The Role of TLR3 rs3775291 Variant in West Nile Virus Infection: A Case-Control Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Population and Sample Collection
2.3. Detection of WNV RNA Infection by Real-Time RT-PCR and WNV-Specific IgM/IgG Antibodies by ELISA
2.4. Allelic Discrimination Assay
2.5. Statistical Analysis
2.6. Sample Size Calculation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| WNV | West Nile virus | 
| SNP | Single nucleotide polymorphism | 
| TLR3 | Toll-like receptor 3 | 
References
- Klingelhöfer, D.; Braun, M.; Kramer, I.M.; Reuss, F.; Müller, R.; Groneberg, D.A.; Brüggmann, D. A Virus Becomes a Global Concern: Research Activities on West-Nile Virus. Emerg. Microbes Infect. 2023, 12, 2256424. [Google Scholar] [CrossRef]
- Simonin, Y. Usutu, West Nile, and Tick-Borne Encephalitis Viruses. Viruses 2022, 14, 2120. [Google Scholar] [CrossRef]
- Santini, M.; Haberle, S.; Židovec-Lepej, S.; Savić, V.; Kusulja, M.; Papić, N.; Višković, K.; Župetić, I.; Savini, G.; Barbić, L.; et al. Severe West Nile Virus Neuroinvasive Disease: Clinical Characteristics, Short-and Long-Term Outcomes. Pathogens 2022, 11, 52. [Google Scholar] [CrossRef] [PubMed]
- Mingione, M.; Branda, F.; Maruotti, A.; Ciccozzi, M.; Mazzoli, S. Monitoring the West Nile Virus Outbreaks in Italy Using Open Access Data. Sci. Data 2023, 10, 777. [Google Scholar] [CrossRef]
- Paphitou, N.I.; Tourvas, A.; Floridou, D.; Richter, J.; Tryfonos, C.; Christodoulou, C. The First Human Case of Neuroinvasive West Nile Virus Infection Identified in Cyprus. J. Infect. Public Health 2017, 10, 891–893. [Google Scholar] [CrossRef] [PubMed]
- Pervanidou, D.; Kefaloudi, C.N.; Vakali, A.; Tsakalidou, O.; Karatheodorou, M.; Tsioka, K.; Evangelidou, M.; Mellou, K.; Pappa, S.; Stoikou, K.; et al. The 2022 West Nile Virus Season in Greece; A Quite Intense Season. Viruses 2023, 15, 1481. [Google Scholar] [CrossRef]
- Kircheis, R.; Planz, O. The Role of Toll-like Receptors (TLRs) and Their Related Signaling Pathways in Viral Infection and Inflammation. Int. J. Mol. Sci. 2023, 24, 6701. [Google Scholar] [CrossRef]
- Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Gack, M.U. Distinct and Orchestrated Functions of RNA Sensors in Innate Immunity. Immunity 2020, 53, 26–42. [Google Scholar] [CrossRef]
- Alexopoulou, L.; Holt, A.C.; Medzhitov, R.; Flavell, R.A. Recognition of Double-Stranded RNA and Activation of NF-ΚB by Toll-like Receptor 3. Nature 2001, 413, 732–738. [Google Scholar] [CrossRef]
- Wang, T.; Town, T.; Alexopoulou, L.; Anderson, J.F.; Fikrig, E.; Flavell, R.A. Toll-like Receptor 3 Mediates West Nile Virus Entry into the Brain Causing Lethal Encephalitis. Nat. Med. 2004, 10, 1366–1373. [Google Scholar] [CrossRef]
- Daffis, S.; Samuel, M.A.; Suthar, M.S.; Gale, M.; Diamond, M.S. Toll-Like Receptor 3 Has a Protective Role against West Nile Virus Infection. J. Virol. 2008, 82, 10358. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Fan, L.; Yu, K.-D.; Zhao, M.-W.; Li, X.-X. Toll-like Receptor 3 C1234T May Protect against Geographic Atrophy through Decreased DsRNA Binding Capacity. FASEB J. 2011, 25, 3489–3495. [Google Scholar] [CrossRef]
- Ranjith-Kumar, C.T.; Miller, W.; Sun, J.; Xiong, J.; Santos, J.; Yarbrough, I.; Lamb, R.J.; Mills, J.; Duffy, K.E.; Hoose, S.; et al. Effects of Single Nucleotide Polymorphisms on Toll-like Receptor 3 Activity and Expression in Cultured Cells. J. Biol. Chem. 2007, 282, 17705. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.A.; Silva, C.S.; da Silva Vieira, M.C.; Dos Santos, P.A.S.; Frota, C.C.; Lima, K.V.B.; Lima, L.N.G.C. The Relationship between TLR3 Rs3775291 Polymorphism and Infectious Diseases: A Meta-Analysis of Case-Control Studies. Genes 2023, 14, 1311. [Google Scholar] [CrossRef]
- Perales-Linares, R.; Navas-Martin, S. Toll-like Receptor 3 in Viral Pathogenesis: Friend or Foe? Immunology 2013, 140, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Billioud, G.; Tryfonos, C.; Richter, J. The Prevalence of Antibodies against Sandfly Fever Viruses and West Nile Virus in Cyprus. J. Arthropod-Borne Dis. 2019, 13, 116–125. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Kerst, A.J.; Nasci, R.S.; Godsey, M.S.; Mitchell, C.J.; Savage, H.M.; Komar, N.; Panella, N.A.; Allen, B.C.; Volpe, K.E.; et al. Rapid Detection of West Nile Virus from Human Clinical Specimens, Field-Collected Mosquitoes, and Avian Samples by a TaqMan Reverse Transcriptase-PCR Assay. J. Clin. Microbiol. 2000, 38, 4066–4071. [Google Scholar] [CrossRef]
- Gomes, J.A.; Sgarioni, E.; Boquett, J.A.; Kowalski, T.W.; Fraga, L.R.; Terças-Trettel, A.C.P.; da Silva, J.H.; Ribeiro, B.F.R.; Galera, M.F.; de Oliveira, T.M.; et al. Investigation of the Impact of AXL, TLR3, and STAT2 in Congenital Zika Syndrome through Genetic Polymorphisms and Protein–Protein Interaction Network Analyses. Birth Defects Res. 2023, 115, 1500–1512. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, F.; Munnink, B.B.O.; Munger, E.; Sikkema, R.S.; Pappa, S.; Tsioka, K.; Sinigaglia, A.; Dal Molin, E.; Shih, B.B.; et al. West Nile Virus Spread in Europe: Phylogeographic Pattern Analysis and Key Drivers. PLoS Pathog. 2024, 20, e1011880. [Google Scholar] [CrossRef]
- O’Brien, C.A.; Hobson-Peters, J.; Yam, A.W.Y.; Colmant, A.M.G.; McLean, B.J.; Prow, N.A.; Watterson, D.; Hall-Mendelin, S.; Warrilow, D.; Ng, M.L.; et al. Viral RNA Intermediates as Targets for Detection and Discovery of Novel and Emerging Mosquito-Borne Viruses. PLoS Neglected Trop. Dis. 2015, 9, e0003629. [Google Scholar] [CrossRef]
- Kong, K.-F.; Delroux, K.; Wang, X.; Qian, F.; Arjona, A.; Malawista, S.E.; Fikrig, E.; Montgomery, R.R. Dysregulation of TLR3 Impairs the Innate Immune Response to West Nile Virus in the Elderly. J. Virol. 2008, 82, 7613–7623. [Google Scholar] [CrossRef]
- Abe, Y.; Fujii, K.; Nagata, N.; Takeuchi, O.; Akira, S.; Oshiumi, H.; Matsumoto, M.; Seya, T.; Koike, S. The Toll-like Receptor 3-Mediated Antiviral Response Is Important for Protection against Poliovirus Infection in Poliovirus Receptor Transgenic Mice. J. Virol. 2012, 86, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Reinert, L.S.; Harder, L.; Holm, C.K.; Iversen, M.B.; Horan, K.A.; Dagnæs-Hansen, F.; Ulhøi, B.P.; Holm, T.H.; Mogensen, T.H.; Owens, T.; et al. TLR3 Deficiency Renders Astrocytes Permissive to Herpes Simplex Virus Infection and Facilitates Establishment of CNS Infection in Mice. J. Clin. Investig. 2012, 122, 1368–1376. [Google Scholar] [CrossRef]
- McNab, F.; Mayer-Barber, K.; Sher, A.; Wack, A.; O’Garra, A. Type I Interferons in Infectious Disease. Nat. Rev. Immunol. 2015, 15, 87–103. [Google Scholar] [CrossRef]
- Verma, R.; Pandey, A.K.; Chakraborty, R.; Prakash, S.; Jain, A. Toll-Like Receptor 3 Genetic Polymorphism in Dengue Encephalitis. J. Fam. Med. Prim. Care 2024, 13, 2397–2403. [Google Scholar] [CrossRef]
- Barkhash, A.V.; Voevoda, M.I.; Romaschenko, A.G. Association of Single Nucleotide Polymorphism Rs3775291 in the Coding Region of the TLR3 Gene with Predisposition to Tick-Borne Encephalitis in a Russian Population. Antivir. Res. 2013, 99, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Mickiene, A.; Pakalniene, J.; Nordgren, J.; Carlsson, B.; Hagbom, M.; Svensson, L.; Lindquist, L. Polymorphisms in Chemokine Receptor 5 and Toll-like Receptor 3 Genes Are Risk Factors for Clinical Tick-Borne Encephalitis in the Lithuanian Population. PLoS ONE 2014, 9, e106798. [Google Scholar] [CrossRef]
- Santos, C.N.O.; Ribeiro, D.R.; Cardoso Alves, J.; Cazzaniga, R.A.; Magalhães, L.S.; De Souza, M.S.F.; Fonseca, A.B.L.; Bispo, A.J.B.; Porto, R.L.S.; Santos, C.A.D.; et al. Association between Zika Virus Microcephaly in Newborns with the Rs3775291 Variant in Toll-Like Receptor 3 and Rs1799964 Variant at Tumor Necrosis Factor-α Gene. J. Infect. Dis. 2019, 220, 1797–1801. [Google Scholar] [CrossRef] [PubMed]
- Karaiskakio Foundation. The Cyprus Genome Project. Available online: https://www.cyprusgenome.org/ (accessed on 14 August 2025).
- Snyder, R.E.; Cooksey, G.S.; Kramer, V.; Jain, S.; Vugia, D.J. West Nile Virus-Associated Hospitalizations, California, 2004–2017. Clin. Infect. Dis. 2021, 73, 441–447. [Google Scholar] [CrossRef]
- Yao, Y.; Montgomery, R.R. Role of Immune Aging in Susceptibility to West Nile Virus. Methods Protoc. 2016, 1435, 235–247. [Google Scholar] [CrossRef]
| Parameter * | WNV Patients (N = 20) | HCs (N = 22) | p-Value | 
|---|---|---|---|
| Age (mean [SD]) | 67.2 ± 20.4 | 61.4 ± 14.0 | 0.08 | 
| Gender (male/female) | 17/3 | 18/4 | 1.0 | 
| Encephalitis (±fever, diarrhea) | 5 | N/A | |
| Meningoencephalitis | 1 | N/A | |
| Fever (±headache, confusion, vomiting, diarrhea) | 7 | N/A | |
| Meningitis | 1 | N/A | |
| Suspected WNV infection | 6 | N/A | 
| SNP | Genotype | WNV (%) | HCs (%) | p-Value a | OR (95% CI) b | 
|---|---|---|---|---|---|
| rs3775291 | C/C | 5 (25) | 14 (63.6) | - | Reference genotype | 
| C/T | 13 (65) | 6 (27.3) | 0.0217 c | 0.1648 (0.04073–0.6731) | |
| T/T | 2 (10) | 2 (9.1) | 0.5573 | 0.3571 (0.03916–3.257) | |
| ‘CT + T/T’ | 15 (75) | 8 (36.4) | 0.0157 c | 0.1905 (0.05017–0.7232) | 
| SNP | Alleles | WNV Patients (%) | HCs (%) | p-Value a | OR (95% CI) b | 
|---|---|---|---|---|---|
| rs3775291 | C | 23 (57.5) | 34 (77.3) | - | Reference allele | 
| T | 17 (42.5) | 10 (22.7) | 0.0640 | 0.3979 (0.1549–1.022) | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashiardes, S.; Tryfonos, C.; Richter, J.; Krashias, G. The Role of TLR3 rs3775291 Variant in West Nile Virus Infection: A Case-Control Study. Microorganisms 2025, 13, 2487. https://doi.org/10.3390/microorganisms13112487
Bashiardes S, Tryfonos C, Richter J, Krashias G. The Role of TLR3 rs3775291 Variant in West Nile Virus Infection: A Case-Control Study. Microorganisms. 2025; 13(11):2487. https://doi.org/10.3390/microorganisms13112487
Chicago/Turabian StyleBashiardes, Stavros, Christina Tryfonos, Jan Richter, and George Krashias. 2025. "The Role of TLR3 rs3775291 Variant in West Nile Virus Infection: A Case-Control Study" Microorganisms 13, no. 11: 2487. https://doi.org/10.3390/microorganisms13112487
APA StyleBashiardes, S., Tryfonos, C., Richter, J., & Krashias, G. (2025). The Role of TLR3 rs3775291 Variant in West Nile Virus Infection: A Case-Control Study. Microorganisms, 13(11), 2487. https://doi.org/10.3390/microorganisms13112487
 
         
                                                

 
       