 b |
A | ns | * | ns | *** | ns | *** | ns | * | ** |
B | ns | ns | *** | ns | ** | ns | * | * | * |
A × B | ns | ns | ** | ns | ** | * | * | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Wang, F.; Gao, Y.; Ma, Y.; Zhu, L.; Nan, X. Integrating Cover Crops and Manure to Boost Goji Berry Yield: Responses of Soil Physicochemical Properties and Microbial Communities. Microorganisms 2025, 13, 696. https://doi.org/10.3390/microorganisms13030696
Chen H, Wang F, Gao Y, Ma Y, Zhu L, Nan X. Integrating Cover Crops and Manure to Boost Goji Berry Yield: Responses of Soil Physicochemical Properties and Microbial Communities. Microorganisms. 2025; 13(3):696. https://doi.org/10.3390/microorganisms13030696
Chicago/Turabian StyleChen, Haonan, Fang Wang, Yamiao Gao, Yaran Ma, Lizhen Zhu, and Xiongxiong Nan. 2025. "Integrating Cover Crops and Manure to Boost Goji Berry Yield: Responses of Soil Physicochemical Properties and Microbial Communities" Microorganisms 13, no. 3: 696. https://doi.org/10.3390/microorganisms13030696
APA StyleChen, H., Wang, F., Gao, Y., Ma, Y., Zhu, L., & Nan, X. (2025). Integrating Cover Crops and Manure to Boost Goji Berry Yield: Responses of Soil Physicochemical Properties and Microbial Communities. Microorganisms, 13(3), 696. https://doi.org/10.3390/microorganisms13030696