Phenyllactic Acid as a Marker of Antibiotic-Induced Metabolic Activity of Nosocomial Strains of Klebsiella pneumoniae In Vitro Experiment
Abstract
1. Introduction
2. Materials and Methods
2.1. General Description of the Experiment—Preparation of Microbial Suspension
2.2. Preparation of Microbial Suspension: Obtaining Clinical Material, Primary Culture, Isolation, Identification and Determination of Sensitivity of Microorganisms
2.2.1. Blood Culture
2.2.2. Culture of Fluid Obtained During Bronchoalveolar Lavage
2.2.3. Culture of Wound Secretions, Punctures, and Biopsies
2.3. Species Identification of Microorganisms Isolated from All Types of Clinical Material
2.4. Experiment with the Obtained Cultures and the Addition of Antibiotics
- 1 mL of thioglycollate medium;
- 1 mL of thioglycollate medium and 50 µL of K. pneumoniae microbial suspension;
- 1 mL of thioglycollate medium and a meropenem disk;
- 1 mL of thioglycollate medium and a doxycycline disk;
- 1 mL of thioglycollate medium and an amikacin disk.
2.5. PCR Analysis of Microorganisms After an Experiment with Antibiotics
2.6. Analysis of Metabolites Using a Gas Chromatograph Mass Spectrometer
2.7. Calculation of the Metabolic Activity Coefficient
2.8. Statistical Data Processing
3. Results
3.1. Determination of Metabolites in the Substrate After Incubation of K. pneumoniae
3.2. Metabolic Activity of K. pneumoniae Based on Changes in the Concentration of PhLA when Exposed to Different Classes of Antibiotics
3.3. Quantitative Assessment of Microbial Cell Numbers and Phenyllactic Acid Levels
3.4. Evaluation of Antibiotic Effectiveness for a Strain by the Coefficient Construction of a Metabolic Activity
4. Discussion
4.1. Metabolic Profile of Klebsiella pneumoniae
4.2. The Effect of Antibiotics on Metabolic Activity
4.3. Quantitative Assessment of Microbial Cell and Phenyllactic Acid Levels
4.4. Metabolic Activity Coefficient
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| K. pneumoniae | Klebsiella pneumoniae |
| TGM | Thioglycollate medium |
| GC-MS | A gas chromatograph mass spectrometer |
| PCR | Polymerase chain reaction |
| PhLA | Phenyllactic acid, 3-phenyllactic acid |
References
- Bykov, A.O.; Shifman, E.M.; Protsenko, D.N.; Yakovlev, S.V.; Belotserkovskiy, B.Z.; Ni, O.G.; Kruglov, A.N.; Bryleva, A.A.; Matyash, M.I.; Larin, E.S. Risk Factors of Colonization and Diversity of Clinically Significant Carbapenemases in Gut Microbiota of ICU Patients: A Single-Center Prospective Observational Study. Russ. J. Anesthesiol. Reanimatol. Anesteziol. Reanimatol. 2024, 2024, 41–48. [Google Scholar] [CrossRef]
- Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef]
- Ashurst, J.V.; Dawson, A. Klebsiella Pneumonia; StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Liu, J.; Ding, H.; Zhao, M.; Tu, F.; He, T.; Zhang, L.; Jing, Y.; Rui, X.; Zhang, S. Functionalized Erythrocyte Membrane-Coated Nanoparticles for the Treatment of Klebsiella pneumoniae-Induced Sepsis. Front. Microbiol. 2022, 13, 901979. [Google Scholar] [CrossRef]
- Ndlovu, T.; Kgosietsile, L.; Motshwarakgole, P.; Ndlovu, S.I. Evaluation of Potential Factors Influencing the Dissemination of Multidrug-Resistant Klebsiella pneumoniae and Alternative Treatment Strategies. Trop. Med. Infect. Dis. 2023, 8, 381. [Google Scholar] [CrossRef]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed. Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef] [PubMed]
- Al-Zalabani, A.; AlThobyane, O.A.; Alshehri, A.H.; Alrehaili, A.O.; Namankani, M.O.; Aljafri, O.H. Prevalence of Klebsiella pneumoniae Antibiotic Resistance in Medina, Saudi Arabia, 2014–2018. Cureus 2020, 12, e9714. [Google Scholar] [CrossRef]
- Wen, Z.; Liu, M.; Rui, D.; Liao, X.; Su, R.; Tang, Z.; Wen, Z.; Ling, Z. The Metabolome of Carbapenem-Resistant Klebsiella pneumoniae Infection in Plasma. Dis. Markers 2021, 2021, 7155772. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Gupta, S.K.; Kumar, S.; Kumar, S.; Singh, R.; Thakur, L.; Kumar, M.; Kapil, A.; Kumar, Y.; et al. Identification of Metabolite Extraction Method for Targeted Exploration of Antimicrobial Resistance Associated Metabolites of Klebsiella pneumoniae. Sci. Rep. 2022, 12, 8939. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Jiang, W.; Wang, Q.; Sun, S.; Wang, W.; Bian, X.; Liu, T.; Tišma, M.; Wang, D.; Hao, J. Mechanism of Metabolites Distribution between 2,3-Butanediol and Branched-Chain Amino Acid Synthesis Pathways in Klebsiella pneumoniae. J. Biotechnol. 2025, 404, 175–185. [Google Scholar] [CrossRef]
- Rees, C.A.; Franchina, F.A.; Nordick, K.V.; Kim, P.J.; Hill, J.E. Expanding the Klebsiella pneumoniae Volatile Metabolome Using Advanced Analytical Instrumentation for the Detection of Novel Metabolites. J. Appl. Microbiol. 2017, 122, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Zehra, M.; Ramzan, M.; Siddiqui, A.J.; Akbar, A.; Ahmed, A.; Musharraf, S.G. Untargeted Metabolomics Analysis of Gentamicin-Induced Tolerant Colonies of Klebsiella pneumoniae. Eur. J. Pharm. Sci. 2023, 185, 106436. [Google Scholar] [CrossRef]
- Filipiak, W.; Żuchowska, K.; Marszałek, M.; Depka, D.; Bogiel, T.; Warmuzińska, N.; Bojko, B. GC-MS Profiling of Volatile Metabolites Produced by Klebsiella pneumoniae. Front. Mol. Biosci. 2022, 9, 1019290. [Google Scholar] [CrossRef] [PubMed]
- Foschi, C.; Salvo, M.; Laghi, L.; Zhu, C.; Ambretti, S.; Marangoni, A.; Re, M.C. Impact of Meropenem on Klebsiella pneumoniae Metabolism. PLoS ONE 2018, 13, e0207478. [Google Scholar] [CrossRef] [PubMed]
- Rees, C.A.; Smolinska, A.; Hill, J.E. The Volatile Metabolome of Klebsiella pneumoniae in Human Blood. J. Breath Res. 2016, 10, 027101. [Google Scholar] [CrossRef]
- Chernevskaya, E.A.; Getsina, M.L.; Cherpakov, R.A.; Sorokina, E.A.; Shabanov, A.K.; Moroz, V.V.; Beloborodova, N.V. Sepsis-Associated Metabolites and Their Biotransformation by Intestinal Microbiota. Obs. Reanimatol. 2023, 19, 4–12. [Google Scholar] [CrossRef]
- Muñoz-González, I.; Jiménez-Girón, A.; Martín-Álvarez, P.J.; Bartolomé, B.; Moreno-Arribas, M.V. Profiling of Microbial-Derived Phenolic Metabolites in Human Feces after Moderate Red Wine Intake. J. Agric. Food Chem. 2013, 61, 9470–9479. [Google Scholar] [CrossRef]
- Gutiérrez-Díaz, I.; Fernández-Navarro, T.; Salazar, N.; Bartolomé, B.; Moreno-Arribas, M.V.; López, P.; Suárez, A.; De Los Reyes-Gavilán, C.G.; Gueimonde, M.; González, S. Could Fecal Phenylacetic and Phenylpropionic Acids Be Used as Indicators of Health Status? J. Agric. Food Chem. 2018, 66, 10438–10446. [Google Scholar] [CrossRef]
- Chen, X.; Tian, J.; Luo, C.; Wang, X.; Li, X.; Wang, M. Cell Membrane Remodeling Mediates Polymyxin B Resistance in Klebsiella pneumoniae: An Integrated Proteomics and Metabolomics Study. Front. Microbiol. 2022, 13, 810403. [Google Scholar] [CrossRef]
- Bai, R.; Guo, J. Interactions and Implications of Klebsiella pneumoniae with Human Immune Responses and Metabolic Pathways: A Comprehensive Review. Infect. Drug Resist. 2024, 17, 449–462. [Google Scholar] [CrossRef]
- Peng, B.; Li, H.; Peng, X. Metabolic State-Driven Nutrient-Based Approach to Combat Bacterial Antibiotic Resistance. Npj Antimicrob. Resist. 2025, 3, 24. [Google Scholar] [CrossRef]
- Pautova, A.K.; Burnakova, N.A.; Beloborodova, N.V.; Revelsky, A.I. Simultaneous Determination of Aromatic, Short-Chain Fatty and Dicarboxylic Acids in Blood Serum and Cerebrospinal Fluid by Gas Chromatography–Mass Spectrometry. J. Anal. Chem. 2023, 78, 1942–1954. [Google Scholar] [CrossRef]
- Cortés-Zavaleta, O.; López-Malo, A.; Hernández-Mendoza, A.; García, H.S. Antifungal Activity of Lactobacilli and Its Relationship with 3-Phenyllactic Acid Production. Int. J. Food Microbiol. 2014, 173, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Hong, C.; Yin, L.; Ping, Q.; Hu, G. Antimicrobial Activity of Phenyllactic Acid against Klebsiella pneumoniae and Its Effect on Cell Wall Membrane and Genomic DNA. Braz. J. Microbiol. 2023, 54, 3245–3255. [Google Scholar] [CrossRef] [PubMed]
- Shakya, S.; Danshiitsoodol, N.; Noda, M.; Inoue, Y.; Sugiyama, M. 3-Phenyllactic Acid Generated in Medicinal Plant Extracts Fermented with Plant-Derived Lactic Acid Bacteria Inhibits the Biofilm Synthesis of Aggregatibacter actinomycetemcomitans. Front. Microbiol. 2022, 13, 991144. [Google Scholar] [CrossRef]
- Liu, F.; Tang, C.; Wang, D.; Sun, Z.; Du, L.; Wang, D. The Synergistic Effects of Phenyllactic Acid and Slightly Acid Electrolyzed Water to Effectively Inactivate Klebsiella Oxytoca Planktonic and Biofilm Cells. Food Control. 2021, 125, 107804. [Google Scholar] [CrossRef]
- Wang, F.; Wu, H.; Jin, P.; Sun, Z.; Liu, F.; Du, L.; Wang, D.; Xu, W. Antimicrobial Activity of Phenyllactic Acid Against Enterococcus Faecalis and Its Effect on Cell Membrane. Foodborne Pathog. Dis. 2018, 15, 645–652. [Google Scholar] [CrossRef]
- Ning, Y.; Yan, A.; Yang, K.; Wang, Z.; Li, X.; Jia, Y. Antibacterial Activity of Phenyllactic Acid against Listeria Monocytogenes and Escherichia Coli by Dual Mechanisms. Food Chem. 2017, 228, 533–540. [Google Scholar] [CrossRef]
- Dieuleveux, V.; Lemarinier, S.; Gueguen, M. Antimicrobial Spectrum and Target Site of D-3-Phenyllactic Acid. Int. J. Food Microbiol. 1998, 40, 177–183. [Google Scholar] [CrossRef]
- Mu, W.; Yu, S.; Zhu, L.; Zhang, T.; Jiang, B. Recent Research on 3-Phenyllactic Acid, a Broad-Spectrum Antimicrobial Compound. Appl. Microbiol. Biotechnol. 2012, 95, 1155–1163. [Google Scholar] [CrossRef]
- Abdul-Rahim, O.; Wu, Q.; Price, T.K.; Pistone, G.; Diebel, K.; Bugni, T.S.; Wolfe, A.J. Phenyl-Lactic Acid Is an Active Ingredient in Bactericidal Supernatants of Lactobacillus crispatus. J. Bacteriol. 2021, 203. [Google Scholar] [CrossRef]
- Mahdizade Ari, M.; Dashtbin, S.; Ghasemi, F.; Shahroodian, S.; kiani, P.; Bafandeh, E.; Darbandi, T.; Ghanavati, R.; Darbandi, A. Nitrofurantoin: Properties and Potential in Treatment of Urinary Tract Infection: A Narrative Review. Front Cell Infect. Microbiol. 2023, 13, 1148603. [Google Scholar] [CrossRef]
- Nguyen, F.; Starosta, A.L.; Arenz, S.; Sohmen, D.; Dönhöfer, A.; Wilson, D.N. Tetracycline Antibiotics and Resistance Mechanisms. Biol. Chem. 2014, 395, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Moraes, A.N.S.; Tatara, J.M.; da Rosa, R.L.; Siqueira, F.M.; Domingues, G.; Berger, M.; Guimarães, J.A.; Barth, A.L.; Barth, P.O.; Yates, J.R.; et al. Metabolic Reprogramming of Klebsiella pneumoniae Exposed to Serum and Its Potential Implications in Host Immune System Evasion and Resistance. J. Proteome Res. 2024, 23, 4896–4906. [Google Scholar] [CrossRef]
- Shen, C.; Shen, Y.; Zhang, H.; Xu, M.; He, L.; Qie, J. Comparative Proteomics Demonstrates Altered Metabolism Pathways in Cotrimoxazole- Resistant and Amikacin-Resistant Klebsiella pneumoniae Isolates. Front. Microbiol. 2021, 12, 773829. [Google Scholar] [CrossRef]
- Ye, D.; Sun, J.; Jiang, R.; Chang, J.; Liu, Y.; Wu, X.; Li, L.; Luo, Y.; Wang, J.; Guo, K.; et al. β-Lactam Antibiotics Induce Metabolic Perturbations Linked to ROS Generation Leads to Bacterial Impairment. Front. Microbiol. 2024, 15, 1514825. [Google Scholar] [CrossRef] [PubMed]
- Reding-Roman, C.; Hewlett, M.; Duxbury, S.; Gori, F.; Gudelj, I.; Beardmore, R. The Unconstrained Evolution of Fast and Efficient Antibiotic-Resistant Bacterial Genomes. Nat. Ecol. Evol. 2017, 1, 0050. [Google Scholar] [CrossRef]
- Wood, E.; Schulenburg, H.; Rosenstiel, P.; Bergmiller, T.; Ankrett, D.; Gudelj, I.; Beardmore, R. Ribosome-Binding Antibiotics Increase Bacterial Longevity and Growth Efficiency. Proc. Natl. Acad. Sci. USA 2023, 120, e2221507120. [Google Scholar] [CrossRef]
- Li, L.; Yi, C.; Wen, Z.; Cai, X.; Jin, P. Study on the Correlation between Carbapenem-Resistant Klebsiella pneumoniae Infection Strains and Intestinal Colonization Strains in Intensive Care Unit of a Tertiary Hospital in China. J. Glob. Antimicrob. Resist. 2025, 43, 327–336. [Google Scholar] [CrossRef]
- You, X.; Wang, L.; Wang, H.; Xu, Y.; Chen, Y.; Xu, H.; Ji, X.; Ma, X.; Xu, X. Liver Abscess Induced by Intestinal Hypervirulent Klebsiella pneumoniae through Down-Regulation of Tryptophan-IPA-IL22 Axis. iScience 2024, 27, 110849. [Google Scholar] [CrossRef] [PubMed]
- Levin, B.R.; McCall, I.C.; Perrot, V.; Weiss, H.; Ovesepian, A.; Baquero, F. A Numbers Game: Ribosome Densities, Bacterial Growth, and Antibiotic-Mediated Stasis and Death. mBio 2017, 8, 13. [Google Scholar] [CrossRef]
- Shen, Y.L.; Xu, L.; Zhou, Y.; Ye, B.C. Bacterial Ribosome Heterogeneity Facilitates Rapid Response to Stress. J. Bacteriol. 2025, 207, e00058-25. [Google Scholar] [CrossRef] [PubMed]
- Kals, M.; Kals, E.; Kotar, J.; Donald, A.; Mancini, L.; Cicuta, P. Antibiotics Change the Population Growth Rate Heterogeneity and Morphology of Bacteria. PLoS Pathog. 2025, 21, e1012924. [Google Scholar] [CrossRef] [PubMed]
- Kou, T.S.; Shang, Y.Y.; Zhang, Q.C.; Tian, S.Q.; Li, J.; Yang, L.N.; Min, L.; Peng, B. Exogenous Proline Promotes Serum Killing of Klebsiella pneumoniae. Virulence 2025, 16, 2545558. [Google Scholar] [CrossRef] [PubMed]




| Letter | Locus | Detectable Microorganisms |
|---|---|---|
| A | Broncho-alveolar lavage | Klebsiella pneumoniae 105 |
| B | Broncho-alveolar lavage | Klebsiella pneumoniae 107Acinetobacter baumanii 107 |
| C | Punctuation | Klebsiella pneumoniae 104 |
| D | Broncho-alveolar lavage | Klebsiella pneumoniae 107 |
| E | Broncho-alveolar lavage | Klebsiella pneumoniae 104Acinetobacter baumanii 104 |
| F | Wound or drainage | Pseudomonas aeruginosa 106Klebsiella pneumoniae 106 |
| G | Whole blood | Klebsiella pneumoniae, carbapenemases of the groups were detected, OXA-48 and NDM |
| H | Contents of the abscess | Klebsiella pneumoniae, carbapenemases of the groups were detected, KPC и NDM |
| I | Whole blood | Klebsiella pneumoniae, carbapenemases of the groups were detected, KPC |
| J | Broncho-alveolar lavage | Klebsiella pneumoniae 104 |
| Name of the Drug | Concentration of Antibiotics (mkg) |
|---|---|
| Doxycycline | 30 |
| Nitrofurantoin | 100 |
| Rifampicin | 5 |
| Clarithromycin | 15 |
| Trimethoprim/sulfamethoxazole | 1.25/23.75 |
| Meropenem | 10 |
| Cefepime | 30 |
| Cefotaxime | 5 |
| Ciprofloxacin | 5 |
| Tigecycline | 15 |
| Amikacin | 30 |
| Imipenem | 10 |
| Antibiotics | Metabolites, Mes (IQR25; IQR75) (n = 10), μmol/L | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| BA | PhPA | PhLA | p-HBA | p-HPhAA | p-HPhPA | HVA | p-HPhLA | PhAA | |
| Doxycycline | 10 (5.1; 11) | <0.5 (<0.5; <0.5) | 2,2 (1.4;5.5) | 1.4 (1.2; 1.8) | 0.7 (0.6; 0.74) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.6 (0.58; 0.9) | 4. 5 (2.1; 6.4) |
| Nitrofurantoin | 10 (5.2; 11) | <0.5 (<0.5; <0.5) | 3.2 (1.9; 5.8) | 1.4 (1.1; 1.9) | 0.7 (0.6; 0.7) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.7 (0.6; 0.8) | 4.2 (2.6; 4,9) |
| Rifampicin | 11 (5.5; 11) | <0.5 (<0.5; <0.5) | 3.9 (2.4; 7.8) | 1.5 (1.4; 1.6) | 0.6 (0.6; 0.7) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.7 (0.6; 0.8) | 4.1 (1.9; 5.6) |
| Clarithromycin | 11 (5.6; 11) | <0.5 (<0.5; <0.5) | 8.8 (6.8; 11) | 1.2 (1.1; 1.3) | 0.7 (0.6; 0.7) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.8 (0.7; 0.9) | 4.1 (1.8; 5.1) |
| Trimethoprim/ sulfamethoxazole | 11 (5.6; 11) | <0.5 (<0.5; <0.5) | 8.5 (6.8; 11) | 1.3 (1.2; 1.4) | 0.7 (0.6; 0.7) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.9 (0.7; 0.9) | 4.2 (1.8; 4.6) |
| Meropenem | 10 (5.5; 11) | <0.5 (<0.5; <0.5) | 14.5 (8.5; 20) | 1.3 (1.3; 1.4) | 0.7 (0.6; 0.8) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 1.0 (0.9; 1.2) | 4.4 (1.9; 5.2) |
| Cephalosporins IV | 10 (5.6; 11) | <0.5 (<0.5; <0.5) | 12 (7.5; 13) | 1.5 (1.2; 1.6) | 0.7 (0.6; 0.8) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.9 (0.8; 1.0) | 4.4 (3.1; 5.4) |
| Cephalosporins III | 10 (5.9; 12) | <0.5 (<0.5; <0.5) | 10 (4.2; 12) | 1.3 (1.2; 1.5) | 0.7 (0.4; 0.8) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.9 (0.7; 1.0) | 4.2 (2.3; 4.7) |
| Ciprofloxacin | 11 (5.2; 11) | <0.5 (<0.5; <0.5) | 11 (6.9; 12) | 1.3 (1.2; 1.5) | 0.7 (0.5; 0.8) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.9 (0.7; 1.2) | 4.6 (1.8; 4.7) |
| Tigecycline | 10 (5.6; 11) | <0.5 (<0.5; <0.5) | 1.5 (1.1; 6.5) | 1.2 (1.0; 1.4) | 0.7 (0.4; 0.7) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.6 (0.5; 0.7) | 4.1 (1.9; 4.9) |
| Amikacin | 11 (6.1; 11) | <0.5 (<0.5; <0.5) | 8.8 (5.6; 11) | 1.2 (1.1; 1.3) | 0.7 (0.6; 0.7) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.9 (0.7; 0.9) | 4.6 (3.0; 4.7) |
| Imipenem | 9.9 (5.0; 10) | <0.5 (<0.5; <0.5) | 14 (4.1; 18) | 1.3 (1.1; 1.3) | 0.6 (0.5; 0.7) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 1.0 (0.7; 1.2) | 4.1 (2.0; 4.6) |
| TGM + K. pneumonia | 11 (5.9; 12) | <0.5 (<0.5; <0.5) | 8.8 (6.8; 13) | 1.3 (11; 1.5) | 0.7 (0.6; 0.8) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.8 (0.7; 1.1) | 4.5 (1.9; 5.3) |
| TGM | 11 (5.0; 12) | <0.5 (<0.5; <0.5) | 1.5 (1.3; 1.8) | 0.9 (0.8; 1.0) | 0.6 (0.4; 0.6) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.6 (0.5; 0.7) | 4.1 (1.4; 4.4) |
| TGM + Doxycycline | 10 (4.1; 11) | <0.5 (<0.5; <0.5) | 1.4 (1.1; 1.7) | 0.9 (0.8; 1.0) | 0.6 (0.4; 0.7) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.6 (0.5; 0.7) | 3.4 (1.7; 4.6) |
| TGM + Meropenem | 10 (4.1; 12) | <0.5 (<0.5; <0.5) | 1.5 (1.1; 1.7) | 1.0 (0.9; 1.1) | 0.7 (0.4; 0.7) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.7 (0.5; 0.7) | 3.4 (1.7; 5.2) |
| TGM + Amikacin | 11 (3.9; 12) | <0.5 (<0.5; <0.5) | 1.5 (0.9; 1.7) | 1.0 (0.9; 1.0) | 0.7 (0.3; 0.7) | <0.5 (<0.5; <0.5) | <0.5 (<0.5; <0.5) | 0.6 (0.4; 0.6) | 3.4 (1.6; 5.0) |
| Antibiotics | Strains | |||||||
|---|---|---|---|---|---|---|---|---|
| G | H | I | J | |||||
| PCR, GE/mL | PhLA, μmol/L | PCR, GE/mL | PhLA, μmol/L | PCR, GE/mL | PhLA, μmol/L | PCR, GE/mL | PhLA, μmol/L | |
| Doxycycline | 8.0 × 106 | 4.3 | 1.3 × 105 | 0.0 | 1.2 × 106 | 0.06 | 7.0 × 107 | 2.4 |
| Nitrofurantoin | 2.0 × 107 | 5.3 | 2.0 × 107 | 0.2 | 1.2 × 106 | 0.02 | 1.3 × 107 | 1.9 |
| Rifampicin | 1.0 × 109 | 6.4 | 1.0 × 108 | 2.7 | 4.7 × 107 | 0.59 | 2.0 × 107 | 2.8 |
| Clarithromycin | 5.0 × 106 | 6.1 | 4.0 × 106 | 5.1 | 2.3 × 106 | 2.3 | 2.0 × 107 | 7.9 |
| Trimethoprim/sulfamethoxazole | 5.0 × 106 | 6.9 | 3.0 × 106 | 6.3 | 9.8 × 105 | 2.8 | 7.4 × 106 | 7.3 |
| Meropenem | 7.0 × 107 | 19.7 | 4.0 × 106 | 5.8 | 4.2 × 106 | 4.5 | 8.0 × 106 | 12.0 |
| Cephalosporins IV | 3.0 × 106 | 9.5 | 7.0 × 106 | 5.0 | 2.0 × 106 | 2.9 | 4.0 × 106 | 9.7 |
| Cephalosporins III | 1.2 × 106 | 8.6 | 3.0 × 106 | 5.4 | 1.6 × 106 | 2.5 | 3.0 × 107 | 9.0 |
| Ciprofloxacin | 2.6 × 106 | 11.2 | 5.0 × 106 | 4.8 | 7.3 × 105 | 3.1 | 4.0 × 106 | 9.5 |
| Tigecycline | 6.6 × 106 | 6.2 | 7.0 × 104 | 0.0 | 6.7 × 104 | 0.0 | 6.0 × 106 | 0.0 |
| Amikacin | 1.2 × 107 | 15.3 | 5.0 × 106 | 5.6 | 3.4 × 106 | 2.7 | 2.4 × 107 | 5.6 |
| Imipenem | 2.0 × 106 | 2.1 | 2.0 × 106 | 4.8 | 6.0 × 107 | 1.3 | 1.4 × 105 | 3.2 |
| TGM + K. pneumonia | 2.0 × 106 | 8.8 | 2.0 × 106 | 5.2 | 2.0 × 106 | 2.3 | 5.0 × 106 | 6.9 |
| TGM | negative | 1.4 × 104 | negative | negative | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Getsina, M.; Chernevskaya, E.; Sorokina, E.; Chernenkaya, T.; Beloborodova, N. Phenyllactic Acid as a Marker of Antibiotic-Induced Metabolic Activity of Nosocomial Strains of Klebsiella pneumoniae In Vitro Experiment. Microorganisms 2025, 13, 2599. https://doi.org/10.3390/microorganisms13112599
Getsina M, Chernevskaya E, Sorokina E, Chernenkaya T, Beloborodova N. Phenyllactic Acid as a Marker of Antibiotic-Induced Metabolic Activity of Nosocomial Strains of Klebsiella pneumoniae In Vitro Experiment. Microorganisms. 2025; 13(11):2599. https://doi.org/10.3390/microorganisms13112599
Chicago/Turabian StyleGetsina, Maria, Ekaterina Chernevskaya, Ekaterina Sorokina, Tatiana Chernenkaya, and Natalia Beloborodova. 2025. "Phenyllactic Acid as a Marker of Antibiotic-Induced Metabolic Activity of Nosocomial Strains of Klebsiella pneumoniae In Vitro Experiment" Microorganisms 13, no. 11: 2599. https://doi.org/10.3390/microorganisms13112599
APA StyleGetsina, M., Chernevskaya, E., Sorokina, E., Chernenkaya, T., & Beloborodova, N. (2025). Phenyllactic Acid as a Marker of Antibiotic-Induced Metabolic Activity of Nosocomial Strains of Klebsiella pneumoniae In Vitro Experiment. Microorganisms, 13(11), 2599. https://doi.org/10.3390/microorganisms13112599

