Trans-Zeatin Enhances Auxenochlorella pyrenoidosa Growth by Coordinating Carbon–Nitrogen Metabolism and Antioxidant Defense
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of A. pyrenoidosa Biomass
2.3. Determination of Biochemical Indexes of A. pyrenoidosa
2.4. Selection of Omics Analysis Conditions
2.5. Transcriptomic Analysis
2.6. Metabolomic Analysis
2.7. Statistical Analysis
3. Results
3.1. The Growth Improvement of tZ to A. pyrenoidosa
3.2. Influence of tZ on the Biochemical Characteristics of A. pyrenoidosa
3.3. Influence of tZ on the Gene Expression of A. pyrenoidosa
3.4. Influence of tZ on the Metabolites Expression of A. pyrenoidosa
4. Discussion
4.1. The Effect of tZ on the Growth of A. pyrenoidosa: A Dose-Dependent Response
4.2. The Effect of tZ on the Redox Equilibrium of A. pyrenoidosa
4.3. The Effect of tZ on the Photosynthesis and Carbon Metabolism of A. pyrenoidosa
4.4. The Effect of tZ on the Nitrogen Metabolism of A. pyrenoidosa
4.5. Real-World Applicability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| SDGs | Sustainable Development Goals |
| A. pyrenoidosa | Auxenochlorella pyrenoidosa |
| tZ | trans-Zeatin |
| SP | soluble protein |
| CHO | carbohydrate |
| Chla | chlorophyll a |
| ROS | reactive oxygen species |
| SOD | superoxide dismutase |
| CAT | catalase |
| MDA | malondialdehyde |
| GSH | reduced glutathione |
| TAC | total antioxidant capacity |
| IAA | indole-3-acetic acid |
| GA | gibberellic acid |
| ABA | abscisic acid |
| IBA | indole-3-butyric acid |
| BG-11 | Blue-Green 11 |
| PBS | phosphate buffer |
| APX | ascorbate peroxidase |
| ALA | 5-amino-4-oxovaleric acid |
| TCA | tricarboxylic acid |
| NADPH | Nicotinamide Adenine Dinucleotide Phosphate Reduced |
| DEGs | differentially expressed genes |
| DEMs | differentially expressed metabolites |
| h | hours |
| min | minutes |
| s | second |
| SD | standard deviation |
| PCA | principal component analysis |
| OPLS-DA | orthogonal partial least squares discriminant analysis |
| GSS | Glutathione synthetase |
| GPX | Glutathione peroxidase |
| GST | Glutathione S-transferases |
| PRDX6 | Peroxiredoxin 6 |
| OPLAH | 5-oxoprolinase, ATP-hydrolyzing |
| G6PD | Glucose-6-phosphate dehydrogenase |
| algH | Putative transcriptional regulator |
| CCT3 | T-complex protein 1 subunit gamma |
| HCAR | Heme synthase |
| UGT | UDP-glucuronosyltransferase |
| HEPH | Heme oxygenase |
| sirB | Siroheme biosynthesis |
| CAO | Chlorophyllide a oxygenase |
| MDH2 | Malate dehydrogenase |
| tktA | Transketolase |
| PGK | Phosphoglycerate kinase |
| rpe | Ribulose-phosphate 3-epimerase |
| TPI | Triose-phosphate isomerase |
| GAPDH | Glyceraldehyde 3-phosphate dehydrogenase |
| GLUD1_2 | Glutamate dehydrogenase (NAD(P)+) |
| arcC | Carbamate kinase |
| GLUL | Glutamine synthetase |
| NR | Nitrate reductase (NAD(P)H) |
| hcp | Hydroxylamine reductase |
| cynS | Cyanate lyase |
| CYP55 | Fungal nitric oxide reductase |
References
- Mehta, A.K.; Chakraborty, S. Multiscale integration of mixotrophic microalgal cultivation, lipid synthesis, rapid biomass harvesting, and nutrient recycling in pilot-scale photobioreactors. Algal Res. 2021, 53, 102146. [Google Scholar] [CrossRef]
- You, N.; Deng, S.; Wang, C.; Ngo, H.H.; Wang, X.; Yu, H.; Tang, L.; Han, J. Review and opinions on the research, development and application of microalgae culture technologies for resource recovery from wastewater. Water 2023, 15, 1192. [Google Scholar] [CrossRef]
- Wang, Y.; Ho, S.; Cheng, C.; Guo, W.; Nagarajan, D.; Ren, N.; Lee, D.; Chang, J. Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour. Technol. 2016, 222, 485–497. [Google Scholar] [CrossRef]
- Fu, W.Q.; Nelson, D.R.; Mystikou, A.; Daakour, S.; Salehi-Ashtiani, K. Advances in microalgal research and engineering development. Curr. Opin. Biotechnol. 2019, 59, 157–164. [Google Scholar] [CrossRef]
- Rojas-Villalta, D.; Rojas-Rodríguez, D.; Villanueva-Ilama, M.; Guillén-Watson, R.; Murillo-Vega, F.; Gómez-Espinoza, O.; Núñez-Montero, K. Exploring extremotolerant and extremophilic microalgae: New frontiers in sustainable biotechnological applications. Biology 2024, 13, 712. [Google Scholar] [CrossRef]
- Oliveira, C.Y.B.; Jacob, A.; Nader, C.; Oliveira, C.D.L.; Matos, A.P.; Araujo, E.S.; Shabnam, N.; Ashok, B.; Galvez, A.O. An overview on microalgae as renewable resources for meeting sustainable development goals. J. Environ. Manag. 2022, 320, 115897. [Google Scholar] [CrossRef]
- Suparmaniam, U.; Lam, M.K.; Lim, J.W.; Tan, I.S.; Chin, B.L.F.; Shuit, S.H.; Lim, S.; Pang, Y.L.; Kiew, P.L. Abiotic stress as a dynamic strategy for enhancing high value phytochemicals in microalgae: Critical insights, challenges and future prospects. Biotechnol. Adv. 2024, 70, 108280. [Google Scholar] [CrossRef]
- Ali, H.E.A.; El-fayoumy, E.A.; Rasmy, W.E.; Soliman, R.M.; Abdullah, M.A. Two-stage cultivation of Chlorella vulgaris using light and salt stress conditions for simultaneous production of lipid, carotenoids, and antioxidants. J. Appl. Phycol. 2021, 33, 227–239. [Google Scholar] [CrossRef]
- Stirk, W.A.; van Staden, J. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnol. Adv. 2020, 44, 107612. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Cai, Y.; Wakisaka, M.; Yang, Z.; Yin, Y.; Fang, W.; Xu, Y.; Omura, T.; Yu, R.; Zheng, A.L.T. Mitigation of oxidative stress damage caused by abiotic stress to improve biomass yield of microalgae: A review. Sci. Total Environ. 2023, 896, 165200. [Google Scholar] [CrossRef] [PubMed]
- Waadt, R.; Seller, C.A.; Hsu, P.-K.; Takahashi, Y.; Munemasa, S.; Schroeder, J.I. Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 680–694. [Google Scholar] [CrossRef] [PubMed]
- Oyediran, O.K.; Olagoke, O.O.; Abiodun, S. Microbial phytohormones in agriculture: A comprehensive review. Eur. J. Agric. For. Res. 2025, 13, 58–88. [Google Scholar] [CrossRef]
- Pirog, T.P.; Iutynska, G.O.; Leonova, N.O.; Beregova, K.A.; Shevchuk, T.A. Microbial synthesis of phytohormones. Biotechnol. Acta 2018, 11, 5–24. [Google Scholar] [CrossRef]
- Letham, D.S. Zeatin, a factor inducing cell division isolated from Zea mays. Life Sci. 1963, 2, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Jameson, P.E. Zeatin: The 60th anniversary of its identification. Plant Physiol. 2023, 192, 34–55. [Google Scholar] [CrossRef] [PubMed]
- Cerutti, T.; Delatorre, C.A. Nitrogen and phosphorus interaction and cytokinin: Responses of the primary root of Arabidopsis haliana and the pdr1 mutant. Plant Sci. 2013, 198, 91–97. [Google Scholar] [CrossRef]
- Piotrowska-Niczyporuk, A.; Bonda-Ostaszewska, E.; Bajguz, A. Mitigating effect of Trans-Zeatin on cadmium toxicity in Desmodesmus armatus. Cells 2024, 13, 686. [Google Scholar] [CrossRef]
- Alicja, P.-N.; Andrzej, B.; Urszula, K.; Elzbieta, Z.-S.; Sienkiewicz, A. Auxins and cytokinins regulate phytohormone homeostasis and thiol-mediated detoxification in the green alga Acutodesmus obliquus exposed to lead stress. Sci. Rep. 2020, 10, 10193. [Google Scholar] [CrossRef]
- Renuka, N.; Guldhe, A.; Singh, P.; Ansari, F.A.; Rawat, I.; Bux, F. Evaluating the potential of cytokinins for biomass and lipid enhancement in microalga Acutodesmus obliquus under nitrogen stress. Energy Convers. Manag. 2017, 140, 14–23. [Google Scholar] [CrossRef]
- Sivaramakrishnan, R.; Incharoensakdi, A. Plant hormone induced enrichment of Chlorella sp. omega-3 fatty acids. Biotechnol. Biofuels 2020, 13, 7. [Google Scholar] [CrossRef]
- Meng, S.L.; Xu, H.M.; Qin, L.; Chen, X.; Qiu, L.P.; Li, D.D.; Song, C.; Hu, G.D.; Xu, P. The gill-associated bacterial community is more affected by exogenous Chlorella pyrenoidosa addition than the bacterial communities of water and fish gut in GIFT tilapia (Oreochromis niloticus) aquaculture system. Biology 2023, 12, 1209. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.M.; Ma, Y.C.; Zhang, L.X.; Han, J.; Lei, Y.N.; Le, Y.; Huang, C.X.; Kan, J.T.; Fu, C.L. Extraction, functionality, and applications of Chlorella pyrenoidosa protein/peptide. Curr. Res. Food Sci. 2023, 7, 100621. [Google Scholar] [CrossRef]
- Bai, F.; Jia, Y.; Yang, C.; Li, T.; Wu, Z.; Liu, J.; Song, L. Multiple physiological response analyses aid the understanding of sensitivity variation between microcystis aeruginosa and Chlorella sp. under paraquat exposures. Environ. Sci. Eur. 2019, 31, 83. [Google Scholar] [CrossRef]
- Shang, Z.F.; Li, M.; Ma, Y.L.; Si, B.B.; Wei, Z.J.; Zhang, X. Deciphering metabolomic insights into benzoic acid-mediated nutrient enrichment in Chlorella pyrenoidosa. Food Biosci. 2024, 59, 104157. [Google Scholar] [CrossRef]
- Zavrel, T.; Ocenasova, P.; Sinetova, M.A.; Cerveny, J. Determination of storage (starch/glycogen) and total saccharides content in algae and cyanobacteria by a phenol-sulfuric acid method. Bio-Protoc. 2018, 8, e2966. [Google Scholar] [CrossRef]
- Qi, X.J.; Gu, C.Q.; He, S.; Zhu, D.X.; Huang, Y.K.; Zhou, Q.Q. Widely targeted metabolomics analysis reveals new biomarkers and mechanistic insights on chestnut (Castanea mollissima Bl.) calcification process. Food Res. Int. 2021, 141, 110128. [Google Scholar] [CrossRef]
- Shi, Y.L.; Zhu, Y.; Ma, W.J.; Shi, J.; Peng, Q.H.; Lin, Z.; Lv, H.P. Comprehensive investigation on non-volatile and volatile metabolites in four types of green teas obtained from the same tea cultivar of Longjing 43 (Camellia sinensis var. sinensis) using the widely targeted metabolomics. Food Chem. 2022, 394, 133501. [Google Scholar] [CrossRef]
- Akhtar, G.; Akram, A.; Sajjad, Y.; Balal, R.M.; Shahid, M.A.; Sardar, H.; Naseem, K.; Shah, S.M. Potential of plant growth regulators on modulating rooting of Rosa centifolia. Am. J. Plant Sci. 2015, 6, 659–665. [Google Scholar] [CrossRef]
- Hu, Y.Q.; Xia, S.T.; Su, Y.; Wang, H.Q.; Luo, W.G.; Su, S.Y.; Xiao, L.T. Brassinolide increases potato root growth In Vitro in a dose-dependent way and alleviates salinity stress. Biomed. Res. Int. 2016, 2016, 8231873. [Google Scholar] [CrossRef] [PubMed]
- Devireddy, A.R.; Zandalinas, S.I.; Fichman, Y.; Mittler, R. Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J. 2021, 105, 459–476. [Google Scholar] [CrossRef] [PubMed]
- Delaix, C.L.; Tomiozzo, A.; Weber, G.; Lima-Melo, Y.; Vargas, A.N.d.; Margis-Pinheiro, M.; Trenz, T.S. Interplay among hormones, antioxidants, and redox signaling in abiotic stress responses. Environ. Exp. Bot. 2025, 229, 106081. [Google Scholar] [CrossRef]
- Kapoo, D.; Singh, S.; Kumar, V.; Romero, R.; Prasad, R.; Singh, J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 2019, 19, 100182. [Google Scholar] [CrossRef]
- Piotrowska-Niczyporuk, A.; Bajguz, A. The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul. 2014, 73, 57–66. [Google Scholar] [CrossRef]
- Ahmad, N.; Yasin, D.; Bano, F.; Fatma, T. Ameliorative effects of endogenous and exogenous indole-3-acetic acid on atrazine stressed paddy field cyanobacterial biofertilizer Cylindrospermum stagnale. Sci. Rep. 2022, 12, 11175. [Google Scholar] [CrossRef] [PubMed]
- Kesharwani, A.; Panda, S.P. Isolation of phytohormone trans-Zeatin: Potential oxidant scavenger and anti-aging compound. Neurochem. J. 2024, 18, 134–146. [Google Scholar] [CrossRef]
- Chai, Y.-C.; Mieyal, J.J. Glutathione and glutaredoxin—Key players in cellular redox homeostasis and signaling. Antioxidants 2023, 12, 1553. [Google Scholar] [CrossRef]
- Xing, C.; Li, J.J.; Lam, S.M.; Yuan, H.L.; Shui, G.H.; Yang, J.H. The role of glutathione-mediated triacylglycerol synthesis in the response to ultra-high cadmium stress in Auxenochlorella protothecoides. J. Environ. Sci. 2021, 108, 58–69. [Google Scholar] [CrossRef]
- Zahedi, K.; Barone, S.; Soleimani, M. Polyamines and their metabolism: From the maintenance of physiological homeostasis to the mediation of disease. Med. Sci. 2022, 10, 38. [Google Scholar] [CrossRef]
- Lavandosque, L.L.; Vischi Winck, F. Polyamine-mediated growth regulation in microalgae: Integrating redox balance and amino acids pathway into metabolic engineering. SynBio 2025, 3, 8. [Google Scholar] [CrossRef]
- Flohe, L.; Toppo, S.; Orian, L. The glutathione peroxidase family: Discoveries and mechanism. Methods Enzymol. 2022, 187, 113–122. [Google Scholar] [CrossRef]
- Tang, H.Y.; Ho, H.Y.; Wu, P.R.; Chen, S.H.; Kuypers, F.A.; Cheng, M.L.; Chiu, D.T. Inability to maintain gsh pool in g6pd-deficient red cells causes futile ampk activation and irreversible metabolic disturbance. Antioxid. Redox Signal. 2015, 22, 744–759. [Google Scholar] [CrossRef] [PubMed]
- Hönig, M.; Plihalova, L.; Husickova, A.; Nisler, J.; Dolezal, K. Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci. 2018, 19, 4045. [Google Scholar] [CrossRef] [PubMed]
- Prerostova, S.; Dobrev, P.I.; Kramna, B.; Gaudinova, A.; Knirsch, V.; Spichal, L.; Zatloukal, M.; Vankova, R. Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. Front. Plant Sci. 2020, 11, 87. [Google Scholar] [CrossRef]
- Cortleven, A.; Marg, I.; Yamburenko, M.V.; Schlicke, H.; Hill, K.; Grimm, B.; Schaller, G.E.; Schmuelling, T. Cytokinin regulates the etioplast-chloroplast transition through the two-component signaling system and activation of chloroplast-related genes. Plant Physiol. 2016, 172, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Hudecek, M.; Nozkova, V.; Plihalova, L.; Plihal, O. Plant hormone cytokinin at the crossroads of stress priming and control of photosynthesis. Front. Plant Sci. 2023, 13, 1103088. [Google Scholar] [CrossRef]
- Tanaka, R.; Tanaka, A. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim. Biophys. Acta (BBA)-Bioenerg. 2011, 1807, 968–976. [Google Scholar] [CrossRef]
- Ohmiya, A.; Hirashima, M.; Yagi, M.; Tanase, K.; Yamamizo, C. Identification of genes associated with chlorophyll accumulation in flower petals. PLoS ONE 2014, 9, e113738. [Google Scholar] [CrossRef]
- Gharabli, H.; Della Gala, V.; Welner, D.H. The function of UDP-glycosyltransferases in plants and their possible use in crop protection. Biotechnol. Adv. 2023, 67, 108182. [Google Scholar] [CrossRef]
- Molinié, T.; Cougouilles, E.; David, C.; Cahoreau, E.; Portais, J.-C.; Mourier, A. MDH2 produced OAA is a metabolic switch rewiring the fuelling of respiratory chain and TCA cycle. Biochim. Biophys. Acta (BBA)-Bioenerg. 2022, 1863, 148532. [Google Scholar] [CrossRef]
- Rytter, H.; Jamet, A.; Ziveri, J.; Ramond, E.; Coureuil, M.; Lagouge-Roussey, P.; Euphrasie, D.; Tros, F.; Goudin, N.; Chhuon, C.; et al. The pentose phosphate pathway constitutes a major metabolic hub in pathogenic Francisella. PLoS Pathog. 2021, 17, e1009326. [Google Scholar] [CrossRef]
- Suzuki, Y.; Yamashita, M.; Takada, H.; Takegahara-Tamakawa, Y.; Miyake, C.; Makino, A. Effects of simultaneous Rubisco, glyceraldehyde-3-phosphate dehydrogenase, and triosephosphate isomerase overexpression on photosynthesis in rice. Soil. Sci. Plant Nutr. 2024, 70, 353–360. [Google Scholar] [CrossRef]
- Haghighi, O.; Davaeifar, S.; Zahiri, H.S.; Maleki, H.; Noghabi, K.A. Homology modeling and molecular docking studies of glutamate dehydrogenase (gdh) from cyanobacterium Synechocystis sp. PCC 6803. Int. J. Pept. Res. Ther. 2020, 26, 783–793. [Google Scholar] [CrossRef]
- Wen, X.L.; Zhou, Y.C.; Liang, X.L.; Li, J.X.; Huang, Y.T.; Li, Q.L. A novel carbon-nitrogen coupled metabolic pathway promotes the recyclability of nitrogen in composting habitats. Bioresour. Technol. 2023, 381, 129134. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhang, Q.F.; Huan, Z.Y.; Zhong, M.Q.; Chen, W.Z.; Du, H. Identification and characterization of glutamine synthetase isozymes in Gracilaria lemaneiformis. Aquat. Bot. 2018, 146, 23–30. [Google Scholar] [CrossRef]
- Liu, X.; Huan, Z.; Zhang, Q.; Zhong, M.; Chen, W.; Aslam, M.; Du, H. Glutamine synthetase (gs): A key enzyme for nitrogen assimilation in the macroalga Gracilariopsis lemaneiformis (Rhodophyta). J. Phycol. 2019, 55, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Luque, E.; Chamizo-Ampudia, A.; Llamas, A.; Galvan, A.; Fernandez, E. Understanding nitrate assimilation and its regulation in microalgae. Front. Plant Sci. 2015, 6, 899. [Google Scholar] [CrossRef]
- Hasan, M.M.; Skalicky, M.; Jahan, M.S.; Hossain, M.N.; Anwar, Z.; Nie, Z.-F.; Alabdallah, N.M.; Brestic, M.; Hejnak, V.; Fang, X.-W. Spermine: Its emerging role in regulating drought stress responses in plants. Cells 2021, 10, 261. [Google Scholar] [CrossRef]
- Mustafavi, S.H.; Badi, H.N.; Sękara, A.; Mehrafarin, A.; Janda, T.; Ghorbanpour, M.; Rafiee, H. Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. ACTA Physiol. Plant. 2018, 40, 102. [Google Scholar] [CrossRef]
- Aktar, F.; Islam, M.S.; Milon, M.A.-A.; Islam, N. Polyamines: An essentially regulatory modulator of plants to abiotic stress tolerance: A review. Asian J. Appl. Sci. 2021, 9. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Rahman, A.; Inafuku, M.; Oku, H.; Fujita, M. Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings. Physiol. Mol. Biol. Plants 2018, 24, 993–1004. [Google Scholar] [CrossRef]
- Aubert, M.; Clouet, V.; Guilbaud, F.; Bouchereau, A.; Dellero, Y. The catabolism of branched-chain amino acids and tyrosine contributes minimally to mitochondrial metabolism during senescence in Brassica napus L. J. Exp. Bot. 2025, 76, 5438–5454. [Google Scholar] [CrossRef] [PubMed]
- Glibert, P.M. Nitrogen Uptake, Assimilation, and Metabolism: Making Amino Acids and Protein. In Phytoplankton Whispering: An Introduction to the Physiology and Ecology of Microalgae; Springer: Cham, Switzerland, 2024; pp. 255–296. ISBN 978-3-031-53897-1. [Google Scholar]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.-L.; Li, M.; Lei, Q.; Ma, H.-J.; An, Y.-J. Trans-Zeatin Enhances Auxenochlorella pyrenoidosa Growth by Coordinating Carbon–Nitrogen Metabolism and Antioxidant Defense. Microorganisms 2025, 13, 2554. https://doi.org/10.3390/microorganisms13112554
Ma Y-L, Li M, Lei Q, Ma H-J, An Y-J. Trans-Zeatin Enhances Auxenochlorella pyrenoidosa Growth by Coordinating Carbon–Nitrogen Metabolism and Antioxidant Defense. Microorganisms. 2025; 13(11):2554. https://doi.org/10.3390/microorganisms13112554
Chicago/Turabian StyleMa, Yong-Lan, Min Li, Qian Lei, Hai-Jun Ma, and Ya-Jing An. 2025. "Trans-Zeatin Enhances Auxenochlorella pyrenoidosa Growth by Coordinating Carbon–Nitrogen Metabolism and Antioxidant Defense" Microorganisms 13, no. 11: 2554. https://doi.org/10.3390/microorganisms13112554
APA StyleMa, Y.-L., Li, M., Lei, Q., Ma, H.-J., & An, Y.-J. (2025). Trans-Zeatin Enhances Auxenochlorella pyrenoidosa Growth by Coordinating Carbon–Nitrogen Metabolism and Antioxidant Defense. Microorganisms, 13(11), 2554. https://doi.org/10.3390/microorganisms13112554

