Dicentrine Purified from the Leaves of Ocotea puberula Controls the Intracellular Spread of L. (L.) amazonensis and L. (V.) braziliensis Amastigotes and Has Therapeutic Activity as a Topical Treatment in Experimental Cutaneous Leishmaniasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Plant Material
2.3. Extraction and Isolation Procedures
2.4. Animals and Bone Marrow-Derived Macrophages
2.5. Parasites
2.6. Antipromastigote and Cytotoxic Assays
2.7. Infection and Experimental Treatment (In Vitro)
2.8. Quantification of Hydrogen Peroxide and Nitric Oxide
2.9. Production of Dicentrine Formulation
2.10. Characterization of Dicentrine Cream
2.11. Permeation Studies with Creams Containing Dicentrine
2.12. Infection and Experimental Treatment
2.13. Statistical Analysis
3. Results
3.1. Leishmanicidal and Cytotoxic Properties of O. puberula
3.2. Quantification of Hydrogen Peroxide and Nitric Oxide Produced by Macrophages
3.3. Stability, Sedimentation Velocity, and Permeation of a Topical Formulation Containing Dicentrine
3.4. Experimental Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corman, H.N.; McNamara, C.W.; Bakowski, M.A. Drug Discovery for Cutaneous Leishmaniasis: A Review of Developments in the Past 15 Years. Microorganisms 2023, 11, 2845. [Google Scholar] [CrossRef] [PubMed]
- Lafleur, A.; Daffis, S.; Mowbray, C.; Arana, B. Immunotherapeutic Strategies as Potential Treatment Options for Cutaneous Leishmaniasis. Vaccines 2024, 12, 1179. [Google Scholar] [CrossRef]
- Lainson, R. The American leishmaniases: Some observations on their ecology and epidemiology. Trans. R. Soc. Trop. Med. Hyg. 1983, 77, 569–596. [Google Scholar] [CrossRef] [PubMed]
- Lainson, R. The Neotropical Leishmania species: A brief historical review of their discovery, ecology and taxonomy. Rev. Pan-Amaz. Saúde 2010, 1, 13–32. [Google Scholar] [CrossRef]
- dos Reis, E.S.; Paz, W.S.; Santos Ramos, R.E.; Nunes Ribeiro, C.J.; Biano, L.S.; Bezerra-Santos, M.; de Oliveira, C.I.; Lipscomb, M.W.; de Moura, T.R. Spatial and temporal modeling of the global burden of Cutaneous Leishmaniasis in Brazil: A 21-year ecological study. PLoS Negl. Trop. Dis. 2024, 18, e0012668. [Google Scholar] [CrossRef]
- WHO. Leishmaniasis; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Verdan, M.; Taveira, I.; Lima, F.; Abreu, F.; Nico, D. Drugs and nanoformulations for the management of Leishmania infection: A patent and literature review (2015–2022). Expert Opin. Ther. Pat. 2023, 33, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Berbert, T.R.N.; de Mello, T.F.P.; Wolf Nassif, P.; Mota, C.A.; Silveira, A.V.; Duarte, G.C.; Demarchi, I.G.; Aristides, S.M.A.; Lonardoni, M.V.C.; Vieira Teixeira, J.J.; et al. Pentavalent Antimonials Combined with Other Therapeutic Alternatives for the Treatment of Cutaneous and Mucocutaneous Leishmaniasis: A Systematic Review. Dermatol. Res. Pract. 2018, 2018, 9014726. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; More, D.K.; Singh, M.K.; Singh, V.P.; Sharma, S.; Makharia, A.; Kumar, P.C.; Murray, H.W. Failure of pentavalent antimony in visceral leishmaniasis in India: Report from the center of the Indian epidemic. Clin. Infect. Dis. 2000, 31, 1104–1107. [Google Scholar] [CrossRef] [PubMed]
- Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.-C.; Barrett, M.P.; López-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl. Trop. Dis. 2017, 11, e0006052. [Google Scholar] [CrossRef]
- Lemke, A.; Kiderlen, A.F.; Kayser, O. Amphotericin B. Appl. Microbiol. Biotechnol. 2005, 68, 151–162. [Google Scholar] [CrossRef]
- Laniado-Laborín, R.; Cabrales-Vargas, M.N. Amphotericin B: Side effects and toxicity. Rev. Iberoam. Micol. 2009, 26, 223–227. [Google Scholar] [CrossRef]
- Frézard, F.; Aguiar, M.M.G.; Ferreira, L.A.M.; Ramos, G.S.; Santos, T.T.; Borges, G.S.M.; Vallejos, V.M.R.; De Morais, H.L.O. Liposomal Amphotericin B for Treatment of Leishmaniasis: From the Identification of Critical Physicochemical Attributes to the Design of Effective Topical and Oral Formulations. Pharmaceutics 2022, 15, 99. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.F.; Cohen, R.M.; Khan, R.A.; Burry, J.; Casas, E.C.; Chung, H.Y.; Costa, L.H.; Ford, N.; Galvao, D.L.N.; Giron, N.; et al. Paving the way for affordable and equitable liposomal amphotericin B access worldwide. Lancet Glob. Health 2024, 12, e1552–e1559. [Google Scholar] [CrossRef]
- Sundar, S.; Olliaro, P.L. Miltefosine in the treatment of leishmaniasis: Clinical evidence for informed clinical risk management. Ther. Clin. Risk Manag. 2007, 3, 733–740. [Google Scholar]
- Pradhan, S.; Schwartz, R.A.; Patil, A.; Grabbe, S.; Goldust, M. Treatment options for leishmaniasis. Clin. Exp. Dermatol. 2022, 47, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Passero, L.F.D.; Laurenti, M.D.; Santos-Gomes, G.; Campos, B.L.S.; Sartorelli, P.; Lago, J.H.G. Plants Used in Traditional Medicine: Extracts and Secondary Metabolites Exhibiting Antileishmanial Activity. Curr. Clin. Pharmacol. 2012, 9, 187–204. [Google Scholar] [CrossRef] [PubMed]
- Passero, L.F.D.; Cruz, L.A.; Santos-Gomes, G.; Rodrigues, E.; Laurenti, M.D.; Lago, J.H.G. Conventional versus natural alternative treatments for leishmaniasis: A review. Curr. Top. Med. Chem. 2018, 18, 1275–1286. [Google Scholar] [CrossRef]
- Passero, L.F.D.; Brunelli, E.; dos Santos Brunelli, E.; Sauini, T.; Amorim Pavani, T.F.; Jesus, J.A.; Rodrigues, E. The Potential of Traditional Knowledge to Develop Effective Medicines for the Treatment of Leishmaniasis. Front. Pharmacol. 2021, 12, 690432. [Google Scholar] [CrossRef]
- Martins, E.M.; Lamont, R.W.; Martinelli, G.; Lira-Medeiros, C.F.; Quinet, A.; Shapcott, A. Genetic diversity and population genetic structure in three threatened Ocotea species (Lauraceae) from Brazil’s Atlantic Rainforest and implications for their conservation. Conserv. Genet. 2015, 16, 1–14. [Google Scholar] [CrossRef]
- Montrucchio, D.; Miguel, O.; Zanin, S.; da Silva, G.; Cardozo, A.; Santos, A. Antinociceptive Effects of a Chloroform Extract and the Alkaloid Dicentrine Isolated from Fruits of Ocotea puberula. Planta Med. 2012, 78, 1543–1548. [Google Scholar] [CrossRef]
- Vernengo, M.J. The structure of ocoteine (thalicmine). Experientia 1963, 19, 294–295. [Google Scholar] [CrossRef] [PubMed]
- Baralle, F.; Schvarzberg, N.; Vernengo, M.; Comin, J. Dehydroocoteine and didehydroocoteine fromOcotea puberula. Experientia 1972, 28, 875–876. [Google Scholar] [CrossRef] [PubMed]
- Ooppachai, C.; Limtrakul (Dejkriengkraikul), P.; Yodkeeree, S. Dicentrine Potentiates TNF-α-Induced Apoptosis and Suppresses Invasion of A549 Lung Adenocarcinoma Cells via Modulation of NF-κB and AP-1 Activation. Molecules 2019, 24, 4100. [Google Scholar] [CrossRef]
- Lin, H.-F.; Huang, H.-L.; Liao, J.-F.; Shen, C.-C.; Huang, R.-L. Dicentrine Analogue-Induced G2/M Arrest and Apoptosis through Inhibition of Topoisomerase II Activity in Human Cancer Cells. Planta Med. 2015, 81, 830–837. [Google Scholar] [CrossRef]
- Yu, S.M.; Chen, C.C.; Ko, F.N.; Huang, Y.L.; Huang, T.F.; Teng, C.M. Dicentrine, a novel antiplatelet agent inhibiting thromboxane formation and increasing the cyclic AMP level of rabbit platelets. Biochem. Pharmacol. 1992, 43, 323–329. [Google Scholar]
- Barbosa, H.; Costa-Silva, T.A.; Alves Conserva, G.A.; Araujo, A.J.; Lordello, A.L.L.; Antar, G.M.; Amaral, M.; Soares, M.G.; Tempone, A.G.; Lago, J.H.G. Aporphine Alkaloids from Ocotea puberula with Anti- Trypanosoma Cruzi Potential—Activity of Dicentrine-β-N-Oxide in the Plasma Membrane Electric Potentials. Chem. Biodivers. 2021, 18, e2001022. [Google Scholar] [CrossRef] [PubMed]
- Montrucchio, D.P.; Córdova, M.M.; Soares Santos, A.R. Plant Derived Aporphinic Alkaloid S-(+)-Dicentrine Induces Antinociceptive Effect in Both Acute and Chronic Inflammatory Pain Models: Evidence for a Role of TRPA1 Channels. PLoS ONE 2013, 8, e67730. [Google Scholar] [CrossRef]
- Marquesini, N.R. Plantas Usadas Como Medicinais Pelos Índios do Paraná e Santa Catarina, Sul do Brasil—Guarani, Kaigang, Xogleng, Ava-Guarani, Kraô e Cayuá; Universidade Federal do Paraná: Curitiba, Brazil, 1995. [Google Scholar]
- Konkimalla, V.B.; Efferth, T. Inhibition of epidermal growth factor receptor over-expressing cancer cells by the aphorphine-type isoquinoline alkaloid, dicentrine. Biochem. Pharmacol. 2010, 79, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Tristão, D.C.; Barbosa, H.; de Castro Levatti, E.V.; Andrade, B.A.; Romanelli, M.M.; Antar, G.M.; Tempone, A.G.; Lago, J.H.G. Selective Activity Against Amastigote Forms of Trypanosoma cruzi and Leishmania infantum of Diastereomeric Dicentrine N -oxides. Chem. Biodivers. 2024, 21, e202401247. [Google Scholar] [CrossRef]
- Rosa, M.E.; Tristão, D.C.; Barbosa, H.; Mendes, V.M.; Tempone, A.G.; Lago, J.H.G.; Caseli, L. Exploring the antileishmanial activity of dicentrine from Ocotea puberula (Lauraceae) using biomembrane models. Bioorg. Chem. 2024, 147, 107408. [Google Scholar] [CrossRef]
- Arcaro, G.; Koga, A.Y.; Carletto, B.; Budel, G.M.; da Rocha Gaspar, M.D.; Nadal, J.M.; Novatski, A.; Lipinski, L.C.; Farago, P.V.; Pinheiro, L.A. Preclinical Trial of Ocotea puberula (Rich.) Nees (“Canela-Guaicá”) in Wound Healing: Validation of a Traditional Medicine Practice Used by Indigenous Groups in Southern Brazil. Evid.-Based Complement. Altern. Med. 2023, 2023, 3641383. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-C.; Kuo, T.-F.; Chen, C.-K.; Tsai, H.-J.; Lee, S.-S. Metabolism of Dicentrine: Identification of the Phase I and Phase II Metabolites in Miniature Pig Urine. Drug Metab. Dispos. 2010, 38, 1714–1722. [Google Scholar] [CrossRef]
- Yu, S.; Kang, Y.; Chen, C.; Teng, C. Effects of dicentrine on haemodynamic, plasma lipid, lipoprotein level and vascular reactivity in hyperlipidaemic rats. Br. J. Pharmacol. 1993, 108, 1055–1061. [Google Scholar] [CrossRef]
- de Lima, S.K.S.; Jesus, J.A.; Raminelli, C.; Laurenti, M.D.; Passero, L.F.D. High Selectivity of 8-Hydroxyquinoline on Leishmania (Leishmania) and Leishmania (Viannia) Species Correlates with a Potent Therapeutic Activity In Vivo. Pharmaceuticals 2023, 16, 707. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, E.S.; de Jesus, J.A.; Bezerra-Souza, A.; Brito, J.R.; Lago, J.H.G.; Laurenti, M.D.; Passero, L.F.D. Tolnaftate inhibits ergosterol production and impacts cell viability of Leishmania sp. Bioorg. Chem. 2020, 102, 104056. [Google Scholar] [CrossRef]
- de Lima, S.K.S.; Cavallone, Í.N.; Serrano, D.R.; Anaya, B.J.; Lalatsa, A.; Laurenti, M.D.; Lago, J.H.G.; da Silva Souza, D.C.; Marinsek, G.P.; Lopes, B.S.; et al. Therapeutic Activity of a Topical Formulation Containing 8-Hydroxyquinoline for Cutaneous Leishmaniasis. Pharmaceutics 2023, 15, 2602. [Google Scholar] [CrossRef]
- Lalatsa, A.; Patel, P.V.; Sun, Y.; Kiun, C.C.; Karimi, F.; Zekonyte, J.; Emeriewen, K.; Saleh, G.M. Transcutaneous anaesthetic nano-enabled hydrogels for eyelid surgery. Int. J. Pharm. 2020, 577, 119003. [Google Scholar] [CrossRef] [PubMed]
- Passero, L.F.D.; Marques, C.; Vale-Gato, I.; Corbett, C.E.P.; Laurenti, M.D.; Santos-Gomes, G. Histopathology, humoral and cellular immune response in the murine model of Leishmania (Viannia) shawi. Parasitol. Int. 2010, 59, 159–165. [Google Scholar] [CrossRef]
- Monte Neto, R.L.; Barbosa Filho, J.M.; Sousa, L.M.A.; Athayde Filho, P.F.; Dias, C.S.; Oliveira, M.R. Crude Ethanolic Extract, Lignoid Fraction and Yangambin from Ocotea duckei (Lauraceae) Show Antileishmanial Activity. Z. Naturforsch. C 2007, 62, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Suárez, J.; Coy-Barrera, E.; Cuca, L.E.; Delgado, G. Leishmanicidal and cytotoxic activities of extracts and naturally-occurring compounds from two Lauraceae species. Nat. Prod. Commun. 2011, 6, 231–234. [Google Scholar] [CrossRef]
- Das, S.; Giri, S.; Sundar, S.; Shaha, C. Functional Involvement of Leishmania donovani Tryparedoxin Peroxidases during Infection and Drug Treatment. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed]
- Henard, C.A.; Carlsen, E.D.; Hay, C.; Kima, P.E.; Soong, L. Leishmania amazonensis Amastigotes Highly Express a Tryparedoxin Peroxidase Isoform That Increases Parasite Resistance to Macrophage Antimicrobial Defenses and Fosters Parasite Virulence. PLoS Negl. Trop. Dis. 2014, 8, e3000. [Google Scholar] [CrossRef] [PubMed]
- Bichiou, H.; Rabhi, S.; Ben Hamda, C.; Bouabid, C.; Belghith, M.; Piquemal, D.; Trentin, B.; Rabhi, I.; Guizani-Tabbane, L. Leishmania Parasites Differently Regulate Antioxidant Genes in Macrophages Derived From Resistant and Susceptible Mice. Front. Cell. Infect. Microbiol. 2021, 11, 748738. [Google Scholar] [CrossRef]
- Roy, S.; Dutta, D.; Satyavarapu, E.M.; Yadav, P.K.; Mandal, C.; Kar, S.; Mandal, C. Mahanine exerts in vitro and in vivo antileishmanial activity by modulation of redox homeostasis. Sci. Rep. 2017, 7, 4141. [Google Scholar] [CrossRef]
- Dos Santos, R.A.N.; Batista, J.; Rosa, S.I.G.; Torquato, H.F.; Bassi, C.L.; Ribeiro, T.A.N.; De Sousa, P.T.; Bessera, Â.M.S.E.S.; Fontes, C.J.F.; Da Silva, L.E.; et al. Leishmanicidal effect of Spiranthera odoratíssima (Rutaceae) and its isolated alkaloid skimmianine occurs by a nitric oxide dependent mechanism. Parasitology 2011, 138, 1224–1233. [Google Scholar] [CrossRef]
- Saha, P.; Bhattacharjee, S.; Sarkar, A.; Manna, A.; Majumder, S.; Chatterjee, M. Berberine Chloride Mediates Its Anti-Leishmanial Activity via Differential Regulation of the Mitogen Activated Protein Kinase Pathway in Macrophages. PLoS ONE 2011, 6, e18467. [Google Scholar] [CrossRef]
- Wei, Z.; Gao, Y. Physicochemical properties of β-carotene bilayer emulsions coated by milk proteins and chitosan–EGCG conjugates. Food Hydrocoll. 2016, 52, 590–599. [Google Scholar] [CrossRef]
- Simões, A.; Veiga, F.; Vitorino, C. Progressing Towards the Sustainable Development of Cream Formulations. Pharmaceutics 2020, 12, 647. [Google Scholar] [CrossRef]
- Brígido, H.P.C.; Varela, E.L.P.; Quadros Gomes, A.R.; Neves Cruz, J.; Correa-Barbosa, J.; de Sousa Siqueira, J.E.; Chagas, C.K.S.; do Rosário Marinho, A.M.; Almeida Carneiro, L.; Coelho-Ferreira, M.R.; et al. Aspidosperma nitidum reduces parasite load and modulates cytokines in BALB/c mice infected with Leishmania (Leishmania) amazonensis. Front. Chem. 2024, 12, 1492770. [Google Scholar] [CrossRef]
- Coy Barrera, C.A.; Coy Barrera, E.D.; Granados Falla, D.S.; Delgado Murcia, G.; Cuca Suarez, L.E. seco-Limonoids and Quinoline Alkaloids from Raputia heptaphylla and Their Antileishmanial Activity. Chem. Pharm. Bull. 2011, 59, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Torres Suarez, E.; Granados-Falla, D.S.; Robledo, S.M.; Murillo, J.; Upegui, Y.; Delgado, G. Antileishmanial activity of synthetic analogs of the naturally occurring quinolone alkaloid N-methyl-8-methoxyflindersin. PLoS ONE 2020, 15, e0243392. [Google Scholar] [CrossRef]
- Carolus, H.; Pierson, S.; Lagrou, K.; Van Dijck, P. Amphotericin B and Other Polyenes—Discovery, Clinical Use, Mode of Action and Drug Resistance. J. Fungi 2020, 6, 321. [Google Scholar] [CrossRef]
Plant Component | EC50 a (μg/mL) | CC50 b (μg/mL) | ||||
---|---|---|---|---|---|---|
L. (L.) amazonensis | L. (V.) braziliensis | Macrophages | ||||
24 h | 72 h | 24 h | 72 h | 24 h | 72 h | |
Methanolic extract | 7.3 ± 2.5 (≥2.7) | 2.9 ± 1.6 (≥6.9) | 5.9 ± 0.8 (≥3.4) | 3.5 ± 0.7 (≥5.7) | ≥20 | ≥20 |
Alkaloid-enriched fraction | 1.3 ± 0.3 (10.9) | 0.4 ± 0.07 (41.8) | 1.8 ± 0.2 (7.9) | 0.2 ± 0.03 (83.5) | 14.2 ± 1.5 | 16.7 ± 0.3 |
Dicentrine | 0.6 ± 0.2 (29.6) | 0.3 ± 0.06 (≥66.7) | 1.2 ± 0.1 (14.8) | 0.6 ± 0.1 (≥33.3) | 17.8 ± 1.1 | >20 |
Miltefosine | 9.9 ± 0.6 (2.7) | 18.5 ± 0.1 (2.2) | 10.1 ± 1.2 (2.6) | 13.9 ± 1.2 (3.0) | 26.6 ± 1.4 | 41.5 ± 0.6 |
EC50 (μg/mL) | ||||
---|---|---|---|---|
Plant Component | L. (L.) amazonensis | L. (V.) braziliensis | ||
24 h | 72 h | 24 h | 72 h | |
Methanolic extract | 1.9 ± 0.3 (≥10.5) | 1.7 ± 0.5 (≥11.8) | 4.6 ± 0.8 (≥4.3) | 2.9 ± 0.7 (≥6.9) |
Alkaloid-enriched fraction | 1.3 ± 0.1 (10.9) | 1.4 ± 0.4 (11.9) | 3.5 ± 0.2 (4.1) | 1.5 ± 0.03 (11.1) |
Dicentrine | 0.96 ± 0.5 (18.5) | 0.6 ± 0.01 (≥33.3) | 0.97 ± 0.1 (18.3) | 0.8 ± 0.4 (≥25.0) |
Miltefosine | 6.8 ± 0.1 (3.9) | 9.4 ± 0.9 (4.4) | 5.7 ± 1.8 (4.7) | 8.7 ± 1.2 (4.8) |
Sample | Instability Index | Sedimentation Rate (mm/s) |
---|---|---|
Beeler’s basis | 0.024 ± 0.002 | 4.357 ± 0.035 |
Dicentrine cream | 0.022 ± 0.003 | 5.221 ± 0.056 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesus, J.A.; Araujo Flores, G.V.; Souza, D.C.d.S.; Tristão, D.C.; Serrano, D.R.; Lalatsa, A.; Laurenti, M.D.; Lago, J.H.G.; Ferraz, H.G.; da Silva, R.P.; et al. Dicentrine Purified from the Leaves of Ocotea puberula Controls the Intracellular Spread of L. (L.) amazonensis and L. (V.) braziliensis Amastigotes and Has Therapeutic Activity as a Topical Treatment in Experimental Cutaneous Leishmaniasis. Microorganisms 2025, 13, 309. https://doi.org/10.3390/microorganisms13020309
Jesus JA, Araujo Flores GV, Souza DCdS, Tristão DC, Serrano DR, Lalatsa A, Laurenti MD, Lago JHG, Ferraz HG, da Silva RP, et al. Dicentrine Purified from the Leaves of Ocotea puberula Controls the Intracellular Spread of L. (L.) amazonensis and L. (V.) braziliensis Amastigotes and Has Therapeutic Activity as a Topical Treatment in Experimental Cutaneous Leishmaniasis. Microorganisms. 2025; 13(2):309. https://doi.org/10.3390/microorganisms13020309
Chicago/Turabian StyleJesus, Jéssica Adriana, Gabriela Venicia Araujo Flores, Dalete Christine da Silva Souza, Daniela Costa Tristão, Dolores Remedios Serrano, Aikaterina Lalatsa, Márcia Dalastra Laurenti, João Henrique Ghilardi Lago, Humberto Gomes Ferraz, Rosana Pereira da Silva, and et al. 2025. "Dicentrine Purified from the Leaves of Ocotea puberula Controls the Intracellular Spread of L. (L.) amazonensis and L. (V.) braziliensis Amastigotes and Has Therapeutic Activity as a Topical Treatment in Experimental Cutaneous Leishmaniasis" Microorganisms 13, no. 2: 309. https://doi.org/10.3390/microorganisms13020309
APA StyleJesus, J. A., Araujo Flores, G. V., Souza, D. C. d. S., Tristão, D. C., Serrano, D. R., Lalatsa, A., Laurenti, M. D., Lago, J. H. G., Ferraz, H. G., da Silva, R. P., & Passero, L. F. D. (2025). Dicentrine Purified from the Leaves of Ocotea puberula Controls the Intracellular Spread of L. (L.) amazonensis and L. (V.) braziliensis Amastigotes and Has Therapeutic Activity as a Topical Treatment in Experimental Cutaneous Leishmaniasis. Microorganisms, 13(2), 309. https://doi.org/10.3390/microorganisms13020309