Effects of Sea Buckthorn Polysaccharides on Rumen In Vitro Fermentation Characteristics and Microbial Composition of Hu Sheep
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.2. In Vitro Fermentation
2.3. Sample Collection and Analysis
2.4. Amplification, Sequencing, and Analysis of Rumen Bacterial 16S Rdna
2.5. Data Statistics and Analysis
3. Results
3.1. Effects of SBP on Rumen In Vitro Fermentation Gas Production and Nutrient Degradability of Hu Sheep
3.2. Effects of SBP on Rumen In Vitro Fermentation Parameters of Hu Sheep
3.3. Effects of SBP on Rumen In Vitro Fermentation Microbial Community Diversity of Hu Sheep
3.4. Effects of SBP on Rumen In Vitro Fermentation Bacterial Community Composition of Hu Sheep
3.5. KEGG Functional Difference Analysis of Microbial Community
4. Discussion
4.1. Analysis of SBP’s Effects on Rumen In Vitro Fermentation Gas Production and Nutrient Degradability of Hu Sheep
4.2. Analysis of SBP’s Effects on Rumen In Vitro Fermentation Parameters of Hu Sheep
4.3. Analysis of SBP’s Effects on Rumen In Vitro Fermentation Microbial Community Diversity of Hu Sheep
4.4. Analysis of SBP’s Effects on Rumen In Vitro Fermentation Bacterial Community Composition and Its Function of Hu Sheep
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plaizier, J.C.; Danesh Mesgaran, M.; Derakhshani, H.; Golder, H.; Khafipour, E.; Kleen, J.L.; Lean, I.; Loor, J.; Penner, G.; Zebeli, Q. Review: Enhancing Gastrointestinal Health in Dairy Cows. Animal 2018, 12, s399–s418. [Google Scholar] [CrossRef] [PubMed]
- Huws, S.A.; Creevey, C.J.; Oyama, L.B.; Mizrahi, I.; Denman, S.E.; Popova, M.; Muñoz-Tamayo, R.; Forano, E.; Waters, S.M.; Hess, M.; et al. Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Front. Microbiol. 2018, 9, 2161. [Google Scholar] [CrossRef]
- Cobellis, G.; Trabalza-Marinucci, M.; Yu, Z. Critical Evaluation of Essential Oils as Rumen Modifiers in Ruminant Nutrition: A Review. Sci. Total Environ. 2016, 545–546, 556–568. [Google Scholar] [CrossRef]
- Dai, D.; Dong, C.; Kong, F.; Wang, S.; Wang, S.; Wang, W.; Li, S. Dietary Supplementation of SCutellariae Radix Flavonoid Extract Improves Lactation Performance in Dairy Cows by Regulating Gastrointestinal Microbes, Antioxidant Capacity and Immune Function. Anim. Nutr. 2025, 20, 499–508. [Google Scholar] [CrossRef]
- Guo, C.; Ma, D.; Zhang, C.; Wang, Y.; Ullah, F.; Wang, X.; Lee, Y.; Zhang, G. Dietary Jerusalem Artichoke Polysaccharide Supplementation Alters the Growth Performance, Ruminal Microbes and Metabolites, Muscle Fatty Acid and Amino Acid Profiles in Fattening Lambs. Anim. Nutr. 2025, 22, 139–153. [Google Scholar] [CrossRef]
- Singh, B.; Oberoi, S.; Kaur, A. Phenolic Compounds in Sea Buckthorn (Hippophae rhamnoides L.) and Their Health-Promoting Activities: A Review. Int. J. Food Sci. Technol. 2024, 59, 6642–6658. [Google Scholar] [CrossRef]
- Han, Y.; Yuan, C.; Zhou, X.; Han, Y.; He, Y.; Ouyang, J.; Zhou, W.; Wang, Z.; Wang, H.; Li, G. Anti-Inflammatory Activity of Three Triterpene from Hippophae Rhamnoides L. in Lipopolysaccharide-Stimulated RAW264.7 Cells. Int. J. Mol. Sci. 2021, 22, 12009. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cheng, N.; Wu, Q.; Fang, D.; Rahman, F.-U.; Hao, H.; Zhang, Y. Antioxidant Activities of Sea Buckthorn Polysaccharides and Their Potential Application in Cosmetic Industry. J. Dermatol. Sci. Cosmet. Technol. 2024, 1, 100023. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, S.; Sun, W.; Yang, Y.; Xu, Y.; Tang, Y.; Jiang, W.; Li, J.; Zhang, Y. Study on the Mechanisms by Which Pumpkin Polysaccharides Regulate Abnormal Glucose and Lipid Metabolism in Diabetic Mice under Oxidative Stress. Int. J. Biol. Macromol. 2024, 270, 132249. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhang, X.; Zhao, S.; Zou, K.; Xie, J.; Wang, X.; Liu, C.; Wang, J.; Wang, Y. Seabuckthorn Berry Polysaccharide Extracts Protect against Acetaminophen Induced Hepatotoxicity in Mice via Activating the Nrf-2/HO-1-SOD-2 Signaling Pathway. Phytomedicine 2018, 38, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Chang, L.; Gao, P.; Li, J.; Lu, X.; Hua, M.; Li, X.; Liu, X.; Lan, Y. Synbiotics Containing Sea Buckthorn Polysaccharides Ameliorate DSS-Induced Colitis in Mice via Regulating Th17/Treg Homeostasis through Intestinal Microbiota and Their Production of BA Metabolites and SCFAs. Int. J. Biol. Macromol. 2024, 276, 133794. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Nutritional Requirements for Sheep: NY/T 816—2021 [S]; China Agriculture Press: Beijing, China, 2021. (In Chinese) [Google Scholar]
- AOAC. 1997 Official Methods of Analysis of AOAC International, 16th Ed. Choice Rev. Online 1997, 35, 35-0912. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The Estimation of the Digestibility and Metabolizable Energy Content of Ruminant Feedingstuffs from the Gas Production When They Are Incubated with Rumen Liquor in Vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S.; Theodorou, M.K. A Semi-Automated in Vitro Gas Production Technique for Ruminant Feedstuff Evaluation. Anim. Feed. Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- Schofield, P.; Pitt, R.E.; Pell, A.N. Kinetics of Fiber Digestion from in Vitro Gas Production. J. Anim. Sci. 1994, 72, 2980–2991. [Google Scholar] [CrossRef]
- Miguel, M.A.; Lee, S.S.; Mamuad, L.L.; Choi, Y.J.; Jeong, C.D.; Son, A.; Cho, K.K.; Kim, E.T.; Kim, S.B.; Lee, S.S. Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium Saccharobutylicum. J. Microbiol. Biotechnol. 2019, 29, 1083–1095. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, D.; Ma, W.; Guo, Y.; Wang, A.; Wang, Q.; Lee, D.-J. Denitrifying Sulfide Removal Process on High-Salinity Wastewaters in the Presence of Halomonas sp. Appl. Microbiol. Biotechnol. 2016, 100, 1421–1426. [Google Scholar] [CrossRef]
- Mizrahi, I.; Wallace, R.J.; Moraïs, S. The Rumen Microbiome: Balancing Food Security and Environmental Impacts. Nat. Rev. Microbiol. 2021, 19, 553–566. [Google Scholar] [CrossRef]
- Li, Q.S.; Wang, R.; Ma, Z.Y.; Zhang, X.M.; Jiao, J.Z.; Zhang, Z.G.; Ungerfeld, E.M.; Yi, K.L.; Zhang, B.Z.; Long, L.; et al. Dietary Selection of Metabolically Distinct Microorganisms Drives Hydrogen Metabolism in Ruminants. ISME J. 2022, 16, 2535–2546. [Google Scholar] [CrossRef]
- Rymer, C.; Huntington, J.A.; Williams, B.A.; Givens, D.I. In Vitro Cumulative Gas Production Techniques: History, Methodological Considerations and Challenges. Anim. Feed. Sci. Technol. 2005, 123–124, 9–30. [Google Scholar] [CrossRef]
- Lan, W.; Yang, C. Ruminal Methane Production: Associated Microorganisms and the Potential of Applying Hydrogen-Utilizing Bacteria for Mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
- Hervás, G.; Boussalia, Y.; Labbouz, Y.; Della Badia, A.; Toral, P.G.; Frutos, P. Insect Oils and Chitosan in Sheep Feeding: Effects on in Vitro Ruminal Biohydrogenation and Fermentation. Anim. Feed. Sci. Technol. 2022, 285, 115222. [Google Scholar] [CrossRef]
- Pu, X.X.; Zhang, X.M.; Li, Q.S.; Wang, R.; Zhang, M.; Zhang, S.Z.; Lin, B.; Tan, B.; Tan, Z.L.; Wang, M. Comparison of in Situ Ruminal Straw Fiber Degradation and Bacterial Community between Buffalo and Holstein Fed with High-Roughage Diet. Front. Microbiol. 2023, 13, 1079056. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Guo, Y.; Guo, X.; Shi, B.; Ma, G.; Yan, S.; Zhao, Y. Effects of Artemisia Ordosica Crude Polysaccharide on Antioxidant and Immunity Response, Nutrient Digestibility, Rumen Fermentation, and Microbiota in Cashmere Goats. Animals 2023, 13, 3575. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Nei, C.; Lan, J.; Chen, H.; Song, X. Effects of Astragalus Polysaccharides (APS) on Rumen Fermentation and Nutrient Degradability of Jinjiang Yellow Cattle in Vitro. China Cattle Sci. 2023, 49, 46–49. [Google Scholar]
- Yin, Y.; Liu, Y.; Zhu, W.; Mao, S. Effects of Acarbose Addition on Ruminal Bacterial Microbiota, Lipopolysaccharide Levels and Fermentation Characteristics In Vitro. Asian-Australas J. Anim. Sci. 2014, 27, 1726–1735. [Google Scholar] [CrossRef]
- Yin, X.; Ji, S.; Duan, C.; Tian, P.; Ju, S.; Yan, H.; Zhang, Y.; Liu, Y. Age-Related Changes in the Ruminal Microbiota and Their Relationship With Rumen Fermentation in Lambs. Front. Microbiol. 2021, 12, 679135. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Fang, S.; Sun, B.; Li, Y.; Guo, Y.; Deng, M.; Zhou, D.; Liu, D.; Liu, G. Effects of Moringa Polysaccharides on Growth Performance, Immune Function, Rumen Morphology, and Microbial Community Structure in Early-Weaned Goat Kids. Front. Vet. Sci. 2024, 11, 1461391. [Google Scholar] [CrossRef]
- Chen, L.; Dong, Z.; Li, J.; Shao, T. Ensiling Characteristics, in Vitro Rumen Fermentation, Microbial Communities and Aerobic Stability of Low-Dry Matter Silages Produced with Sweet Sorghum and Alfalfa Mixtures. J. Sci. Food Agric. 2019, 99, 2140–2151. [Google Scholar] [CrossRef]
- Correddu, F.; Nudda, A.; Battacone, G.; Boe, R.; Francesconi, A.H.D.; Pulina, G. Effects of Grape Seed Supplementation, Alone or Associated with Linseed, on Ruminal Metabolism in Sarda Dairy Sheep. Anim. Feed. Sci. Technol. 2015, 199, 61–72. [Google Scholar] [CrossRef]
- Li, Z.; Bai, H.; Zheng, L.; Jiang, H.; Cui, H.; Cao, Y.; Yao, J. Bioactive Polysaccharides and Oligosaccharides as Possible Feed Additives to Manipulate Rumen Fermentation in Rusitec Fermenters. Int. J. Biol. Macromol. 2018, 109, 1088–1094. [Google Scholar] [CrossRef]
- Czerkawski, J.W.; Breckenridge, G. Design and Development of a Long-Term Rumen Simulation Technique (Rusitec). Br. J. Nutr. 1977, 38, 371–384. [Google Scholar] [CrossRef]
- Chen, Q.; Fan, J.; Lin, L.; Zhao, M. Combination of Lycium Barbarum L. and Laminaria Japonica Polysaccharides as a Highly Efficient Prebiotic: Optimal Screening and Complementary Regulation of Gut Probiotics and Their Metabolites. Int. J. Biol. Macromol. 2023, 246, 125534. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Ou, H.; Tan, Z.; Jiao, J. Rumen-Protected Methionine and Lysine Supplementation to the Low Protein Diet Improves Animal Growth through Modulating Colonic Microbiome in Lambs. J. Anim. Sci. Biotechnol. 2025, 16, 46. [Google Scholar] [CrossRef]
- Wang, D.; Chen, L.; Tang, G.; Yu, J.; Chen, J.; Li, Z.; Cao, Y.; Lei, X.; Deng, L.; Wu, S.; et al. Multi-Omics Revealed the Long-Term Effect of Ruminal Keystone Bacteria and the Microbial Metabolome on Lactation Performance in Adult Dairy Goats. Microbiome 2023, 11, 215. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Guo, J.; Li, X.; Li, Y.; Song, L.; Li, Y.; Feng, B.; Bao, X.; Li, J.; Gao, Y.; et al. Effects of Gallic Acid on In Vitro Ruminal Fermentation, Methane Emission, Microbial Composition, and Metabolic Functions. Animals 2025, 15, 1959. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Xu, J.; Chen, G.; Fei, D.; Guang, Y.; Hou, Y.; Xie, M.; Li, W.; Wang, Y. Effects of Tea Polysaccharides on Rumen Fermentation Parameters, Microflora and Metabolites of Simmental Beef Cattle under Heat Stress. Chin. J. Anim. Nutr. 2025, 37, 3099–3114. [Google Scholar] [CrossRef]
- Korsa, G.; Konwarh, R.; Masi, C.; Ayele, A.; Haile, S. Microbial Cellulase Production and Its Potential Application for Textile Industries. Ann. Microbiol. 2023, 73, 13. [Google Scholar] [CrossRef]
- Sichert, A.; Corzett, C.H.; Schechter, M.S.; Unfried, F.; Markert, S.; Becher, D.; Fernandez-Guerra, A.; Liebeke, M.; Schweder, T.; Polz, M.F.; et al. Verrucomicrobia Use Hundreds of Enzymes to Digest the Algal Polysaccharide Fucoidan. Nat. Microbiol. 2020, 5, 1026–1039. [Google Scholar] [CrossRef]
- Gharechahi, J.; Vahidi, M.F.; Bahram, M.; Han, J.-L.; Ding, X.-Z.; Salekdeh, G.H. Metagenomic Analysis Reveals a Dynamic Microbiome with Diversified Adaptive Functions to Utilize High Lignocellulosic Forages in the Cattle Rumen. ISME J. 2021, 15, 1108–1120. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, J.; Zeng, Y.; Zhu, J.; Wang, S.; Huang, D.; Cao, C. Polysaccharide NAP-3 Synergistically Enhances the Efficiency of Metformin in Type 2 Diabetes via Bile Acid/GLP-1 Axis through Gut Microbiota Remodeling. J. Agric. Food Chem. 2024, 72, 21077–21088. [Google Scholar] [CrossRef]
- Jiang, L.; Liang, B.; Xu, Z.; Yang, G.; Yang, S.; Chen, Q.; Wang, X.; Hu, Y.; Wang, L.; Gao, T. Effects of Guanidine Acetic Acid and Alpha-lipoic Acid Supplementation on Rumen Microbita and Metabolites in Sheep. China Anim. Husb. Vet. Med. 2024, 51, 2375–2387. [Google Scholar] [CrossRef]
- Ma, Y.; Deng, X.; Yang, X.; Wang, J.; Li, T.; Hua, G.; Han, D.; Da, L.; Li, R.; Rong, W.; et al. Characteristics of Bacterial Microbiota in Different Intestinal Segments of Aohan Fine-Wool Sheep. Front. Microbiol. 2022, 13, 874536. [Google Scholar] [CrossRef]
- Han, H.; Zhang, L.; Shang, Y.; Wang, M.; Phillips, C.J.C.; Wang, Y.; Su, C.; Lian, H.; Fu, T.; Gao, T. Replacement of Maize Silage and Soyabean Meal with Mulberry Silage in the Diet of Hu Lambs on Growth, Gastrointestinal Tissue Morphology, Rumen Fermentation Parameters and Microbial Diversity. Animals 2022, 12, 1406. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wei, Z.; Li, Z.; Ren, J.; Song, Y.; Xu, J.; Liu, A.; Li, X.; Li, M.; Fan, H.; et al. Integrating Genome- and Transcriptome-Wide Association Studies to Uncover the Host–Microbiome Interactions in Bovine Rumen Methanogenesis. iMeta 2024, 3, e234. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Miao, J.; Zhang, B.; Liu, H.; Ma, H.; Sun, Y.; Liu, P.; Zhang, X.; Wang, R.; Kan, J.; et al. Study on Semi-Bionic Extraction of Astragalus Polysaccharide and Its Anti-Aging Activity in Vivo. Front. Nutr. 2023, 10, 1201919. [Google Scholar] [CrossRef] [PubMed]




| Items | Content (%) | Nutrient Levels | Content (%) |
|---|---|---|---|
| Corn | 29.8 | DE (MJ/Kg) | 11.48 |
| Corn stover | 23 | CP | 18.34 |
| Alfalfa hay | 6 | EE | 2.12 |
| Cottonseed meal | 13 | NDF | 33.32 |
| Distillers dried grains with solubles (DDGS) | 5 | ADF | 10.76 |
| Spray-dried corn husk | 5 | Ca | 0.71 |
| Chili skin residue | 6 | P | 0.42 |
| Wheat middlings | 9 | ||
| Limestone powder | 1.4 | ||
| Sodium bicarbonate | 0.8 | ||
| Salt | 0.5 | ||
| Premix | 0.5 | ||
| Total | 100 |
| Item | SBP Levels | SEM | p-Value | |||||
|---|---|---|---|---|---|---|---|---|
| CON | 1% | 2% | 3% | ANOVA | Linear | Quadratic | ||
| Gas production (mL/g DM) | ||||||||
| 0~2 h | 2.65 b | 7.24 a | 8.28 a | 9.62 a | 0.77 | 0.003 | 0.000 | 0.181 |
| 2~4 h | 2.64 b | 7.24 a | 8.94 a | 9.63 a | 0.81 | 0.003 | 0.001 | 0.132 |
| 4~6 h | 3.31 b | 7.90 a | 10.27 a | 10.61 a | 0.91 | 0.007 | 0.001 | 0.156 |
| 6~8 h | 7.61 b | 9.88 ab | 13.58 a | 12.60 ab | 0.91 | 0.075 | 0.020 | 0.339 |
| 8~10 h | 6.94 | 12.18 | 13.25 | 10.28 | 1.06 | 0.162 | 0.232 | 0.054 |
| 10~12 h | 7.94 ab | 6.92 ab | 9.27 a | 5.31 b | 0.58 | 0.090 | 0.257 | 0.181 |
| 12~24 h | 32.41 | 43.11 | 40.08 | 46.77 | 3.16 | 0.448 | 0.174 | 0.756 |
| 24~36 h | 19.51 | 26.66 | 22.85 | 18.90 | 1.78 | 0.410 | 0.726 | 0.134 |
| 36~48 h | 18.86 | 18.11 | 22.84 | 13.93 | 1.53 | 0.241 | 0.458 | 0.184 |
| Total gas | 101.87 b | 138.18 ab | 149.35 a | 137.64 ab | 7.05 | 0.081 | 0.052 | 0.076 |
| Gas production parameters | ||||||||
| Maximum gas production/mL | 107.56 | 139.40 | 146.04 | 137.74 | 6.83 | 0.195 | 0.112 | 0.140 |
| Gas production ratec/(%/h) | 0.08 | 0.08 | 0.11 | 0.10 | 0.00 | 0.129 | 0.038 | 0.888 |
| Item | SBP Levels | SEM | p-Value | |||||
|---|---|---|---|---|---|---|---|---|
| CON | 1% | 2% | 3% | ANOVA | Linear | Quadratic | ||
| IVDMD, % | 53.56 b | 54.16 b | 59.61 a | 57.81 a | 0.73 | 0.002 | 0.001 | 0.283 |
| IVCPD, % | 42.46 | 42.46 | 47.75 | 42.27 | 1.14 | 0.256 | 0.640 | 0.231 |
| Item | SBP Levels | SEM | p-Value | |||||
|---|---|---|---|---|---|---|---|---|
| CON | 1% | 2% | 3% | ANOVA | Linear | Quadratic | ||
| pH | 6.41 c | 6.79 b | 6.91 a | 6.92 a | 0.05 | 0.000 | 0.000 | 0.000 |
| NH3-N (mg/dL) | 10.28 | 10.76 | 11.43 | 10.62 | 0.23 | 0.372 | 0.416 | 0.177 |
| Total VFA (mM) | 173.50 | 167.04 | 169.52 | 177.58 | 2.10 | 0.330 | 0.242 | 0.861 |
| Concentration (mol/100 mol) | ||||||||
| Acetate | 115.53 | 114.76 | 114.92 | 120.40 | 1.37 | 0.423 | 0.493 | 0.730 |
| Propionate | 48.02 a | 40.38 b | 41.50 b | 43.39 ab | 0.99 | 0.022 | 0.026 | 0.308 |
| Acetate /Propionate | 2.41 b | 2.88 a | 2.77 a | 2.78 a | 0.05 | 0.001 | 0.004 | 0.038 |
| Butyrate | 8.58 c | 10.52 b | 11.55 ab | 12.23 a | 0.36 | 0.000 | 0.334 | 0.771 |
| Isobutyrate | 0.38 b | 0.39 b | 0.42 a | 0.43 a | 0.01 | 0.003 | 0.557 | 0.286 |
| Valerate | 0.39 b | 0.42 b | 0.51 a | 0.53 a | 0.02 | 0.002 | 0.419 | 0.214 |
| Isovalerate | 0.60 | 0.56 | 0.61 | 0.62 | 0.01 | 0.205 | 0.176 | 0.142 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, J.; Xu, Z.; Li, J.; Li, X.; Li, Y.; Zhang, W. Effects of Sea Buckthorn Polysaccharides on Rumen In Vitro Fermentation Characteristics and Microbial Composition of Hu Sheep. Microorganisms 2025, 13, 2639. https://doi.org/10.3390/microorganisms13112639
Lan J, Xu Z, Li J, Li X, Li Y, Zhang W. Effects of Sea Buckthorn Polysaccharides on Rumen In Vitro Fermentation Characteristics and Microbial Composition of Hu Sheep. Microorganisms. 2025; 13(11):2639. https://doi.org/10.3390/microorganisms13112639
Chicago/Turabian StyleLan, Junlin, Zhenzi Xu, Jiahao Li, Xin Li, Yuanyuan Li, and Wenju Zhang. 2025. "Effects of Sea Buckthorn Polysaccharides on Rumen In Vitro Fermentation Characteristics and Microbial Composition of Hu Sheep" Microorganisms 13, no. 11: 2639. https://doi.org/10.3390/microorganisms13112639
APA StyleLan, J., Xu, Z., Li, J., Li, X., Li, Y., & Zhang, W. (2025). Effects of Sea Buckthorn Polysaccharides on Rumen In Vitro Fermentation Characteristics and Microbial Composition of Hu Sheep. Microorganisms, 13(11), 2639. https://doi.org/10.3390/microorganisms13112639

