Alterations in Gut Microbial Co-Abundance Networks in Metabolic Syndrome: A Population-Based Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Microbial Data Generation and Processing
2.3. The Definition of Metabolic Syndrome
- Abdominal obesity: waist circumference ≥ 90 cm for men and ≥85 cm for women.
- Hyperglycemia: fasting plasma glucose (FPG) ≥ 6.1 mmol/L and/or 2 h postprandial plasma glucose (2hPG) ≥7.8 mmol/L and/or diagnosed and treated for diabetes.
- Hypertension: blood pressure ≥ 130/85 MMHG and/or hypertension has been diagnosed and treated.
- Hypertriglyceridemia: fasting triglycerides (TG) ≥ 1.70 mmol/L.
- Low high-density lipoprotein cholesterol (HDL-C): HDL-C < 1.04 mmol/L.
2.4. Construction of Co-Abundance Network
2.5. Meta-Analysis of Co-Abundance Networks in Different Regions
2.6. Heterogeneity Test of Co-Abundance Networks
2.7. Effect of Covariates on Co-Abundance Networks Associated with MetS
2.8. EPI-Based Validation of Co-Abundance Results
2.9. Differences in Microbial Abundance
2.10. The Variance of Microbiologically Associated MetS-Related Functions Involved in Co-Abundance Was Estimated
3. Results
3.1. Microbial Interactions in Participants with and Without Metabolic Syndrome
3.2. The Co-Abundance of Multiple Microorganisms Was Different Between Mets and Non-Mets
3.3. Microbial Interactions May Affect Metabolic Syndrome Through EC and KO
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MetS | Metabolic syndrome |
| SD | Standard Deviation |
| EPI | Empirical Presence–Abundance Interrelation |
| EC | Enzyme commission |
| Kos | KEGG orthologs |
| FPG | Fasting plasma glucose |
| 2hPG | 2 h postprandial plasma glucose |
| TG | Triglycerides |
| HDL-C | High-density lipoprotein cholesterol |
| FDR | False discovery rate |
| SCFAs | Short-chain fatty acids |
References
- Lemieux, I.; Després, J.P. Metabolic Syndrome: Past, Present and Future. Nutrients 2020, 12, 3501. [Google Scholar] [CrossRef] [PubMed]
- Kahn, C.R.; Wang, G.; Lee, K.Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Investig. 2019, 129, 3990–4000. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Dabke, K.; Hendrick, G.; Devkota, S. The gut microbiome and metabolic syndrome. J. Clin. Investig. 2019, 129, 4050–4057. [Google Scholar] [CrossRef]
- Tang, W.H.; Kitai, T.; Hazen, S.L. Gut Microbiota in Cardiovascular Health and Disease. Circ. Res. 2017, 120, 1183–1196. [Google Scholar] [CrossRef]
- Wu, G.; Xu, T.; Zhao, N.; Lam, Y.Y.; Ding, X.; Wei, D.; Fan, J.; Shi, Y.; Li, X.; Li, M.; et al. A core microbiome signature as an indicator of health. Cell 2024, 187, 6550–6565.e11. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, Q.; Xu, T.; Deng, Q.; Sun, Y.; Fu, J.; Chen, M.; Chen, X.; Ma, Z.; Dong, Q.; et al. Non-differential gut microbes contribute to hypertension and its severity through co-abundances: A multi-regional prospective cohort study. iMeta 2025, 4, e268. [Google Scholar] [CrossRef]
- Chen, L.; Collij, V.; Jaeger, M.; van den Munckhof, I.C.L.; Vich Vila, A.; Kurilshikov, A.; Gacesa, R.; Sinha, T.; Oosting, M.; Joosten, L.A.B.; et al. Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity. Nat. Commun. 2020, 11, 4018. [Google Scholar] [CrossRef]
- Kurtz, Z.D.; Müller, C.L.; Miraldi, E.R.; Littman, D.R.; Blaser, M.J.; Bonneau, R.A. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 2015, 11, e1004226. [Google Scholar] [CrossRef] [PubMed]
- Bauchinger, F.; Seki, D.; Berry, D. Characteristics of putative keystones in the healthy adult human gut microbiota as determined by correlation network analysis. Front. Microbiol. 2024, 15, 1454634. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Guo, X.; Lin, X.; Huang, C.; Huang, L. Diversity and interdomain networks of bacterial, pico-protist and nano-protist communities in a marine ranching. Front. Microbiol. 2025, 16, 1620645. [Google Scholar] [CrossRef]
- Curry, K.D.; Wang, Q.; Nute, M.G.; Tyshaieva, A.; Reeves, E.; Soriano, S.; Wu, Q.; Graeber, E.; Finzer, P.; Mendling, W.; et al. Emu: Species-level microbial community profiling of full-length 16S rRNA Oxford Nanopore sequencing data. Nat. Methods 2022, 19, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition). Chin. J. Diabetes Mellit. 2021, 13, 315–409. [Google Scholar]
- Fang, H.; Huang, C.; Zhao, H.; Deng, M. CCLasso: Correlation inference for compositional data through Lasso. Bioinformatics 2015, 31, 3172–3180. [Google Scholar] [CrossRef]
- Friedman, J.; Alm, E.J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 2012, 8, e1002687. [Google Scholar] [CrossRef]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to perform a meta-analysis with R: A practical tutorial. Evid. Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, J.; Opgen-Rhein, R.; Strimmer, K. R Package, Version 1.6.10; Efficient Estimation of Covariance and (Partial) Correlation; R Foundation for Statistical Computing: Vienna, Austria, 2009; Volume 1.
- Amit, G.; Bashan, A. Top-down identification of keystone taxa in the microbiome. Nat. Commun. 2023, 14, 3951. [Google Scholar] [CrossRef]
- Balvers, M.; de Goffau, M.; van Riel, N.; van den Born, B.J.; Galenkamp, H.; Zwinderman, K.; Nieuwdorp, M.; Levin, E. Ethnic variations in metabolic syndrome components and their associations with the gut microbiota: The HELIUS study. Genome Med. 2024, 16, 41. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Wang, D.; Huang, M.; Zhao, J.; Malik, V.; Liu, X.; Sun, L.; Lin, X.; Chen, Y. Gut Microbiota Composition is Associated with Responses to Peanut Intervention in Multiple Parameters Among Adults with Metabolic Syndrome Risk. Mol. Nutr. Food Res. 2021, 65, e2001051. [Google Scholar] [CrossRef]
- Embree, M.; Liu, J.K.; Al-Bassam, M.M.; Zengler, K. Networks of energetic and metabolic interactions define dynamics in microbial communities. Proc. Natl. Acad. Sci. USA 2015, 112, 15450–15455. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Qiao, Z.; Tikhonenkov, D.V.; Gong, Y.; Li, H.; Li, R.; Sun, K.; Huo, D. Temporal Dynamics and Adaptive Mechanisms of Microbial Communities: Divergent Responses and Network Interactions. bioRxiv 2024. [Google Scholar] [CrossRef]
- Xu, M.; Lan, R.; Qiao, L.; Lin, X.; Hu, D.; Zhang, S.; Yang, J.; Zhou, J.; Ren, Z.; Li, X.; et al. Bacteroides vulgatus Ameliorates Lipid Metabolic Disorders and Modulates Gut Microbial Composition in Hyperlipidemic Rats. Microbiol. Spectr. 2023, 11, e0251722. [Google Scholar] [CrossRef]
- Lesniak, N.A.; Schubert, A.M.; Flynn, K.J.; Leslie, J.L.; Sinani, H.; Bergin, I.L.; Young, V.B.; Schloss, P.D. The Gut Bacterial Community Potentiates Clostridioides difficile Infection Severity. mBio 2022, 13, e0118322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, D.; Cai, X.; Xing, X.; Shao, X.; Yin, A.; Zhao, Y.; Wang, M.; Fan, Y.N.; Liu, B.; et al. Gut Commensal Barnesiella Intestinihominis Ameliorates Hyperglycemia and Liver Metabolic Disorders. Adv. Sci. 2025, 12, e2411181. [Google Scholar] [CrossRef]
- Lacroix, S.; Pechereau, F.; Leblanc, N.; Boubertakh, B.; Houde, A.; Martin, C.; Flamand, N.; Silvestri, C.; Raymond, F.; Di Marzo, V.; et al. Rapid and Concomitant Gut Microbiota and Endocannabinoidome Response to Diet-Induced Obesity in Mice. mSystems 2019, 4, e00407-19. [Google Scholar] [CrossRef] [PubMed]
- Benito-Vaquerizo, S.; Parera Olm, I.; de Vroet, T.; Schaap, P.J.; Sousa, D.Z.; Martins Dos Santos, V.A.P.; Suarez-Diez, M. Genome-scale metabolic modelling enables deciphering ethanol metabolism via the acrylate pathway in the propionate-producer Anaerotignum neopropionicum. Microb. Cell Fact. 2022, 21, 116. [Google Scholar] [CrossRef]
- Nagasawa, H.; Suzuki, S.; Kobayashi, T.; Otsuka, T.; Okuma, T.; Matsushita, S.; Amano, A.; Shimizu, Y.; Suzuki, Y.; Ueda, S. Effect of fruits granola (Frugra®) consumption on blood pressure reduction and intestinal microbiome in patients undergoing hemodialysis. Hypertens. Res. 2024, 47, 3214–3224. [Google Scholar] [CrossRef]
- Soliman, G.A. Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients 2019, 11, 1155. [Google Scholar] [CrossRef]
- Wang Chen, W.C.; Zhong SaiYi, Z.S.; Zou YuXiao, Z.Y. Dietary fiber regulates lipid metabolism through the gut microbiota: A literature review. Food Sci. 2019, 40, 338–347. [Google Scholar]
- Mukherjee, A.; Lordan, C.; Ross, R.P.; Cotter, P.D. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020, 12, 1802866. [Google Scholar] [CrossRef]
- Li, S.; Luo, L.; Wang, S.; Sun, Q.; Zhang, Y.; Huang, K.; Guan, X. Regulation of gut microbiota and alleviation of DSS-induced colitis by vitexin. Eur. J. Nutr. 2023, 62, 3433–3445. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Effects of the Mediterranean Diet on Health and Gut Microbiota. Nutrients 2023, 15, 2150. [Google Scholar] [CrossRef] [PubMed]
- Ridlon, J.M.; Kang, D.J.; Hylemon, P.B.; Bajaj, J.S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 2014, 30, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Phillips, I.R.; Veeravalli, S.; Khadayate, S.; Shephard, E.A. Metabolomic and transcriptomic analyses of Fmo5−/− mice reveal roles for flavin-containing monooxygenase 5 (FMO5) in NRF2-mediated oxidative stress response, unfolded protein response, lipid homeostasis, and carbohydrate and one-carbon metabolism. PLoS ONE 2023, 18, e0286692. [Google Scholar] [CrossRef] [PubMed]
- Levasseur, E.M.; Yamada, K.; Piñeros, A.R.; Wu, W.; Syed, F.; Orr, K.S.; Anderson-Baucum, E.; Mastracci, T.L.; Maier, B.; Mosley, A.L.; et al. Hypusine biosynthesis in β cells links polyamine metabolism to facultative cellular proliferation to maintain glucose homeostasis. Sci. Signal 2019, 12, eaax0715. [Google Scholar] [CrossRef]




| Phenotypes | Metabolic Syndrome (n = 221) | Non-Metabolic Syndromes (n = 382) |
|---|---|---|
| Age (sd) | 56.22 (11.53) | 50.81 (13.30) |
| Male (n, %) | 132 (59.73) | 143 (37.43) |
| Smoking (n, %) | ||
| never | 125 (56.56) | 281 (73.56) |
| former | 39 (17.65) | 30 (7.85) |
| seldom | 5 (2.26) | 6 (1.57) |
| everyday | 52 (23.53) | 65 (17.02) |
| Alcohol consumption (n, %) | ||
| never | 129 (58.37) | 229 (59.95) |
| <3 days/week | 72 (32.58) | 133 (34.82) |
| 3–6 days/week | 5 (2.26) | 10 (2.62) |
| everyday | 15 (6.79) | 10 (2.62) |
| Physical activity (n, %) | ||
| low | 48 (21.72) | 72 (18.85) |
| medium | 80 (36.20) | 112 (29.32) |
| high | 93 (42.08) | 198 (51.83) |
| Grains (sd) | 357.70 (210.50) | 369.19 (248.59) |
| Vegetables (sd) | 476.64 (282.53) | 466.31 (279.95) |
| Fruits (sd) | 114.62 (153.02) | 147.54 (207.15) |
| Dairy products (sd) | 117.73 (184.43) | 110.92 (126.43) |
| Animal products (sd) | 177.85 (157.82) | 202.98 (227.93) |
| Beans and nuts (sd) | 39.98 (51.83) | 43.17 (60.00) |
| Genuspair | TE_non-MetS | TE_MetS | seTE_non-MetS | seTE_MetS | Hetero_p | I2 |
|---|---|---|---|---|---|---|
| Sporobacter-Alistipes | −0.1516305 | −0.4312161 | 0.06792643 | 0.11578319 | 0.03727255 | 0.76947448 |
| Barnesiella-Anaerotignum | 0.23093215 | 0.02179268 | 0.05177804 | 0.06868028 | 0.01503502 | 0.83086279 |
| Neglecta-Anaerotignum | 0.32789629 | 0.03903557 | 0.08833262 | 0.06868028 | 0.00983372 | 0.84995738 |
| Pseudoclostridium-Bacteroides | −0.2899035 | −0.0958833 | 0.05177804 | 0.06868028 | 0.02408619 | 0.80347517 |
| Tyzzerella-Enterococcus | 0.30805484 | 0.05858727 | 0.05177804 | 0.06868028 | 0.00372682 | 0.88112707 |
| Terrisporobacter-Eubacterium | −0.1575766 | 0.06119389 | 0.05177804 | 0.06868028 | 0.01097453 | 0.84542702 |
| Weissella-Muribaculum | 0.20824215 | 0.02352035 | 0.05177804 | 0.06868028 | 0.03174194 | 0.78319221 |
| Genuspair | Function | Description | Var_ind | Var_int | Extra_var | P_ind | FDR |
|---|---|---|---|---|---|---|---|
| Sporobacter-Alistipes | EC:1.14.14.1 | Unspecific monooxygenase | 0.02762911 | 0.02874302 | 0.00111391 | 0.00022366 | 0.00067097 |
| Barnesiella-Anaerotignum | EC:2.5.1.46 | Deoxyhypusine synthase | 0.03834184 | 0.0462416 | 0.00789976 | 8.0578 × 10−6 | 2.4173 × 10−5 |
| Barnesiella-Anaerotignum | EC:1.14.14.1 | Unspecific monooxygenase | 0.01542343 | 0.03128079 | 0.01585737 | 0.00943734 | 0.01415601 |
| Neglecta-Anaerotignum | EC:2.5.1.46 | Deoxyhypusine synthase | 0.0390983 | 0.04792689 | 0.00882859 | 6.3634 × 10−6 | 1.909 × 10−5 |
| Neglecta-Anaerotignum | EC:1.14.14.1 | Unspecific monooxygenase | 0.01465138 | 0.01794392 | 0.00329254 | 0.01193917 | 0.01790876 |
| Barnesiella-Anaerotignum | KO:K00809 | deoxyhypusine synthase [EC:2.5.1.46] | 0.03850055 | 0.04644554 | 0.00794499 | 7.6685 × 10−6 | 7.6685 × 10−6 |
| Neglecta-Anaerotignum | KO:K00809 | deoxyhypusine synthase [EC:2.5.1.46] | 0.03925636 | 0.04811791 | 0.00886155 | 6.057 × 10−6 | 6.057 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Meng, X.; Cao, R.; Li, J.; Cai, H.; Liao, P.; Yang, X.; Ji, G.; Wu, W. Alterations in Gut Microbial Co-Abundance Networks in Metabolic Syndrome: A Population-Based Cross-Sectional Study. Microorganisms 2025, 13, 2759. https://doi.org/10.3390/microorganisms13122759
Fang Y, Meng X, Cao R, Li J, Cai H, Liao P, Yang X, Ji G, Wu W. Alterations in Gut Microbial Co-Abundance Networks in Metabolic Syndrome: A Population-Based Cross-Sectional Study. Microorganisms. 2025; 13(12):2759. https://doi.org/10.3390/microorganisms13122759
Chicago/Turabian StyleFang, Yiting, Xi Meng, Rong Cao, Jianhang Li, Hui Cai, Peihua Liao, Xingfen Yang, Guiyuan Ji, and Wei Wu. 2025. "Alterations in Gut Microbial Co-Abundance Networks in Metabolic Syndrome: A Population-Based Cross-Sectional Study" Microorganisms 13, no. 12: 2759. https://doi.org/10.3390/microorganisms13122759
APA StyleFang, Y., Meng, X., Cao, R., Li, J., Cai, H., Liao, P., Yang, X., Ji, G., & Wu, W. (2025). Alterations in Gut Microbial Co-Abundance Networks in Metabolic Syndrome: A Population-Based Cross-Sectional Study. Microorganisms, 13(12), 2759. https://doi.org/10.3390/microorganisms13122759

